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Abstract This work presents an agent-based simulation optimization framework to
model the impact of transport disruptions and word of mouth on disaster relief dis-
tribution. An agent-based simulation considers uncertainties in transport conditions
and further incorporates various actions by and interactions between multiple people
affected by a natural hazard event. To select optimal distribution points and vehicle
types, a bi-objective optimization procedure is implemented focusing on the min-
imization of costs and maximization of services provided. The developed solution
procedure is tested on a sample setting based on the April 2015 earthquake in central
Nepal. Computational experiments study the impact of transport disruptions and word
of mouth on disaster relief planning. Results indicate the importance of considering
such factors in planning procedures.

Keywords Humanitarian logistics · Simulation optimization · Facility location ·
Word of mouth · Agent-based modeling

1 Introduction

TheApril 2015 earthquake in central Nepalwas the largest disaster striking the country
in the previous 80years. The earthquake and its aftershocks resulted inmore than
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8800 human deaths and about 22,500 injured persons (Aon Benfield Analytics 2015).
Major damage to infrastructurewas recorded in central Nepal including the destruction
of buildings, monuments and road networks. An earthquake can cause damage to
roadway systems, e.g., through ground failure such as landslides or faults. Debris
from buildings or masses of soil can be deposited on roadways, blocking traffic and
making a road temporarily impassable. Bridges and similar structures are particularly
at risk of collapsing in case of an earthquake. According to Aon Benfield Analytics
(2015), 13% of the country’s road networks were damaged or destroyed.

A damaged road network has an economic impact on a region, and restoration needs
to occur quickly for proper operations to continue. In case of a disaster, the provision of
relief aid might also be hindered or delayed, causing negative impacts on the societies
affected by road blocks and closures. Although it is difficult to predict the occurrence
of an earthquake, it is crucial to prepare for such potential disasters. Organizing the
response to an earthquake includes logistics, which is a major challenge to disaster
relief (Van Wassenhove 2006).

In order to provide the affected population with relief goods on a regular and fair
basis, the anticipation of unexpected events is crucial to maintain a functioning and
robust transportation network in case of an emergency. Therefore, the United Nations
WorldFoodProgramme (2002) recommends to specify requirements for repairing vital
road sections and critical bridges. These road segments are not only at risk during an
earthquake, but subsequently due to potential aftershocks, which influence the ability
of transporting relief goods in the aftermath of an earthquake.

The provision of relief goods is commonly organized from distribution points
receiving shipments from a central depot. United Nations High Commissioner for
Refugees (UNHCR) recommends that there should be at least one distribution point
per 20,000 affected persons within a distance of 5–10km. The closer a point can be
located to those affected, the better in terms of reachability, however, the more points
opened, the higher the costs rise. According to the United Nations World Food Pro-
gramme (2002), in addition to costs, monitoring multiple points becomes challenging
and beneficiaries might present themselves at several different sites. Fewer distri-
bution points require less staff, infrastructure (roads and buildings for distribution)
and transport, however, this implies longer distances to receive aid and more difficult
access.

The selection of the number and location of distribution points affects the number
of persons that can benefit from relief aid. Organizing the distribution system in the
common practice of assigning beneficiaries to their closest facility in terms of distance
might lead to some members of the population not receiving aid (Burkart et al. 2017).
Beneficiaries tend to be influenced by other factors than distance when deciding which
site to visit, e.g., the surrounding terrain, the impact of demographic and social groups,
the size of a distribution facility raising expectations about better availability of relief
goods. Therefore, it is crucial to incorporate human behavior into decision-making for
relief distribution.

The aim of this paper is to provide a realistic decision support tool for a robust
and fair distribution system of relief goods based on an agent-based simulation-
optimization framework as its algorithmic core. The decisions studied include where
to locate distribution points and how to transport goods from a depot to these points.
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Depending on the status of the road network, different transport modes are applied,
including the ability to repair damaged network links. We capture the uncertainty of
impassable network links by simulating dynamic changes in the road network caused
by landslides or collapsing bridges. In disaster relief, multiple stakeholders pursue
potentially conflicting objectives, which we incorporate as distribution costs and ser-
vice level. For determining the service level of a particular solution, the behavior of
beneficiaries and word of mouth information are taken into account.

