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Abstract Electric energy plays an irreplaceable role in nearly every person’s life on
earth; it has become an important subject in operational research. Day by day, electrical
loaddemandgrows rapidlywith increasingpopulation anddeveloping technology such
as smart grids, electric cars, and renewable energy production. Governments in dereg-
ulated economies make investments and operating plans of electric utilities according
to mid- and long-term load forecasting results. For governments, load forecasting is
a vitally important process including sales, marketing, planning, and manufacturing
divisions of every industry. In this paper, we suggest three models based on multivari-
ate adaptive regression splines (MARS), artificial neural network (ANN) and linear
regression (LR) methods to model electrical load overall in the Turkish electricity
distribution network, and this not only by long-term but also mid- and short-term load
forecasting. These models predict the relationship between load demand and several
environmental variables: wind, humidity, load-of-day type of the year (holiday, sum-
mer, week day, etc.) and temperature data. By comparison of these models, we show
that MARS model gives more accurate and stable results than ANN and LR models.
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1 Introduction

Electric load forecasts play a crucial role in the electric power systems in all over
the world (Hong and Fan 2016; Ravadanegh et al. 2016). Load forecasting leads the
way about power system planning, energy trading, power system operation, etc. Since
the early 1990s, the monopolistic way to conduct and govern the controlled power
sectors has been reshaped by adding a deregulation structure and by the introduction
of competitive markets (Weron 2014). Electricity trading is a hot topic, using mar-
ket rules including spot and derivative contracts. However, electricity reveals a very
special structure which is not stored and provides a balance between production and
consumption (Soliman and Al-Kandari 2010; Khuntia et al. 2016). At the same time,
electricity demand depends on weather (temperature, wind speed, humidity, etc.), the
distribution of population (houses, industry, etc.) and the people’s life styles in inten-
sity of business and everyday activities (on-peak vs. off-peak hours, weekdays vs.
weekends, holidays and near-holidays, seasons, religious holidays, etc.) (Black and
Henson 2014). These unique and specific characteristics lead to a change of the elec-
tricity demand needs to an adaptation of electricity supply. On the other side, they have
led to a new research area for the development of more accurate and stable forecast-
ing through characteristic techniques. At the same time, good forecasting on results
allows for progress in the following matters: climate variability (global warming),
joining electric vehicles to the power systems, wind, and solar power generation, the
efficiency of energy and the response of electric demand.

Load forecasting methodologies consist of two main groups: statistical techniques
and artificial intelligence techniques (Weron 2014; Khuntia et al. 2016; Liu et al.
2017). The boundary between these groups is quite ambiguous. In the literature com-
monly used, there are four statistical techniques, namely, multiple linear regression
(MLR) models, semi-parametric additive models, autoregressive and moving average
(ARMA) models, and exponential smoothing models; and four artificial intelligence
(AI) techniques, namely, ANN, fuzzy regression models, support vector machines
(SVMs) and, furthermore, there are gradient boosting machines (Hong and Fan 2016;
Bezerra et al. 2017; Xie and Hong 2017). Multivariate adaptive regression splines
(MARS) is a nonparametric and nonlinear technique from statistical learning which
is used in modeling, regression, identification, prediction, forecasting, etc. (Friedman
1991). Artificial neural network (ANN) methodology is also a nonparametric learning
and nonlinear technique which is used in those areas (Rumelhart et al. 1986; Rosen-
blatt 1962). Linear Regression (LR) is the earliest form of least-squares estimation
in classification which has similar properties with ANN and MARS (Seber and Lee
2012; Montgomery et al. 2015). ANN, MARS, and LR provide powerful and very
successful methods on forecasting constructions in related groups (Hastie et al. 2008;
Vapnik 1998; Goude et al. 2014). Until now these three powerful methods have not
been compared in load forecasting applications within power systems area of electri-
cal engineering. It is expected that our project may inspire many researchers in this
respect.

