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Abstract In this paper we consider a production plan optimization problem for a
company that produces textile products. The problem is solved using two iterative
methods: a new method based on the cooperative game theory (MP method) and the
well-known STEM method. Their application efficiency and the solutions obtained
are compared. For this purpose we use four groups of criteria: (1) the general char-
acteristics of the method (2) the criteria from the standpoint of the decision makers,
(3) the criteria from the perspective of the analysts, and (4) the ‘economic’ criteria.
The analysis indicates that both methods are highly efficient for solving this kind of
production plan optimization problems. However, the decision-makers preferred the
MP method.

Keywords Multi-objective linear programming · MP method · STEM method ·
Interactive methods · Production plan optimization

1 Introduction

Multi-objective programming (MOP) is the most studied area of operations research.
Since the beginning of 1970th, when the first papers onMOP appeared, manymethods
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for solving such kind of problems have been developed. Indeed, interactive multi-
objective linear programing methods are among the most popular approaches to
solving various economic problems. The most important reviews of the MOP and
related methods are given in Roy (1971), Mac-Crimmon (1973), Cohon and Marks
(1975), Bell et al. 1977, Star and Zeleny (1977), Hwang andMasud (1979), Ho (1979),
Despontion and Spronk (1979), Zionts (1980), Chankong and Haimes (1983), Yu
(1985), Steuer (1985), Fandel and Spronk (1985), Lai and Hwang (1996), Figueira
et al. (2005), and Perić (2008).

Different MOP methods do not have equal application efficiency, either from the
standpoint of the decision makers or from the perspective of the analysts. The prob-
lem of MOP application efficiency has been preoccupying the attention of numerous
researchers [see: Agarwal (1973), Dyer (1973), Cohon and Marks (1975), Walle-
nius (1975), Wallenius and Zionts (1976), Tell (1976), Karwan and Wallace (1980),
Schomaker (1980a, b, c), Rietveld (1980), Khairullah and Zionts (1980) and Trianta-
phyllow (2000), Perić (2008)]. Their findings on application efficiency vary depending
on the nature of the problem tackled.

One of the most important issues in evaluating the efficiency of MOP methods is
the selection of criteria for their evaluation. Different criteria were used in the papers
listed above to evaluate the efficiency of various methods in solving different MOP
problems. For that purpose, Agarwal (1973) used Geoffrion’s method and STEM
method to solve the optimization problem of a city transport network. In their analysis
of application efficiency they used the following criteria: (1) the quality of the obtained
results, (2) decision-maker’s preference for the method and (3) the difficulty in solving
the problem.

Dyer (1973) tested Geoffrion’s method using 9 subjects as decision-makers. The
criteria applied to evaluate its efficiency were: (1) the difficulties involved in the
application of the method and (2) the confidence of the decision-maker in the obtained
solution.

Masud (1978) evaluated the efficiency of Linear goal programming, STEM and
SEMOPS in solving a linear operational production planning model with 4 objective
functions, 18 variables and 48 constraints. Two criteria were used to evaluate the
efficiency of the methods: (1) the quality of the obtained results and (2) the difficulty
of use.

Wallenius presented a comparative evaluation of the efficiency of three interactive
methods: Geoffrion’s method, the STEM method and an Unstructured approach: a
trial and error model. These methods were applied to solve a production planning
problem with three objective functions, 25 variables, and 19 constraints. The methods
were evaluated according to the following criteria: (1) confidence of the decision-
maker in the best compromise solution, (2) ease of use of the method, (3) ease of
understanding the method’s logic, (4) usefulness of information provided to assist the
decision-maker, (5) convergence rate measured by the number of cycles and total time
of model resolution and (6) CPU processor time.

Hwang and Masud (1979) listed nine different criteria and divided them into three
groups for the evaluation of the efficiency of MOP methods, while Perić (2008) used
13 criteria, distributed among 4 classes, to evaluate the application efficiency of six
multi-criteria linear programming methods in solving four manufacturing problems.
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The majority of the developed methods employ interactive multi-objective linear
programming (MOLP) approach. Interactive MOLP methods have k (k >1) linear
objective functions and m linear constraints, and the decision-maker(s) actively par-
ticipate in the whole process of problem solving. The application of MOLP methods
produces a single non-dominated (efficient) solutionwhich is accepted by the decision-
maker(s): the preferred solution.

Matejaš and Perić (2014) developed a new interactive iterative MOLP method
based on the cooperative game theory (MP method). The authors state that the pro-
posedmethod provides numerous advantages and support their claim by several simple
examples. In this paper we compare the application efficiency of the MP method and
the STEMmethod on a real, practical example of the optimal plan determination prob-
lem using four groups of criteria: the general characteristics of the method, criteria
from the analyst’s point of view, criteria from the perspective of the-decision maker,
and the ‘economic’ criteria. The goal of this paper is to investigate the application
efficiency of two interactive MOLP methods (STEM and MP method) which can be
applied to optimize processes involving more than one-decision maker. We chose the
STEM method since it is an interactive method for solving MOLP problems which
accommodates the involvement of multiple decision-makers in the problem-solving
process.Moreover, its application efficiency has been investigated in the literature (see
Agarwal (1973), Masud (1978), Perić (2008) etc.). The MP method is also an inter-
active method designed to solve MOLP problems with the participation of multiple
decision-makers. However, the application efficiency of this method has not yet been
investigated in the literature. There are many different approaches to solve MOLP
problems. One of the most recent papers that should be mentioned is Filatovas et al.
(2017), where authors introduce a new approach based on evolutionary algorithm
R-NSGA, which use a local search strategy to solve multi-objective programming
problems.