The remainder of the paper is organized as follows. Section 2 reviews related liter-
ature. The studied problem setting is defined in Sect. 3 and the developed simulation
optimization framework is presented in Sect. 4. Section 5 introduces the study set-
tings for the computational experiments, while Sect. 6 provides results and further
highlights main findings of this work. Concluding remarks are given in Sect. 7.

2 Related work

In the past 100years, three great earthquakes with a magnitude on the Richter scale
of more than 7.5 occurred along the Himalayan front, i.e., the 1934 Bihar–Nepal
earthquake (MW = 8.1), the 1950 Assam earthquake (MW = 8.6), and the 2015
Nepal earthquake (MW = 7.6) (Dixit et al. 2013; Paul et al. 2017). Dixit et al. (2013)
already anticipated the devastating impact of an earthquake in the Kathmandu Valley
before its occurrence in 2015. The authors indicated that the earthquake disaster risk
of urban areas in Nepal is ever increasing alarmingly due to rapid urbanization, poor
construction practice and lack of disaster preparedness. Concerning the transportation
system, the authors highlighted that the road networks pass through landslide-prone
mountain slopes and the only international air-access to Nepal, the Tribhuvan Inter-
national Airport, could also be affected by disruptions. Furthermore, it was estimated
that almost half of the bridges in Kathmandu Valley were impassable and that 10% of
the paved roads would sustain moderate damage such as deep cracks or subsidence.
Additionally, roads could be blocked by the debris of collapsed buildings.

Paul et al. (2017) assess how well government and nongovernmental organizations
as well as others performed during emergency relief operations after the 2015 Nepal
earthquake. The authors state that the Nepalese government was partially responsible
for hindering the distribution of emergency relief supplies, especially in the critical
three days following the earthquake. Authorities obstructed the international disas-
ter response efforts by insisting on following a long list of rules and regulations,
including custom inspections and import taxes. As a result, supplies for the survivors
were held up at the airport and other border crossings. Additionally, a severe short-
age of supply trucks and drivers as well as a series of high-magnitude aftershocks
delayed assistance to far-reaching areas. Paul et al. (2017) state that at the time of the
first mainshock, Nepal did not have any earthmovers or cranes to clear roadblocks
and start emergency relief operations. The United Nations had only three helicopters
available to distribute aid, which was far too few for the size of the disaster and the
demand. Additional challenges associated with the 2015 Nepal earthquake disaster
relief operations were widespread discrimination based on gender, caste, and ethnic-
ity. The authors conducted face-to-face interviewswith 302 respondents from 10 study
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sites in two earthquake-affected districts. They found that the houses of 295 respon-
dents were damaged, of which 235 were completely destroyed. 27 out of the 302
respondents received no emergency aid from any source. Cash as a relief good went to
265 respondents, followed by tents (253), food (250), clothing (224), and kitchenware
(186). Based on their empirical study, Paul et al. (2017) conclude that the disaster
relief efforts undertaken by both public and private agencies after the 2015 Nepal
earthquake seemed to run relatively smoothly and effectively, which stands in sharp
contrast to the international and national press reports on relief efforts. They state that
the emergency materials provided to the earthquake survivors were appropriate and
adequate for their needs and the aid distribution was relatively fair and timely.

Information is essential for individuals in the preparedness phase and during a
disaster. Zhu et al. (2011) describe the relationship between information credibility
and perception of seismic risk in a group of people living in disaster areas. The authors
state that information credibility is an important aspect of an individual’s information
evaluation. They also refer to the negativity bias, which is the tendency to pay more
attention to negative information. Ryan (2013) investigates howpeople get information
during a flood disaster and what they want to know. The study is based on two flood
events inQueensland,Australia, in 2010 and2011.Amongothers, the author highlights
that word of mouth needs to be considered by relief agencies, and mobile phone
networks and social media are critical outlets to such investigation. The author states
that people in cities tend to inform themselves about disaster conditions and relief
aid occurring in their own community through interpersonal contact via a variety of
media such as mobile and fixed phones and face-to-face interactions. People in rural
areas tend to use personal agency contacts where possible and are more likely to
use family, friends, and knowledgeable acquaintances as well as radio stations as a
source of information. The author concludes that word of mouth remains a key source
of information for people in any flood disaster. Sommerfeldt (2015) examines how
Haitians used information sources following the 2010 earthquake. The author states
that the questions of where to turn for food, shelter, and health care in the ruined
city of Port-au-Prince became of utmost importance for the citizens. The population
needed information to survive and recover. The author indicates two distinct types
information sources: ‘traditional’ including radio, TV, church and word of mouth, and
‘elite’ including newspapers, the internet, short-message-service, billboards, and the
national police. The results of the study suggest that greater reliance on a traditional
source type led to decreased information sufficiency.