Load forecasting can be classified according to the time period addressed. An
accurate standard is not determined yet for classifying the range of load forecasts.
The forecasting processes may be classified into four categories: very short-term load
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forecasting (VSTLF), short-term load forecasting (STLF) (Saez-Gallego and Morales
2017), medium-term load forecasting (MTLF), and long-term load forecasting (LTLF)
(Hong and Fan 2016). In this classification, VSTLF addresses a period up to 1 day,
STLF is a period including 1 day–2 weeks, MTLF addresses a period from 2 weeks
to 1 year, and LTLF refers to a period longer than 1 year. According to a rough clas-
sification, there are STLF periods till 2 weeks, and LTLF period succeeding 2 weeks
(Wang et al. 2017).

LTLF is an important issue in effective and efficient power-system planning
(Khuntia et al. 2016; Kandil et al. 2002; Xie et al. 2015). Sensitive estimation can
greatly affect the road map of power system investments. Overestimation of the future
load may lead to waste money in building new power generation units to supply this
forecasting load. Underestimation of the future load may cause problems in supplying
loads (Hong et al. 2014). Therefore, an accurate method is needed to forecast loads,
as it leads to an accurate model that takes into account the factors which affect the
growth of the load over a number of years.

LTLF is dependent on various factors like human habits and environmental influ-
ences. These factors can be classified to be time periods: hours of the day (day/night),
day of the week (week day/weekend), time of the year (season), and holidays: fur-
thermore they can be weather conditions (temperature, humidity and wind), class of
customers and distribution of population, economic indicators, and electricity price
(Xiao et al. 2016; De Giorgi et al. 2014; Black and Henson 2014; Hong et al. 2014).
Measured weather parameters and load data are the most effective parameters in terms
of accuracy of forecasting methods based on historical data (Khuntia et al. 2016).

The aim of our study is to present and underline the influence of powerful
methodologies. It turns out that MARS is the best way, superior to the other two
methods in load forecasting applications like energy purchasing and generation,
load switching, contract evaluation, and infrastructure development (Chow et al.
2005). The input vectors used in the models are based on 5-year data consisting
of hourly data, and as a result, 24 × 365 data for each year is composed of fea-
tures such as humidity, temperature, load demand and wind speed. A matrix of[
((24 × 365 (hourly data)) × 5 (years)) , 20 (other parameters)

]
is obtained as input

data, and all three models use the same input vectors. Other parameters can be
expressed as date, year, month, day, including variations like weekend, hour, temper-
ature, humidity, wind and electric demand variations, like previous electric demand,
electricity demand on same day of previous week, etc. MARS, ANN and LR methods
evaluate these input vectors in two main parts: as test and train. In the first part of
our study, MARS, ANN and LR methods are introduced and explained clearly for
understanding applications of the methods. In the second part, comparisons are pre-
sented between results obtained by MARS, ANN, and LR. A detailed error analysis
and a comparison based on performance criteria are provided, too. For comparison
purposes, the same data are used in all three models; their forms and structures are
given below.
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Fig. 1 Details of 1-dimensional
basis functions (based on
Friedman 1991)
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1.1 Multivariate adaptive regression splines (MARS)

In literature, regression, widely being used for prediction and forecasting, is mainly
based on the methods of least-squares estimation, and maximum-likelihood estima-
tion. There are many basic regression approaches: linear regression models, nonlinear
regression models, generalized linear models, nonparametric regression models, addi-
tivemodels, and generalized additivemodels (Hastie et al. 2008;Vapnik 1998).MARS,
an adaptive and nonparametric regression procedure proposed by Jerome Friedman,
is particularly employed to estimate general functions of high-dimensional arguments
(Friedman 1991). At the same time, MARS can be defined as a generalization of step-
wise linear regression or a modification of classification and regression tree (CART)
algorithm (Weber et al. 2012). There is no specific assumption about the underlying
functional relationship between the dependent and independent variables in this pro-
cedure. MARS has the ability to estimate the contributions of the basis functions so
that both the additive and the interactive effects of the predictors are allowed to deter-
mine the response variable (Kuter et al. 2014; Özmen and Weber 2014; Kuter et al.
2018; Cevik et al. 2017). MARS builds and includes expansions in terms of truncated
piecewise linear basis functions (BFs) of the form (Seber and Lee 2012):

c+(x, τ ) � [x − τ ]+, c−(x, τ ) � [−x + τ ]+, (1)

where x, τε R. These two functions as shown in Fig. 1 can be named as a reflected
pair. In the pair, the + symbol specifies only the positive parts used, and otherwise it
is zero. Centering and scaling are not required but are suggested.