This paper, in addition to Introduction (Sect. 1) andReferences, consists of four sec-
tions. In Sect. 2, the basic concepts of the MOLP model, the new MP method and the
STEM method are presented. In Sect. 3, we present the Case study of the application
of the MP method and the STEM method in solving the production plan optimization
problem, while in Sect. 4 we analyse the application efficiency of the proposed meth-
ods. Conclusions present the important findings on the application efficiency of the
MP and STEM methods and proposals for future research.

2 Multi-objective linear programming model

Let ck ∈ Rn , k � 1, 2, . . . , K , b ∈ Rm and A ∈ Rm × n be the given vectors and
matrix, respectively. The general MOLP can be stated in the following way

max
x∈S zk(x), k � 1, 2, . . . , K , (1)

where zk(x) � cTk x, S � {x ∈ Rn : x ≥ 0, Ax <�> b}. Here <�> denotes any
combination of three possible types of given linear constraints: ≤, ≥ or �.
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Thus, the model (1) contains K linear objective functions and m constraints with
nonnegative variables.

By solving the model (1) in such a way that each of the objective functions is
separately maximized on the set S, we obtain the marginal solutions of this model.
Since the objective functions in MOLP models are mutually conflicting, the values of
objective functions will be significantly different for marginal solutions.

Decision-makers (DMs) almost certainly will not be able to choose any of the
obtained marginal solutions, but they will look for a compromise solution which will
satisfy their preferences towards objective function values.

In order to find the preferred efficient solution, we can use a number of stan-
dard multi-objective programming (MOP) methods [see Hwang and Masud (1979)].
However, those methods have different efficiency and give different solutions, so the
problem of choosing the appropriate method is always topical.

2.1 A new iterative method for solving MOLP models (MP method)

A new iterative method for solving MOLP problems with any number of DMs was
proposed in Matejaš and Perić (2014). This method is based on the idea of the coop-
erative game theory (Osborne 2004, pp 239–270) and it enables decision-makers to
be significantly involved in the process of obtaining the preferred efficient solution.

As we have seen before, a multi-objective programming problem represents the
situation where several (K) DMs (players) optimize their utilities, or one player opti-
mizes several different objectives, at the same time and on the same constraint set
(budget). We frequently encounter such situations in practice. Each utility (or objec-
tive) is given by the objective function zk(x), k � 1, 2, . . . , K . If the analytic form
of the budget and the objective functions is linear then we have a multi-objective
linear programming (MOLP) problem (1). In Matejaš and Perić (2014) an efficient
method (MP-method) for solving these problems is presented. Here we present a brief
overview of the method.

There are two sets defined in the MP-method,

D � {
x ∈ Rn : x ≥ 0, zk(x) ≥ dk , k � 1, 2, . . . , K

}
, (2)

Dλ � {
x ∈ Rn : x ≥ 0, zk(x) ≥ λdk , k � 1, 2, . . . , K

}
, λ ≥ 0, (3)

where dk is the aspiration level which the player Pk wants to achieve (zk(x) ≥ dk).
At any point x ∈ D all the players achieve their aspirations fully, while at any point
x ∈ Dλ they achieve their aspirations to the relative extent of at least λ. The method
is stated in a very simple form: find the largest λ for which Dλ ∩ S �� ∅ (geometric
form) or equivalent,

max
(x,λ)∈G λ,

where G � {
(x, λ) ∈ Rn+1 : x ∈ S, λ ≥ 0, zk(x) ≥ λdk , k � 1, 2, . . . , K

}
,

(4)
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(analytic form), which is a standard linear programming (LP) problem. The optimal
solution λ∗ shows to which (minimum) relative extent all the players can realize their
aspirations. For x∗ being the optimal point, the indicator

λk � zk(x∗)
dk

, k � 1, 2, . . . , K (5)

shows to which extent the player Pk can realize his own aspiration. Thus, the indicators
measure the reality of players’ aspirations and can be used to improve the solution, if
unsatisfactory, in the subsequent iterations (see Matejaš and Perić (2014) for details).

2.2 The STEM method

The STEM method is one of the first interactive methods to solve MOLP problems.
It was proposed by Benayoun et al. (1971).