Delavallade et al. (2016) considers the challenges of using social media for crisis
management. The authors state that socialmedia can provide additional insight on real-
time events provided that the information relayed is accurately retrieved, evaluated
and fused. Furthermore, the authors list organizations that address this issue such as
the ‘HOT—humanitarian OpenStreetMap team’, the ‘SBTF—Standby Task Force’,
and ‘Humanity Roa’. Such organizations have federated themselves under the Digital
HumanitarianNetwork. These networks become active in case of amajor crisis in order
to set up ‘Virtual Operations Support Teams’, teams of volunteers spread all over the
world, which take care of data collection, validation, and mapping. The authors also
state that given the amount of data to process, tools to at least partly automate or ease
the validation stage are greatly needed. The study presents various mechanisms and
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functions necessary for information fusion and understanding in social media as well
as methods to identify reliable information. Andrews et al. (2016) present a method
to create corroborated crisis reports from social media data. The authors state that
during a crisis, citizens use smart phones to report, comment and explore information
surrounding the crisis.

The importance of the availability of transportation infrastructure is highlighted in
Berariu et al. (2015), which deals with the impact of cascade effects on disaster relief
operations. Facility location under random network damage is investigated in Salman
and Yücel (2015). Based on a sample case from Istanbul, the authors develop a Tabu
Search metaheuristic and a scenario generation algorithm assisting decision makers
to pre-select supply points for relief goods. Fikar et al. (2016a) introduce a simula-
tion optimization-based decision support system for disaster relief distribution during
flood disasters. The authors consider the sudden closure of links in the transportation
network allowing a dynamic adaptation to real world conditions and comprehensive
analysis over a rolling time horizon. The presented decision support system combines
agent-based simulation with metaheuristic and heuristic methods. Fikar et al. (2016b)
consider the impact of sudden rail closures on transportation networks and the local
industries affected within a simulation-based decision support system. The model is
tested using data originating from a major transalpine rail corridor, the Brenner Pass,
which connects Austria and Italy. The study evaluates critical rail links and the impact
of various disaster scenarios. Niessner et al. (2017) develop a simulation optimization
procedure tomanagemass casualty incidents. A discrete-event simulation is combined
with heuristic and metaheuristic optimization procedures to allocate emergency staff.
A gas explosion is assumed to derive policy implications such as which victims to
prioritize and how to position advanced medical posts.

Consequently, to improve disaster relief operations, simulation optimization
enables one to consider uncertainty and complex interactions within problem settings,
extending areas in which optimization can be applied (Glover et al. 1996). Fu (2014)
provides an extensive overview of various simulation optimization methodologies.
Recent applications are further stated in Amaran et al. (2014). In our work, uncertain-
ties are modeled within an agent-based simulation. For an overview of recent advances
in agent-based simulations, refer to Macal (2016). This method allows one to focus
on the individual actions of residents depending on the selected distribution strategy.
Therefore, multiple runs of the agent-based simulation are used within the framework
to estimate the performance of solutions derived by a bi-objective optimization pro-
cedure. Combining such methods with optimization procedures enables modeling the
problem in a flexible manner, however, it increases computational times. A discussion
on such main characteristics of agent-based simulation optimization with a focus on
how to improve computational efficiency is given in Deckert and Klein (2014).