MARS models are resistant to zero- and near-zero variance highly correlated pre-
dictors. But this can lead to a significant amount of randomness during the predictor
selection process. The split choice between two highly correlated predictors becomes
a fortunate chance. Let us consider the following general form of the model, including
random variables and random vectors:
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Y � f (X) + ε, X � (
X1, X2, . . . , X p

)T
. (2)

The goal is to construct a set of reflected pairs for each input variables
x j ( j � 1, 2, . . . , p):

℘ :� {[x j − τ ]+[τ − x j ]+|τ ∈ {x1, j , x2, j , x3, j , . . . , xN , j }, j ∈ {1, 2, . . . , p}}.
(3)

Thus, Y can be represented within Eq. (2) by

Y � θ0 +
M∑

m�1

θmTm(X) + ε, (4)

where Tm are basis functions from ℘ or products of two or more such functions.
Interaction basis functions are created by multiplying an existing basis function with
a truncated linear function involving a new variable. θ0 and θm are the coefficients
estimated by minimizing the residual sum of squares. Furthermore, smay a strand for
a selected sign± 1. The v(j,m) labels the predictor variables and τ jm represents values
of the corresponding knots (Friedman 1991). Provided the observations represented
by these data, the multi-dimensional basis functions look as follows:

Tm(x) �
Km∏

j�1

[
s jm · (

xv( j,m) − τ jm
)]

. (5)

MARSalgorithm is the union of two sub-procedures, named as the forward stepwise
and backward stepwise algorithms, represented in Fig. 2.

As shown in Fig. 2, forward stepwise algorithm produces typically an over-fitting
of the data: therefore, a backward deletion procedure is applied afterwards. The back-
ward deletion procedure or backward stepwise algorithm prevents from over-fitting
by decreasing the complexity of the model without degrading the fit to the data. The
procedure evaluates basis functions (BFs) and detracts from the model such BFs that
contribute to the smallest increase in the residual squared error at each stage, producing
an optimally estimated model f μ with respect to each number of some complexi-
ties of estimation terms, called μ. The optimal value of μ could be calculated with
cross-validation according to the number of samples N , but MARS algorithm uses
generalized cross-validation (GCV) for decreasing the computational burden. GCV
can be defined as follows, and also be called as Lack-of-Fit (LOF):

LOF( fμ) � GCV (μ) �
N∑

i�1

(Yi − fμ(xi ))2

(1 − M(μ)/N )2
. (6)

Here, the dominator is related to some complexity of the estimation. The optimal
value ofM(μ) can be calculated using the following formula:

M(μ) � u + d · K . (7)
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Fig. 2 Flowchart of MARS algorithm

In Eq. (7), the number of independent basis functions is called u. Forward stepwise
algorithm selectsK which are the number of knots. The cost of optimal basis is defined
with d. A larger M(μ) creates a smaller model with a smaller number of BFs, while
a smaller M(μ) creates a larger model with more BFs (Weber et al. 2012). MARS
algorithm creates amodel which consists of vital non-repetitive basis functions. On the
other side,MARS decreases the computational burden and provides ease of processing
data. At the same time, the algorithm is very effective in forecasting applications.

1.2 Artificial neural network (ANN)

Neural networks are a branch of the field known as artificial intelligence which also
includes case base reasoning, expert systems, and genetic algorithms (Barrow and
Crone 2016a, b; Azad et al. 2014). An artificial neural network (ANN), discovered by
Warren McCulloch and Walter Pitts, is a software (and also a hardware) simulation of
a biological neuron to learn to recognize patterns in group data. An ANN is composed
of a number of interconnected processing elements, changing their dynamic state
response to external inputs. Neural networks give a better performance for making
humanoid activities in fields such as speech processing, image recognition, machine
vision, robotic control, forecast, state estimation, etc. (Rosenblatt 1962). ANNs are
used for load-forecasting to model underlying physical power systems since the 1990s
(Lee et al. 1992; Hippert et al. 2001). Feedforward neural networks, radial basis neural
networks, and recurrent neural networks are commonly employed for load forecasting.
Back-propagation algorithm is one of themost famous estimation algorithms on neural
networks (Rumelhart et al. 1986).
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Fig. 3 A simple neuron scheme in an artificial neural network