In the STEM method, each iteration (cycle) contains two phases: (1) calculation
phase and (2) decision phase. In the calculation phase in the p cycle we should find
a feasible solution which is the “closest” to the ideal objective function value zk* (k
�1, 2, …, K) by solving the following linear programming model:

min
(x,λ)∈Sp

λ, (6)

whereSp � {(x, λ) ∈ Rn+1 : x ∈ S; λ ≥ ∣∣z∗k − zk(x)
∣∣ · πk , λ ≥ 0, k � 1, 2, . . . , K },

πk � αk∑K
k�1 αk

, αk � z∗k−zmin
k
z∗k

⎡

⎢⎢
⎣

1√
n∑

j�1
(ck j)

2

⎤

⎥⎥
⎦ , if z∗k > 0, αk �

zmin
k −z∗k
zmin
k

⎡

⎢⎢
⎣

1√
n∑

j�1
(ck j)

2

⎤

⎥⎥
⎦ , if z∗k < 0.

In the decision phase, the obtained compromise solution xp is presented to the DMs
who compare their objective function zk with the ideal objective function value zk*. If
some of the objective functions are satisfied, the decision-makers must lower the level
of the satisfied objective function in the amount which will enable the improvement
of the unsatisfactory objective functions in the next step of the method. The decision-
maker gives �zk as the amount of acceptable alleviation.

For the next iterative cycle the feasible set is modified to Sp+1 �
{(x, λ) ∈ Sp; zk(x) ≥ zk(xp) − �zk ; zi (x) ≥ zi (xp), k �� i ; k, i � 1, . . . , K } .

πk � 0 is determined and then starts the calculation phase of the p +1 cycle. In the
calculation phase the analyst can solve several linear programming problems with
the feasible Sp taking �zk inputs so that 0 < �z1k < �z2k < · · · < �zck . In this way
a large number of efficient solutions can be obtained. The set of efficient solutions
is presented to the DMs. From those solutions the DMs can choose the preferred
solution [Hwang and Masud (1979)].
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3 Case study

3.1 Setting the problem

The production planning problem involves determining the type and quantity of prod-
ucts to be manufactured in a given period of time. If the company aims to accomplish
more than a single goal in the planning period, the problem can be mathematically
represented as a multi-objective programming problem which, in turn, can be solved
using multi-objective programming methods.

When solving MOLP problems, it is necessary to define objectives, decision vari-
ables, criteria functions, constraints and the parameters of criteria functions and
constraints.

A textilemanufacturing company plans to produce thirty different products (labeled
with „i“) in the period of one year. In this case, the quantity of i-product (i �1, 2, …,
30) in the production program are taken as the decision variables (labeled with xi).
The company set the following production programme optimization objectives for the
given period: (1) production volume maximization, (2) total profit maximization, and
(3) total revenue maximization. The following optimization criteria emerge from the
defined goals: (1) production volume in pieces, (2) total profit in monetary units, and
(3) total revenue inmonetary units (Perić and Babić 2009). To form objective functions
we need to use the parameters of net sale price in monetary units (labeled with ci3)
and net profit per product in monetary units (labeled with ci2) that are fixed in the
planning period by the assumption. The data needed to form the objective functions
of the MOLP problem outlined above are given in Table 1 (Perić and Babić 2009).

The indicator ‘profit per product’ is calculated on the basis of the planned production
program structure, planned retail prices, and planned costs. It is assumed that changes
in the structure of the production program will not significantly affect this indicator.

The company has six capacity constraints (machines andmaterials) and thirty-three
market constraints. The parameters of manufacturing time and machine capacity in
minutes for the machine constraints: Cutting, Sewing and Finishing units (labelled
with ai1, ai2, ai3, b1, b2 and b3, respectively) are given in Table 2. All the parameters
in the model are fixed in the given period.

The parameters of the needed quantity of material per product and the maximal
quantity of purchase in kg for the material constraints: “A”, “B” and “C” (labelled
with gi1, gi2, gi3, d1, d2 and d3, respectively) are given in Table 3. All the parameters
in the model are fixed in the given period.

Company’s market constraints are expressed through maximal and minimal sales
restrictions. So the company can sell at most 500,000 pieces of products 1, 2, 3, 6, 7,
9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, and 30, 345,000 pieces
of product 4,575,000 of product 5,172,500 pieces of product 8,230,000 pieces of
product 15,345,000 pieces of product 26,230,000 pieces of product 27,300,000 pieces
of product 28, and 264,500 pieces of product 29. The company has to produce at
least 115,000 pieces of product 6; 172,500 pieces of product 13 and 115,000 pieces
of product 16 since it has contracts with existing customers (Perić and Babić 2009).
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Table 1 Net sale price and profit per product. Source: (Perić and Babić 2009)

Product (i) Net sale price
in mon. Units
(ci3)

Profit in mon.
Units (ci2)

Product (i) Net sale price
in mon. Units
(ci3)

Profit in mon.
Units (ci2)

1 3.50 0.60 16 0.75 0.06

2 3.30 0.54 17 0.98 0.12

3 3.60 0.56 18 2.77 0.45

4 1.80 0.25 19 1.37 0.29

5 1.60 0.25 20 1.58 0.31

6 0.80 0.12 21 2.65 0.45

7 0.70 0.08 22 2.20 0.36

8 0.70 0.08 23 1.55 0.20

9 0.80 0.08 24 1.39 0.25

10 3.60 0.72 25 3.95 0.96

11 3.80 0.54 26 1.45 0.16

12 3.99 0.66 27 1.35 0.11

13 0.78 0.07 28 1.55 0.15

14 0.75 0.07 29 1.50 0.14

15 0.75 0.07 30 3.20 0.09

Table 2 Manufacturing time and machine capacity in minutes. Source: (Perić and Babić 2009)