3 Problem description

The following problem setting is assumed within this work. An area is hit by a natural
hazard event, e.g., an earthquake or flood, resulting in sudden damages to the transport
network and the need for relief goods. These damages to the network can occur at
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random times during the planning horizon as a result of aftershocks or landslides.
Residents who require relief goods respond to such events by sharing experiences on
the availability of relief goods at distribution points either via phone or social media.
Facing such circumstances, the relief organization has to take the following decisions
on how to plan its operations: (i) where to set up distribution points in the area to
hand out relief goods; and (ii) how to supply these points in an optimal manner. Both
decisions have to be taken before the start of operations and cannot be adjusted later. A
planning horizon of one week is considered and the focus is set on road transportation.
Transport disruptions can occur during the planning horizon at any time without prior
warning for the relief organization.

Relief goods are available at a depot located on the periphery of the study area.
Given a list of potential candidate locations, the relief organization can operate any
combination of distribution points. Selecting a distribution point results in fixed costs,
which occur for setting up operations, and variable costs to deliver goods to this loca-
tion. Consequently, while operating a high number of distribution points enables one
to improve service coverage, it results in an increase in fixed costs. Distribution points
are supplied daily and full truckload shipments are assumed. The delivery quantity is
set based on the number of beneficiaries assigned to the respective distribution point
by the relief organization, where each beneficiary is assigned to the nearest operated
point. Three different vehicle types are considered to perform shipments between the
depot and distribution points. A shipment can be transported in a convoy of regular
trucks. These trucks result in the lowest costs to the organization, however, they are not
able to pass any disrupted street segments. Consequently, in case of a disruption, such
vehicles have to travel detours to reach their destinations. If no feasible path to the dis-
tribution point exists, the shipment cannot be delivered by this vehicle type. However,
the relief organization can use special equipment or equip the convoy with repair capa-
bilities to overcome some types of disruptions.With special equipment, i.e. off-road or
lighter vehicles, the convoy is able to pass disrupted street segments, however, at lower
speed and higher costs. If repair equipment is available, the convoy repairs the disrup-
tion, e.g., by removing debris or building temporary bridges, enabling other vehicles
to pass this segment in the future. Having such repair equipment available results in
the highest costs due to additional staff and vehicle requirements. Furthermore, each
repair operation results in a time delay to conduct these measures.

During the planning horizon, multiple people or households require aid, denoted as
residents from here on. Residents are located at various population centers throughout
the study area and act based on individual decision-rules. To indicate the importance
of fair relief goods distribution, a weight in the range of 1–2 is added to each resi-
dent, to indicate the importance of serving more vulnerable residents with a higher
priority. Each day, the resident travels to a distribution point of the relief organization
to collect goods. In case no goods are available, i.e., the resident arrives before the
delivery vehicle, the resident enters a queue. There the resident waits for the goods to
arrive, however, if the delivery vehicle is delayed by more than an individual threshold
time limit, the resident stops waiting and starts moving to another distribution point.
Each time a resident receives goods or decides to quit, the resident shares this infor-
mation, either via social media or person-to-person. It is assumed that a percentage
of all residents receive and trust this information. Positive messages, i.e., the resident
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reports that he/she received goods at a distribution point, increase the likelihood of
visiting this point in the future, while negative messages, i.e., no goods were received,
decrease the likelihood of return. Consequently, the performance of the disaster relief
distribution system impacts the movements and choices of residents, which further
impact each other throughout the simulation period by sharing information on relief
good availability.

The aim of this work is to provide decision-makers with a set of Pareto-optimal
solutions concerning the costs of operations and achieved service level to enable the
investigation of various disaster relief settings. Costs result from operating distribution
points and the various vehicle types, while service is defined by the weighted number
of residents receiving relief goods during the planning horizon, i.e., adjusted by the
residents’ weights. Consequently, the solution procedure has to consider both objec-
tives as well as various uncertainties present in operations such as sudden transport
disruptions and information sharing.

4 Methods

To solve the introduced problem setting, an agent-based simulation optimization
framework was developed. Agent-based simulation enables one to view the system
from an agent’s perspective and tomodel agent behavior as well as interaction between
agents and the environment in dynamic settings (Macal 2016). This dynamic perspec-
tive of the problem setting allows one to study the performance of the distribution
system over time and the reaction to various changes such as rerouting decisions and
word ofmouth. Therefore, discrete event steps are considered focusing on a simulation
horizon of multiple days and real-time reactions.