Neural networks occupy a significant place in model classification and learning
methods (Rosenblatt 1962). They are generally used for complex data structure appli-
cations and include high-dimensional input data applications. In literature, an artificial
neuron is a basic and vital part of an artificial neural network is a set of input values
(I), associated weights (w), hidden layer function f (x) and an output results (Y ).
The simplest form of a neuron containing input, hidden and output layers is shown in
Fig. 3. The number of neurons in the layers can be selected with different values. The
input layer shapes the recorded values that are input values to the next layer, which
is the hidden layer. Several hidden layers can exist in one neural network. A hidden
layer contains transfer functions: sigmoid, threshold, piecewise linear, and Gaussian;
they play a key role in learning. The final output layer includes one node for each
class. Every iteration ending with an output node takes a value which is assigned to
the related node with the highest value.

The most critical structure in a neural network is the iterative learning process in
which inputs are taken by the network one at a time; the defined weights according
to inputs are arranged each time. The process is often repeated since all cases are
presented. During this learning phase, the aim is to adjust weights to forecast the
correct class label of inputs. Neural networks have a high tolerance to noisy data,
which is a significant advantage. The other advantage is the ability to classify patterns
on which neural networks have not been trained.

Back propagation algorithm, originally proposed in the 1970s, is the most popu-
lar neural network algorithm. But it became very popular after the 1980s (Rumelhart
et al. 1986). The back propagation architecture is also shown in Fig. 3. Back propaga-
tion architecture, proposing effective nonlinear solutions to ill-defined models not to
have clear goals, solution paths, or expected solution, is the most useful and famous
architecture for complicated and multi-layered networks. Delta rule placed in this
architecture plays a very important role in updating the weights and uses δ learning
rate coefficient and γ error coefficient.

The classic back propagation network, where all of the layers are completely con-
nected to the succeeding layers, is typically composed of a neuron which has an input,
a hidden and an output layer. The number of hidden nodes in the hidden layer cannot
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Fig. 4 A feed-forward back
propagation MLP neural
network

Input layer Hidden layer Output layer

be limited in theory, but it is generally chosen as 1 or 2 for simplicity in real applica-
tions. A feed-forward back propagation neural network formedmulti-layer perceptron
(MLP) is shown in Fig. 4. An MLP consisting of all the neural network properties
and requirements is a feedforward artificial neural network model, and input data sets
are dependent on a set of appropriate outputs (Özmen and Weber 2014). It uses a
supervised learning technique, called backpropagation (Tsoi 1989). Actually, it is a
modification of the standard linear perceptron and can distinguish data that are not
linearly separable.

The basis of a training process is the Delta Rule which provides the calculation of
the difference between the actual outputs and the desired outputs (Werntges 1990).
According to this error, the weights are in proportion to the error times, which are a
scaling factor for global accuracy. The weights are identified on the basis of the Delta
Rule. This process proceeds until the desired output values are obtained. Training
process can be completed as a result. In conclusion related to Delta Rule, we can
express that most promising feature of ANN is its ability to learn.

1.3 Linear regression (LR)

Linear regression is the most basic and common predictive model to characterize
the relationship between the variables (Vapnik 1998; Seber and Lee 2012). Differ-
ently from MARS, data types of the concept are linear. LR can be separated into two
groups: simple linear and multiple linear regressions. Multiple linear regressions are
represented by the following model:

Y � XTβ + ε. (8)

In this equation, Y is a dependent random variable which can be either a continuous
or a categorical value, X is an independent vector-valued random variable which
usually is a continuous term: β consists of coefficient parameter at the input variables
and of the intercept parameter. It is analyzed with probability distribution and mainly
focuses on a conditional probability distribution with multivariate analysis (Vapnik
1998). In this paper, we focus on a simple linear regression in LR model. Simple
linear regression represented in Fig. 5 is the process of prediction which implies a
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Fig. 5 Simple linear regression
graph

y

x

Fig. 6 Turkish electricity system connections and substations (GENI)

single independent variable; this is a univariate regression analysis as described in
Eq. (8) (Papalexopoulos and Hesterberg 1990; Song et al. 2005).