Prod. (i) Cutting
unit (ai1)

Sewing
unit (ai2)

Finishing
unit (ai2)

Prod. (i) Cutting
unit (ai1)

Sewing
unit (ai2)

Finishing
unit (ai2)

1 0.90 18.40 2.20 16 0.10 3.30 0.50

2 0.60 19.20 2.21 17 0.70 5.20 0.70

3 1.80 18.70 2.80 18 1.00 21.20 1.80

4 0.70 6.70 0.90 19 0.80 12.90 2.70

5 0.90 7.10 0.50 20 0.70 12.60 1.40

6 0.30 4.00 0.80 21 0.80 18.50 2.40

7 0.30 7.20 0.80 22 0.60 10.10 1.60

8 0.20 5.00 0.50 23 0.60 17.50 1.80

9 0.20 4.60 0.60 24 0.30 15.90 1.80

10 0.30 14.40 2.30 25 1.40 19.50 2.40

11 2.30 11.90 2.00 26 0.50 15.60 4.20

12 0.60 26.40 2.60 27 0.20 5.90 3.80

13 0.20 3.10 0.60 28 0.30 4.40 1.60

14 0.20 3.20 0.50 29 0.30 4.40 1.60

15 0.10 3.40 1.00 30 1.90 13.50 2.00

Avail.
mach.
capac.

3,136,320
(b1)

54,711,360
(b2)

8,363,520
(b3)
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Table 3 The needed quantity of material per product and the maximal quantity of purchase in kg. Source:
(Perić and Babić 2009)

Prod. (i) Material Prod. (i) Material

„A“ (gi1) „B“ (gi2) „C“ (gi3) „A“ (gi1) „B“ (gi2) „C“ (gi3)

1 0.016 0.548 – 16 – 0.069 –

2 – 0.597 – 17 – 0.037 –

3 0.477 0.020 – 18 1.200 – –

4 0.343 – – 19 0.012 0.362 –

5 0.286 – – 20 0.050 – 0.290

6 – 0.134 – 21 0.051 – 0.263

7 – 0.075 – 22 – 0.358 –

8 – 0.056 – 23 – – 0.291

9 – 0.012 0.083 24 0.012 0.143 –

10 – 0.647 – 25 0.012 0.205 –

11 – 0.006 0.683 26 – 0.599 –

12 – – 0.684 27 0.017 0.114 –

13 0.452 – – 28 – 0.114 –

14 – 0.009 0.081 29 0.131 – –

15 – 0.048 – 30 0.210 – –

538,000
(d1)

523,000
(d2)

179,000
(d3)

Maximum quantity to be purchased

3.2 Multi-objective linear programming model

Let xi � the quantity of i product in pieces (i�1,…, 30), z1 � the objective function of
the total production in pieces, z2 � the objective function of the net-profit in monetary
units (m.u) z3 � the objective function of the total revenue in m.u.

The multi-objective linear programming model for determining the optimal pro-
duction plan for a 1-year period is given in the following form (Perić and Babić 2009):

A. Objective functions

max
x∈S

{

z1 �
30∑

i�1

xi ,
30∑

i�1

ci2xi ,
30∑

i�1

ci3xi

}

(7)

where

S �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x � (x1, x2, . . . , x30) :
30∑

i�1
ai1xi ≤ b1,

30∑

i�1
ai2xi ≤ b2,

30∑

i�1
ai3xi ≤ b3,

30∑

i�1
gi1xi ≤ d1,

30∑

i�1
gi2xi ≤ d2,

30∑

i�1
di3xi ≤ d3,

x1, x2, x3, x6, x7, x9, x10, x11, x12, x13, x14, x16, x17, x18, x19, x20, x21, x22, x23, x24, x25,
x30 ≤ 50, 0000, x4 ≤ 345, 000, x5 ≤ 575, 000, x8 ≤ 172, 500, x15 ≤ 230, 000, x26 ≤ 345, 000,
x27 ≤ 230, 000, x28 ≤ 300, 000, x29 ≤ 264, 500, x6 ≥ 115, 000, x13 ≥ 172, 500, x16 ≥ 115, 000,
x1, . . . , x30 ≥ 0 and integer.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Table 4 Values of variable and objective function. Source: Author’s calculations by using Excel Solver

Solution Values of variable Values of objective function

z1 z2 z3

max
x∈S z1 x3 �500,000, x4 �345,000,

x6 �115,000, x8 �172,500,
x9 �500,000, x10
�322,190, x13 �208,580,
x14 �500,000, x15
�230,000, x16 �500,000,
x21 �368,821, x24
�500,000, x27 �133,626,
x28 �300,000, x29
�264,500, x30 �264,500

7,142,645
(100% of z1*)

1,361,995
(79% of z2*)