The developed framework consists of three main components, a bi-objective opti-
mization procedure, an agent-based simulation and a multi-modal disrupted routing
network. Based on a defined disaster setting, a bi-objective optimization procedure
derives promising solutions, which are evaluated by multiple runs of an agent-based
simulation. Various uncertainties present in disaster relief distribution are considered
within this simulation such as the behavior of residents and the impact of network dis-
ruptions on operations. To model the latter, multiple routing graphs are incorporated
to enable dynamic rerouting based on current disruptions in the network. An overview
of this interaction is given in Fig. 1.

The following subsections introduce each component in detail.

4.1 Bi-objective optimization procedure

A bi-objective optimization procedure was implemented based on the ideas presented
in Tricoire (2012). It selects distribution points and the corresponding vehicle types
to supply these locations using the two competing objectives of minimizing costs and
maximizing service.

The procedure is initiated by calculating four initial solutions. To minimize costs,
the best option is not to open any distribution point, i.e., not provide any relief goods
at all. To maximize service, all distribution points should be open and either regular,
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Fig. 1 A simulation optimization framework for disaster relief distribution

special or repair equipment used on all delivery routes, depending on the geographic
distribution of locations and disruptions. These four solutions are evaluated and, if
not dominated by another initial solution, added to the set of Pareto-optimal solutions.
A single solution is evaluated by running multiple replications of the agent-based
simulation and calculating the average performance. Each simulation run is initiated
with a different random seed and, consequently, differs in the number and timing
of network disruptions as well as demand requests by residents. Furthermore, travel
choices of agents and word of mouth differ within the individual replication runs. To
improve computational efficiency, a pre-check is implemented before starting the sim-
ulation runs, which calculates the maximum service and minimum costs of a solution
considering that no disruptions occur. If already dominated by another solution, the
evaluation is aborted. Additionally, based on the ideas presented in Deckert and Klein
(2014) and Fikar et al. (2016a), after a minimum number of replications, the solution
quality is compared against the current set of Pareto-optimal solutions considering
a 95% confidence interval. If a solution is dominated, the evaluation is aborted, i.e.,
the remaining iterations are not performed. Otherwise, the procedure continues with
the subsequent simulation replications. The dominance is rechecked at a set interval,
e.g., based on the number of threads operating in parallel. If a run is aborted or the
maximum number of replication runs is reached, statistics on the solution quality are
reported.

The procedure starts from a random solution within the currently derived Pareto-
front. Subsequently, a local search on each objective is performed separately, i.e.,
the solution is improved until no further improvements are found. Therefore, the
corresponding vehicle type is indicated by an integer code ∈ {0, 1, 2, 3}, where 0, 1,
2 and 3 indicate a closed distribution point, regular vehicle, special equipment and
repair equipment, respectively. When minimizing costs, closing a distribution point
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or changing a vehicle type is evaluated, while, when maximizing service, opening
and altering a vehicle type is checked. Each evaluated solution is tested if it is Pareto-
optimal. If so, the set of Pareto-optimal solutions is updated by adding the new solution
and removing dominated ones. To diversify, the evaluation of moves within the local
search are randomly adjusted by± 3%. After the local searches for both objectives are
completed, a new random solution from the set of Pareto-optimal solutions is selected
and the bi-objective procedure is repeated until a stopping criterion, e.g., maximum
time or maximum number of iterations, is met. Algorithm 1 summarizes the solution
procedure.

Algorithm 1 Pseudocode: Bi-objective simulation optimization framework
1: procedure Optimization
2: generate initial set of Pareto-optimal solutions
3: while termination criteria not met do
4: select random solution from current set
5: for both objectives do
6: run local search evaluating generated solutions with the evaluation procedure
7: update set of Pareto-optimal solutions
8: end for
9: end while
10: return set of solutions
11: end procedure

12: procedure Evaluation(Solution s, ParetoFront S)
13: if pre-check does not indicate that solution is dominated then
14: while maximum number of replication runs not yet reached do
15: for batch of simulation replications run in parallel do
16: run simulation and update evaluation of solution
17: end for
18: if more simulation runs than minimum number of replications were run then
19: if solution is likely to be dominated then
20: abort evaluation and return solution evaluation
21: end if
22: end if
23: end while
24: end if
25: return solution evaluation
26: end procedure

4.2 Agent-based simulation

All solutions generated by the bi-directional optimization procedure are evaluated by
performing multiple replication runs of an agent-based simulation. The simulation
generates network disruptions at random times and models behavior and interactions
between residents. Locations, vehicles, residents and network links are individually
modeled as agents.