Simple linear regression represents the dependent and independent variables to
extend a relationship between two variables, similar to correlation. However, correla-
tion does not distinguish between the dependent and independent variables.

2 Load forecasting using MARS, ANN and LR models

In this paper, the three models assessed by MARS, ANN and LR are proposed for
Turkish Electricity System which is shown in Fig. 6. Load data obtained from Turk-
ish Electricity Transmission Company and weather data obtained from Turkish State
Meteorological Service are used for LTLF in these models.
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DATA DISTRIBUTION IN MODELS
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Fig. 7 Data distribution used underlying the three models

The weather data are very important for accuracy and stability of the forecast. In the
light of the information, the data used for the models are composed of a 5 years period
which addresses hourly load, wind, humidity and temperature information. Two main
parts of our models, namely, train and test data periods, are reflected in Fig. 7, together
with the kinds of the results, respectively.

The input variables are introduced subsequently:

x1, x2, . . . , x14: lags of electricity demand (such as hourly, daily,weekly, and yearly)
(in MW),
x15: all national and religious holidays,
x16: temperature data of the whole days,
x17: relative humidity (in %),
x18: wind speed (in m/s),
x19, x20: weekend.

Input variables carry a high importance in the process of forecasting. In this study,
the data of 2 years (2011–2013) have been selected to train data, and the data of 2 years
(2013–2015) have been chosen to be test data, in order to let the estimation come as
near to reality as possible. All of the data are hourly data, such as the temperature
of an hour, the wind of the same hour, etc. In our study, the models are evaluating
the same data, and the time factor has been examined in detail because load demand
according to time plays an active role in our future power system plans. For example,
1 day load, the previous week’s same day’s load, the previous month’s same day’s
load, and the previous year’s same day’s load are dependent on each other deeply. In
load forecasting applications, they give nearby information to us about the consumed
energy at this day. Input data including these components lead us to a model which is
more stable and accurate than a model including only 1 day’s input data.

MARS, ANN and LR models were generated in Salford MARS and MATLAB
platforms, respectively. According to these platforms, the basis functions (BFs) of
MARS are presented in Table 1.
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Table 1 Basis functions obtained from MARS (underlined used for basis functions means that they are
appearing in the MARS model)