9,287,307
(90% of z3*)

max
x∈S z2 x3 �500,000, x5 �522,309,

x6 �115,000, x10
�458,209, x12 �69,444,
x13 �172,500, x15
�230,000, x16 �115,000,
x17 �220,375, x21
�500,000, x24 �500,000,
x25 �500,000, x29
�264,500

4,167,337 (58%
of z1*)

1,728,671
(100% of
z2*)

9,655,347
(94% of z3*)

max
x∈S z3 x3 �500,000, x4 �345,000,

x6 �115,000, x8 �172,500,
x9 �500,000, x10
�322,190, x13 �208,580,
x14 �500,000, x15
�230,000, x16 �500,000,
x21 �368,821, x24
�500,000, x25 �500,000,
x27 �133,626, x28
�300,000, x29 �264,500,
x30 �91,218

5,551,435 (78%
of z1*)

1,637,435
95% of z2*)

10,260,245
(100% of
z3*)

3.3 The model solving

The presented model is firstly solved by application of a linear integer programming
method maximizing each of the three objective functions separately on the given set
of constraints S. The obtained solutions are presented in Table 4.

From Table 1 it is obvious that by maximizing function z1 we obtain a value which
significantly differs from the value of that function when we maximize functions z2
and z3, respectively. Also, maximizing the other two objective functions results in a
significant difference in values of the single objective functions. This reveals a conflict
between the objective functions and the need to apply a multi-objective programming
method when solving this model (Perić and Babić 2009). Here we present a procedure
for determining an optimal production program by application of the MP and STEM
methods to solve the multi-objective programming model.
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The application of STEM and MP requires an active participation of decision-
makers in the problem-solving process. Since we use the data from the paper by Perić
and Babić (2009) for the purpose of analyzing the applicability of the method, the
authors of this paper have been involved in the problem-solving process as decision-
makers. Each of the authors represented one of the objective functions that he wanted
to maximize under a given set of constraints.

Decision-makers are aware that the conflict between the objectives precludes max-
imum value realization of its objective function, which means that they must accept
a compromise solution with a lower objective function value. They are also aware
that they must find a compromise solution because it is in their common interest. The
application of the multi-objective programming method should help decision-makers
to understand the decision-making process better. At each step they should know
which the decision maker(s) should reduce their aspirations so that the dissatisfied
decision-maker(s) can improve the fulfilment of their objective function(s), ultimately
leading to a compromise solution that is the best for all decision-makers and for the
company as a whole.

3.3.1 Solving the problem by the MP method

The process of solving a production program optimization problem by applying the
MP method starts by informing the DMk (k � 1, 2, 3) on the maximal and minimal
values of the objective functions.

4,167,377 ≤ z1 ≤ 7,142,645 (8)

1,361,995 ≤ z2 ≤ 1,728,671 (9)

9,287,307 ≤ z3 ≤ 10,260,245. (10)

After informing the decision-makers on the highest and lowest value of their
objective function, the decision-makers determine the initial acceptable value of their
objective functions. In the first stage, the decision-makers have determined the follow-
ing acceptable values for their objective functions: z1 �7,100,000, z2 �1,700,000, z3
�10,200,000. At this stage it is normal that each decision-maker aims to realize the
value of his objective function that approaches its maximum. The DMs know that they
can hardly realize the determined acceptable level in the first step. Once the process
has been iterated several times, which requires an active participation of the DMs
and negotiations in the process of problem solving, the final acceptable level of the
objective function values should be realized (Perić et al. 2017).

In the second stage of the first step of the MP method the following integer linear
programming model is solved:

max
(x,λ)∈Dλ

λ (11)
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Table 5 The solution of stage 2, step 1. Source: Authors’ calculations using the Excel Solver software

Solution λ z1 z2 z3 λ1 λ2 λ3

I 0.9292 6,597,404 1,579,660 9,980,257,4 0.9292 0.9292 0.9784

Values of variables are omitted from the table, and the indicators λk (k �1, 2, 3) are calculated using (5)

Table 6 The solution of stage 2, step 2. Source: Authors’ calculations using the Excel Solver software

Solution λ z1 z2 z3 λ1 λ2 λ3

II 0.9522 6,665,642 1,571,187 9,953,927,1 0.9522 0.9522 0.9954

where

Dλ �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, λ) : x ∈ S ∩

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

30∑

i�1

xi ≥ 7, 100, 000λ

30∑

i�1

ci2xi ≥ 1, 700, 000λ,

30∑

i�1

ci3xi ≥ 10, 200, 000λ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
The solution presented in Table 5 was obtained.
None of the decision-makerswere satisfiedwith the achieved value of their objective

function.
In the second step of the method the decision-makers determine new reduced aspi-

ration levels (values λ � λ1 � λ2 � 0.9292 suggest decreasing the aspiration level
value of the decision makers 1 and 2.). They agreed to determine: d1 �7,000,000, d2
�1,650,000, d3 �10,000,000.

After solving themodel (11)with the changed constraints, z1 ≥ 7, 000, 000λ instead
of z1 ≥ 7, 100, 000λ, z2 ≥ 1, 650, 000λ instead of z2 ≥ 1, 700, 000λ, and z3 ≥
10, 000, 000λ instead of z3 ≥ 10, 200, 000λ the solution presented in Table 6 was
obtained.