Locations define points of interest within the study area and are categorized into
the depot and distribution points. The depot indicates where relief goods are available
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to be picked up for shipping and further defines the start and end point of all vehicles.
Distribution points indicate potential locations to distribute relief goods. Furthermore,
these points are initiated with a population figure to model demand. The agent-based
simulation loads the solution setting generated by the optimization procedure and
accordingly sets if a distribution point is used to distribute goods or not. Additionally,
vehicle agents are generated indicating with which type of vehicle a distribution point
is served. These vehicles begin each day by traveling from the depot to the distribution
point. Start times are set such that all vehicles are expected to arrive at the same time
at the distribution points based on the current network situation and vehicle type. Each
street segment within the transport network is modeled as an agent, indicating the
location and likelihood of a disruption. In case of disruption, the routing graphs of
the different vehicle types are adjusted and vehicles currently moving are checked if
rerouting actions are required. When a vehicle arrives at a distribution point, all goods
are unloaded and the vehicle subsequently returns to the depot.

To model demand for relief goods for a certain number of households living at a
population center, a resident agent is generated. These agents start each day at a random
time during the simulation horizon to travel to a distribution point. A maximum travel
duration is assumed and only locations within this range can be visited. Upon arrival
at a location where goods are distributed, the resident enters a first-in-first-out queue
to receive goods. The resident waits for the expected arrival time of the vehicle and, at
arrival, collects goods and returns home. Due to transport disruptions, the vehicle may
be delayed requiring the resident to wait longer for the relief goods. Therefore, each
resident is initiated with a maximum waiting time. It indicates the time an agent is
waiting past the expected arrival time of a vehicle. In case this threshold is reached and
the vehicle has not yet arrived, the resident leaves the distribution point and randomly
travels to a new location within close proximity to his or her home location.

These experiences of the collection of relief goods are shared among residents.
If relief goods are available at a location, the resident sends a message within the
simulation, e.g., a call or a post on social media networks. This message is received
and trusted by a certain percentage of all residents, i.e., each resident reacts differently.
Receiving residents process this message. In case of a recommendation to visit a
certain location, it is placed on a whitelist, indicating locations that are preferred the
next time a travel decision is taken. In case of a negative experience, the location is
placed on a blacklist, indicating that a resident will avoid this location in the future.
Therefore, the most recent received message is always determining the respective list,
i.e., if a previously blacklisted location receives a positive message, it is removed
from the blacklist and added to the whitelist. When choosing which location to visit
next, the resident primarily selects a location on the whitelist. If the whitelist is empty,
all non-blacklisted locations are evaluated and only in case all locations within the
maximum range are on the blacklist, a blacklisted location is chosen. Which specific
candidate location of the selected list is taken is based on a geometric distributed
biased-randomized selection procedure (Grasas et al. 2017). Therefore, all locations
of the considered list are sorted by distance and candidate locations close to the resident
are preferred. Figure 2 summarizes the implemented travel choice of a resident.
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Fig. 2 Implementation of travel choice and agent interactions

4.3 Routing network

The different vehicle types considered in this work are modeled on separate routing
graphs to handle the various actions in case of network disruptions. Each point within
the network, which is potentially disrupted within the studied disaster area, is assigned
geographic coordinates and a disruption probability. The system subsequentlymatches
the point with the closest street segment on the real-world routing graph. At the start of
each simulation run, a random number is drawn for each disruption agent. If smaller
or equal to the disruption probability value, a disruption event to close the respective
street segment is generated at a random timewithin the simulation horizon. Otherwise,
no disruption occurs on this road link within this single simulation run.