BF Formula BF Formula

BF1 max {0, x10 + 0.20602} BF24 max {0, 16.3 − x16} ·
max {0, x20 − 0}

BF2 max {0, 0.20602 − x10} BF25 max {0, x10 − 0.25401} ·
max {0, x15 − 0}

BF3 max {0, x15 − 0} BF27 max {0, x7 − 0.22533} ·
max {0, x15 − 0}

BF4 max {0, x16 − 13.4} BF28 max {0, 0.22533 − x17} ·
max {0, x15 − 0}

BF5 max {0, 13.4 − x16} BF29 max {0, x5 − 0.20077} ·
max {0, x20 − 0}

BF7 max {0, 0.30447 − x1} ·
max {0, 0.20602 − x10}

BF30 max {0, 0.20077 − x5} ·
max {0, x20 − 0}

BF8 max {0, x16 + 27.7} ·
max {0, x10 + 0.20602}

BF31 max {0, x10 − 0.23686}

BF9 max {0, 27.7 − x16} ·
max {0, x10 + 0.20602}

BF33 max {0, x18 − 1.1}

BF10 max {0, x1 − 0.35473} ·
max {0, x15 − 0}

BF34 max {0, 1.1 − x18}

BF11 max {0, 0.35473 − x1} ·
max {0, x15 − 0}

BF35 max {0, x19 − 0} ·
max {0, x10 + 0.20602}

BF12 max {0, x16 − 0.29651} ·
max {0, x15 − 0}

BF36 max {0, x10 − 0.23945} ·
max {0, x10 − 0}

BF13 max {0, 0.29651 − x1} BF37 max {0, 0.23945 − x10} b·
max {0, x20 − 0}

BF14 max {0, x11 − 0.29877} BF38 max {0, x6 − 0.23695} ·
max {0, 0.29877 − x6}

BF15 max {0, 0.29877 − x6} BF39 max {0, 0.23695 − x6} ·
max {0, 0.29877 − x6}

BF17 max {0, 23.905 − x1} ·
max {0, 0.29877 − x6}

BF40 max {0, x16 − 13.6} ·
max {0, 0.29651 − x1}

BF18 max {0, x20 − 0} BF41 max {0, 13.6 − x16} ·
max {0, 0.29651 − x1}

BF19 max {0, x16 − 0.29463} ·
max {0, x15 − 0}

BF42 max {0, x1 − 0.2437} ·
max {0, 13.4 − x16}

BF20 max {0, 0.29463 − x11} ·
max {0, x15 − 0}

BF43 max {0, 0.2437 − x1} ·
max {0, 13.4 − x16}

BF21 max {0, x10 − 0.23699} ·
max {0, 0.29651 − x1}

BF44 max {0, x11 − 0.26709} ·
max {0, 0.29651 − x1}

BF22 max {0, 0.23699 − x10} ·
max {0, 0.29651 − x1}

BF45 max {0, 0.26709 − x11} ·
max {0, 0.29651 − x1}

BF23 max {0, x16 − 16.3} ·
max {0, x20 − 0}
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The output function of MARS is shown subsequently as the model:

Y � 0.27906 − 0.59038 · BF1 + 0.366955 · BF2 − 0.14653 · BF3 + 0.00241

· BF4 + 0.00035 · BF5 + 8.19874 · BF7 + 0.0099 · BF8 + 0.00852

· BF9 − 3.75608 · BF10 + 1.13678 · BF11 + 0.25186 · BF12 − 0.45062

· BF13 − 0.07472 · BF14 − 0.06809 · BF15 + 2.2622 · BF17 + 0.0074

· BF18 + 1.5972 · BF19 − 0.80938 · BF20 + 5.79473 · BF21 − 14.7059

· BF22 − 0.00089 · BF23 + 0.00036 · BF24 − 0.95876 · BF25 + 0.51112

· BF27 + 0.43774 · BF28 − 0.3393 · BF29 + 0.4595 · BF30 + 0.91061

· BF31 + 0.00107 · BF33 − 0.0036 · BF34 + ε

ANN generates output results in the light of the hidden layer so that the output
function for ANN does not occur. The output function of LR is shown in the following
model:

Y � 0.07060 + 0.16284 · x1 + 0.10330 · x6 + 0.512226 · x10 + 0.06197 · x13 − 0.06162 · x15
− 0.000206 · x16 − 0.000241 · x17 + 0.001596 · x18 − 0.008254 · x19 − 0.019441 · x20 + ε.

3 Comparison and evaluation criteria

Table 2 Analysis by evaluation criteria

Abbreviation Definition Explanation Interpretation Formula

MAPE Mean absolute
percentage error

Average magnitude
of percentage
errors

Smaller value is
better

MAPE :� 1
N

N∑

k�1

∣∣∣ (yk−ŷk )
yk

∣∣∣

R2
adj Multiple

coefficients of
determination

Percentage of
variation in
response
explained by the
model

Value closer to one
is better

R2
ad j �

1−
⎛

⎜
⎝

N∑

k�1
(yk−ŷk)

2

N∑

k�1
(yk−ȳk )2

⎞

⎟
⎠ ·

(
N−1

N−p−1

)

AAE Average absolute
error

Average magnitude
of errors

Smaller value is
better

AAE :� 1
N

N∑

k�1

∣∣yk − ŷk
∣∣

RMSE Root mean squared
error

Square root of the
mean squared
error

Smaller value
isetter

RMSE : �
√

1
N

N∑

k�1
(yk − ŷk )2
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Table 2 continued