After the second step, the DM1 and DM2 were not satisfied with the obtained solu-
tion, but the DM3 was completely satisfied with the obtained value of his objective
function. After that, decision-makers negotiated and agreed to determine new aspi-
rational levels of their objective functions. The values of λ � λ1 � λ2 � 0.9522
demonstrated that DM1 and DM2 should reduce their aspirational levels to obtain a
solution that will be more acceptable to all decision-makers.

Step 3. They agreed to determine: d1 �6,900,000, d2 �1,600,000, d3 �9,900,000.
After solving the model (11) with the changed constraints, z1 ≥ 6, 900, 000λ instead
of z1 ≥ 7, 100, 000λ, z2 ≥ 1, 600, 000λ instead of z2 ≥ 1, 700, 000λ, and z3 ≥
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Table 7 The solution of stage 2, step 3. Source: Authors’ calculations using the Excel Solver software

Solution λ z1 z2 z3 λ1 λ2 λ3

III 0.9763 6,736,167 1,562,009,8 9,940,604,4 0.9763 0.9763 1.0041

Table 8 The solution of stage 2, step 4. Source: Authors’ calculations using the Excel Solver

Solution λ z1 z2 z3 λ1 λ2 λ3

IV 0.9693 6,591,293 1,580,000 9,996,502,8 0.9693 1.00 1.0097

9, 900, 000λ instead of z3 ≥ 10, 200, 000λ the solution presented in Table 7 was
obtained:

The DM1 was not satisfied with the obtained value of the function z1. The DM1
decreased the acceptance level of the function z1 to 6,800,000. The decision makers
negotiated and agreed to set the lowest level of the function z2 at 1,580,000. Therefore,
the DMs agreed to determine d1 �6,800,000, z2 ≥ 1,580,000, and d3 �9,900,000.

Step 4. After solving the model (11) with the changed constraints z1 ≥ 6, 800, 000λ
instead of z1 ≥ 7, 100, 000λ, z2 ≥ 1, 580, 000 instead of z2 ≥ 1, 700, 000λ and
z3 ≥ 9, 900, 000λ instead of z3 ≥ 10, 200, 000λ the solution presented in Table 8 was
obtained.

Since at this stage the general satisfaction level λ decreased from 0.9763 to 0.9693,
a further improvement of the objective function value z1 was not possible, and the
obtained solution was accepted by all DMs. Therefore, the solution process was com-
pleted and the preferred solution obtained after only four steps.

We should emphasize that theMPmethod assumes that the DMs know or can deter-
mine the acceptable level of their objective functions. The solution process ensures
obtaining the preferred efficient solution that is acceptable to all DMs in the minimal
number of steps (Perić et al. 2017).

To demonstrate the high application efficiency of the MP method in solving this
problem we will compare it with the application efficiency of the well-known STEM
method.

3.3.2 Solving the problem by the STEM method

The process of problem solving by the STEMmethod involves several steps. First, we
solved the following model

min
(x,λ)∈S1

λ (12)

using the calculated α1 � 0.07605, α2 � 0.103147, α3 � 0.007656, π1 � 0.407,
π2 � 0.552, and π3 � 0.041, where

S1 �
{
(x, λ) ∈ Rn+1 : x ∈ S; λ ≥ |7, 142, 645 − z1(x)| · 0.407; λ ≥ |172, 8, 671 − z2(x)| · 0.552;
λ ≥ |1, 026, 0245 − z3(x)| · 0.0401; λ ≥ 0

}

.
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Table 9 Results after step 2 of the STEM method

Solution (�z1, �z3) z∗1 z∗2 z∗3
I (50,000, 100,000) 6,841,086 1,549,405.7 9,886,265.95

II (80,000, 200,000) 6,811,087 1,553,130.67 9,897,832.5

III (100,000, 250,000) 6,791,087 1,555,613,84 9,905,543.15

IV (150,000, 300,000) 6,741,086 1,561,822.79 9,924,851.09

V (200,000, 400,000) 6,691,086 1,568,030.67 9,944,128.58

VI (300,000, 600,000) 6,591,086 1,580,447.33 9,982,714.15

VII (400,000, 800,000) 6,491,086 1,592,763.97 10,024,598

VIII (500,000,
1,000,000)

6,391,086 1,605,044.61 10,067,662.1

IX (600,000,
1,100,000)

6,291,086 1,617,324.62 10,110,708.9

X (700,000,
1,200,000)

6,191,086 1,627,052.7 10,123,821.1

The following solution was obtained: z1 �6891,086, z2 �1,543,198.06, z3
�9,866,962.

The DM2 was not satisfied with the obtained solution while the DM1 and DM3
were satisfied.

In the second step of the STEM method applied to solve the theoretical model (6)
we used the following inputs: π1 � π3 � 0, π2 � 1,

(�z1, �z3)

�
⎧
⎨

⎩

(50000, 100, 000) ; (80, 000, 200, 000) ; (100, 000, 250, 000) ; (150, 000, 300, 000) ;
(200, 000, 400, 000) ; (300, 000, 600, 000) ; (400, 000, 800, 000) ; (500, 000, 1, 000, 000) ;
(600, 000, 1, 100, 000) ; (700, 000, 1, 200, 000)

⎫
⎬

⎭

Therefore, the following models are solved:

min
(x,λ)∈Sc2

λ, (13)

where Sc2 �
⎧
⎨

⎩

(x, λ) ∈ Rn+1 : x ∈ S; λ ≥ 1, 728, 671 − z2(x);
z1(x) ≥ 6, 891, 086 − �z1; z3(x) ≥ 9, 866, 962 − �z3;

z2(x) ≥ 1, 543, 198; λ ≥ 0

⎫
⎬

⎭
.

The obtained results are presented in Table 9.
Based on the sensitivity analysis presented in Table 9, the decision-makers should

choose the preferred solution. In order to choose the preferred solution, the decision-
makers negotiated about each of the 10 solutions offered. DM3was not too demanding
regarding the acceptance of the offered solutions. Most negotiations were conducted
betweenDM1 andDM2.After additional calculations of trade-offs between individual
solutions,DM1andDM2agreed to accept the preferred solution. They agreed to accept
the solution VI with z1 �6,591,086, z2 �1,580,447.33 and z3 �9,982,714.15.
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4 Analysis of the obtained results

To analyse the efficiency of the presented methods we solved a production plan
optimization problem. For that purpose, we formed a multi objective linear integer
programming model with three linear objective functions, 30 variables and 39 lin-
ear constraints. All computations were performed using Excel Solver to solve linear
integer programming problems. Three decision-makers participated in the problem-
solving process, each focusing on one objective function.

The criteria for evaluating the efficiency of the presented methods in solving the
production plan optimization problem were divided into four groups: (Perić 2008).

The first group (I) represents the general characteristics of the method:

(1) Number, character and significance of the assumptions associated with the
method

(2) Required data (types, quantity, accuracy)
(3) The character of the model that the method solves (linear, nonlinear)
(4) The results of the method (number of efficient solutions, ranking of efficient

solutions: yes or no)
The second group of criteria are used to evaluate the efficiency of the method
from the analyst’s standpoint:

(5) The difficulty of using the method (whether there are difficulties in formulating
the mathematical model, whether the mathematical model needs to be supple-
mented or significantly changed, whether the modification of the mathematical
model significantly increases its scope (number of variables and constraints).
The third group (III) evaluate the efficiency of the method from the perspective
of the decision maker:

(6) The difficulty of using the method (what information is required from the deci-
sion maker and is it difficult to provide)

(7) Clarity of the method
(8) Confidence in the reliability of the method and the solution obtained
(9) Whether the decision-maker is involved in the process of model solving
(10) Can the decision-maker, if he or she participates in the process of model solving,

influence the change in the solutions obtained (change the preference)
(11) Whether the method enables the decision-maker to learn about the system being

optimized.
The fourth group (IV) of criteria evaluate the methods by applying economic
criteria:

(12) The total deviation of the obtained solution from the ideal point, expressed
as the sum of the individual deviations of each objective function from the
corresponding ideal point

(13) Computer-related technical difficulties (total time of problem solving on the
computer) expressed through the time required for model building, data entry
into the computer, and total analyst’s time spent with the decision-maker(s) to
obtain the preferred solution.

Based on the above criteria, the DMs evaluated the efficiency of the presented
methods. After completing the process of obtaining the preferred solutions using the
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MP and STEM method, the decision-makers evaluated the application efficiency of
these methods according to the presented criteria. They rated the methods according
to the outlined criteria on a scale from 1 to 5 (1 for the least efficiency according to
the default criterion and 5 for the greatest) An overview of the efficiency results of
the MP method and the STEM method is shown in Tables 10 and 11, respectively.
Individual numerical evaluations of the methods are presented in the last column of
the Tables 10 and 11 as DM1+DM2+DM3.

Since in process of solving a production plan optimization problem the STEM and
MP methods use standard computer software to solve a linear programming problem,
we consider that the size of the model (number of variables and constraints) does not
affect the application efficiency of these methods, so the results can be generalized for
all models with a limited number of variables and constraints.

Based on the results presented in Tables 10 and 11we can conclude that themethods
are similar. Both methods are iterative and require active participation of the decision-
makers in the resolution process. Both methods achieve the best results when dealing
with multiple decision-makers, as by the assumption the decision-makers are not
able to estimate the preferences between the objective functions but are capable of
recognizing “good solutions”.

However, in addition to the similarities between the two methods, there are differ-
ences that give advantage to the MP method. Namely, the MP method is based on the
idea of cooperative game theory where the decision-makers are actively involved in
solving problems by negotiating at each step of the solving process in order to obtain
a preferred solution that satisfies all decision-makers. The MP method at each step
reveals which of the decision-makers should reduce his or her aspiration level(s) to
enable the improvement of the insufficiently fulfilled objective function level(s).