Abbreviation Definition Explanation Interpretation Formula

r Correlation
coefficient

Linear relation
between observed
and predicted
response

Value closer to one
is better

r :�
N∑

k�1
(y−ȳ)(ŷ− ¯̂y)
(N−1)√

s(y)2s(ȳ)2

N number of observations, p number of terms in the model, yk kth observed response value, ŷk kth predicted (fitted)
response value, ȳ mean of the observed values, ŷ predicted response variable, ¯̂y mean of the predicted response

variable, s(y)2 standard deviation of the observed response variable, s
(
ŷ
)2 standard deviation of the predicted

response variable

Table 3 Comparison of MARS,
ANN and LR results

MARS ANN LR

Train Test Train Test Train Test

R2
adj 0.907 0.865 0.833 0.823 0.818 0.807

AAE 0.010 0.012 0.013 0.013 0.013 0.014

RMSE 0.013 0.017 0.017 0.019 0.018 0.020

r 0.953 0.941 0.913 0.918 0.904 0.909

MAPE 0.036 0.040 0.047 0.045 0.050 0.047

4 Results and comparison

The performance results of three models are represented in Table 3, using the abbre-
viations from Table 2.

As we may decide from Table 3, the R2
adj value (multiple coefficients of determina-

tion) of MARS training 0.907 is closer to 1, and this property is better than the ones
for ANN and LR train. The AAE value ofMARS being 1% is lower than for the others
so that the value of any predicted data has a high reliability. The RMSE and MAPE
values of MARS being 1.3 and 3.6% are also lower than the ones of the others; this
provides us more accurate results. The r (correlation coefficient) value of MARS is
higher than for the other two methods. Large correlation coefficients mean that there
is a strong relationship. Stronger relationships will allow us to make more accurate
predictions than weaker relationships can. In this comparison, train results of models
are used, but test results of the models verify all of the comments, as learned from
Table 3. Some of our results are shown in detail in Figs. 8 and 9.

MARS is an adaptive method, which has the capacity to version nonlinearities
between variables automatically. GCV criterion of MARS generates equilibrium
between flexibility and generalization capability of the MARS model function (Cevik
et al. 2017). It is known that the aforementioned characteristics of the method can
better be observed with larger dataset like our problem dataset. However, the method
was completely verified to be working for our problem.
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Fig. 8 Average absolute error for MARS (red color), ANN (blue color) and LR (green color) based on train
data (color figure online)
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Fig. 9 Average absolute error for MARS (red color), ANN (blue color) and LR (green color) based on test
data (color figure online)

5 Conclusion and outlook

In this paper, MARS, ANN and LR methods are discussed from an electrical engi-
neering point of view, together with their novel application for the removal of
meteorological and time effects on load forecasting applications. The models which
we have achieved are not just long-term but also mid- and short-term load forecasting.
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Themain advantages ofMultivariate Adaptive Regression Splines (MARS) are that
it is a nonparametric, adaptive extension of decision trees (especially, of Classifica-
tion and Regression Trees—CART) which is able to produce nonlinear models for
regression and classification. MARS can be applied with no assumption about the
underlying data distribution. In addition to this advantage, it gives better support for
handling of data of mixed-type and missing values, computational scalability, dealing
with irrelevant inputs, and interpretability than Linear Regression (LR) (Hastie et al.
2008).

When compared with another commonly method used in the field, Artificial Neural
Networks (ANN), MARS is reported to be more computationally efficient (Zhang and
Goh 2016). An additional drawback of ANN is that it behaves as models in the form
of a ‘black box’ because of hidden layers (Cevik et al. 2017). MARS, like ANN, is
also effective in modelling the interactions among variables.

Keeping these qualities in mind, these three powerful methods are also compared
according to evaluation criteria, and we obtained the results stated subsequently:

• Based on the evaluation criteria values of the methods, MARS has nearly a 96–97%
accuracy. This result can be trusted for investments. MARS is suitable for high-
dimensional applications, and the forecast accuracy increases to 98–99% as the
historical data set increases.

• MARS gives both BFs and an output equation so that our results are more clearly
displayed. They are also more stable than ANN results which vary with the training
of the network.

Within the light of our preliminary results, MARS seems to be an alternative and,
in fact, very competitive tool for STLF, MLTLF, and LTLF, and it can be utilized for
other problems related to electrical engineering as well. Future work will apply conic
multivariate adaptive regression splines (CMARS) (Weber et al. 2012) and RCMARS
(Robust CMARS: the refined version of CMARS by applying robust optimization to
further address data uncertainty) (Özmen et al. 2011; Özmen 2016) on larger data sets,
including 10 or 20 years of data, and to analyze and compare themethod’s performance
in detail.
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