Since the total score obtained by adding up the decision-makers’ grades for dif-
ferent criteria is higher for the MP method than the STEM method (171 vs.154) we
conclude that the MP method has a greater application efficiency in solving of the
production plan optimization problem than the STEM method. More precisely, the
two methods were graded equally on the criteria belonging to Groups II and IV (15
and 27 respectively). According to the criteria grouped under I and III, theMPmethod
had a higher score (50:36 and 82:60 respectively). Consequently, assigning weights
to the criteria groups would not change the final result.

5 Conclusions

In this paper we investigate the application efficiency of the MP and STEM methods
in solving a production plan optimization problem of an enterprise engaged in the
industrial production of textile products. The MP and STEMmethods were applied to
amodel with three objective functions, 30 decision variables, and 39 constraints. Three
decision-makers, who were also the authors of this paper, were actively involved in
the optimization problem solving. The standard MS Office Solver software was used
to solve the model. Four groups of criteria [(1) general characteristics of the method,
(2) the efficiency of the method from analyst’s standpoint, (3) the efficiency of the
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Table 10 Overview of the application efficiency of the MP method. Source: Authors’ descriptions and
calculations

Criteria group Criteria Descriptive rating of method efficiency Numeric value from 1 to
5

I 1 The decision maker is unable, due to the
complexity of the problem, to indicate
a priori information about the
preferences, but is capable of
identifying the “good” solutions and
the relative importance of the criteria
functions in the resolution process

3+3+4

2 Deterministic data 5+5+4

3 Linear or non-linear problems 5+5+5

4 One preferred solution accepted by all
decision-makers

4+3+4

II 5 The problem-solving analyst using this
method is not bound by any additional
efforts as it solves a series of standard
single-criteria linear (non-linear)
programming models

5+5+5

III 6 The method is simple to use. The
decision-maker is required to
determine and change his or her
aspirations in accordance with the
solutions that the method gives and in
agreement with other decision-makers

5+5+5

7 The resolution process is understandable
to the decision-maker

4+5+5

8 Decision-makers have a high degree of
confidence in the method and the
preferred solution that it provides

4+5+4

9 Decision-makers are actively involved in
the process of problem solving

5+5+5

10 Decision-makers can influence the
solution by changing their aspirational
levels

4+4+5

11 The method enables decision-makers to
learn about the system being optimized

4+4+4

IV 12 The total deviation of the obtained
solution from the ideal point in percent
amounts 18.89

5+5+5

13 The total time of problem-solving on the
computer amounts to 3.5 h

3+3+3

Total 171

method from the decision-makers’ perspective, and (4) economic criteria] were used
to evaluate the efficiency of the MP and STEM methods.

After solving the model using the MP and STEM methods, the efficiency was
evaluated on four groups of criteria. The two methods had the same rating on Groups
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Table 11 Overview of the application efficiency of the STEM method. Source Authors’ descriptions and
calculations

Criteria Group Criteria Descriptive rating of method efficiency Numeric value from 1 to
5

I 1 The decision maker is unable, due to the
complexity of the problem, to indicate
a priori information about the
preferences, but is capable of
identifying the “good” solutions and
the relative importance of the criteria
functions in the resolution process

3+4+3

2 Deterministic data 5+5+5

3 Linear problems 4+4+4

4 One preferred solution accepted by all
decision-makers

4+3+4

II 5 The problem-solving analyst using this
method is not bound by any additional
efforts as it solves a series of standard
single-criteria linear programming
models

5+5+5

III 6 The method is simple to use. The
decision maker is required to provide
information on the amount of reduction
of the level of a certain objective
function in order to increase the
insufficiently satisfied level of other
objective functions

5+4+3

7 The resolution process is understandable
to the decision-maker

4+3+3

8 Decision-makers have a high degree of
confidence in the method and the
preferred solution that it provides

4 +3+3

9 Decision-makers are actively involved in
the process of problem-solving

4+4+4

10 Decision-makers can influence the
solution by determining the amounts of
reduction of their objective function
values

3+4+3

11 The method enables decision-makers to
learn about the system being optimized

4+3+3

IV 12 The total deviation of the obtained
solution from the ideal point in percent
amounts 18.99

5+5+5

13 The total time of problem solving on the
computer amounts to 2.5 h

4+4+4

Total 153

The numeric values presented in Tables 2 and 3 were obtained from the decision makers

123



582 T. Perić et al.

of criteria II and IV.However, theMPmethodwas evaluated asmore efficient according
to the criteria in Group I and Group III (50:36 points and 82:60 points, respectively).
The MP method has the greatest advantage according the group of criteria that relate
to the decision-maker’s assessment. These advantages consist of the following:

(a) theMPmethod is simple to use. The decision-maker is only required to determine
and change his or her aspirations in relation to the solutions provided by the
method and in agreement with other decision-makers.

(b) Decision-makers are actively involved in a problem-solving process that is under-
standable to the decision maker.

(c) Decision-makers have a high degree of confidence in themethod and the preferred
solution that it provides.

(d) Decision-makers can influence the solution by changing their aspirational levels.
(e) The method enables decision-makers to learn about the system being optimized.
(f) Future research could investigate the application efficiency of the MP method in

solving nonlinear multi-objective programming problems.
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