In case of a disruption, the weight of the disrupted arc is adjusted. For the regular
vehicle routing graph, the weight is set to infinity, i.e., the arc is no longer included
in any shortest path. For vehicles traveling with special equipment, the weight is
multiplied by a delay factor to penalize movement on this segment. For vehicles
which are able to repair disrupted arcs in the transport network, the arc weight is not
adjusted, however, the disrupted segment is marked. Furthermore, the procedure tests
if any of the current vehicle routes are affected by the disruption. Therefore, the new
shortest path from the current vehicle position to the end location is calculated. If no
feasible solution can be found, i.e., if all street segments connecting a location are
disrupted, the vehicle is marked inactive. In such cases, it is assumed that the vehicles
wait at their current locations for the disruptions to be repaired. Therefore, the repair
graph constantly tests if a repair vehicle passes a disrupted arc. In such a case, a repair
operations is started, after which the street segment is reopened and can be passed
by any vehicle at no extra cost or time delay. As such changes in the routing graph
impact potential route choices of all vehicles, the rerouting procedure is again started
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Fig. 3 Routing decisions considering disruptions and various vehicle classes. a No disruptions. b Regular
vehicle. c Special equipment. d Repair equipment

in such settings for all vehicles. Additionally, all vehicles currently marked inactive
by a disruption are tested if movements can be continued.

Figure 3 provides a simplified example for routing decisions of the various vehicle
types in different situations. A routing graph consisting of six nodes and eight arcs is
assumed with each vehicle currently positioned at point A and traveling to point B on
the shortest feasible path. If no disruption occurs, each vehicle type takes the same
route by traveling on the straight path. If a disruption occurs, rerouting is based on
the individual routing graph of the vehicle type. Regular vehicles cannot traverse the
disrupted arc and, consequently, take a detour. All potential detours are evaluated and
the fastest one is taken. In contrast, the special equipment vehicle has the additional
option of continuing to take the original route, however, at a time penalty on the
disrupted arc. Consequently, the special vehicle only continues traversing the disrupted
arc if it results in a shorter travel duration than the detour. The repair vehicle always
continues traveling on the original shortest path. When it arrives at the disrupted arc,
the vehicle stops and starts repairing the arc. After a time delay for this operation,
the street segment is repaired and subsequently open again for all vehicle types. To
model such interactions, each time a disruption occurs or is repaired, the procedure
re-evaluates all routing decisions of each vehicle considering current locations and
updated routing graphs.

5 Computational experiments

The solution procedure was developed with AnyLogic 8.10 (AnyLogic 2017), embed-
ding OpenStreetMap data (OpenStreetMap 2017) for visualization and to generate
real world routing networks. To calculate shortest paths on various distributed rout-
ing graphs, a customized version of GraphHopper (2016) 0.5 is integrated in the
simulation-optimization framework. Therefore, travel times between two locations
depend on the individual speed on each street segment to allow accurate travel dura-
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tion. To speed up the calculation of shortest paths, various memory techniques are
used to store frequently used routes, e.g., between depot and distribution points. Mul-
tiple simulation replications are executed in parallel. The optimization procedure is
coded in Java and can be initiated by the user through the graphical user interface of
the simulation. All test runs were run on an Intel Core i7-4930K, 64GB RAM, with
MS-Windows 7 and six threads operating in parallel. Results of 400 iterations are pro-
vided with average results of 50 replication runs, i.e. simulations, for each evaluated
setting reported. After 12 replications, the procedure checks every six replications if
an evaluation can be aborted based on a confidence level of 95%.

5.1 Real-world setting

The Federal Democratic Republic of Nepal is a country in the central Himalayan
region in South Asia. Nepal consists of seven provinces and 75 districts, housing
a population of about 26 million people. The country includes eight of the world’s
highest mountains in the Himalayan region. It lies within the active collision zone of
the Indian and the Eurasian tectonic plate. Due to this location on the subduction zone
of the Indian and the Tibetan crust, Nepal is prone to regular seismic hazards (Aon
Benfield Analytics 2015). The central region of Nepal was struck by an earthquake of
magnitudeMW 7.6 onApril 25, 2015, followed by several aftershocks in the next days.
Major damage to infrastructure, including buildings and monuments, was recorded in
central Nepal. 13 percent of the country’s road network were damaged or destroyed,
which made it very challenging for relief teams to reach certain areas (Aon Benfield
Analytics 2015).

Based on real-world data from the April 2015 earthquake in Nepal, a sample setting
was generated. Assumptions are based on interviews with the Austrian Red Cross,
who provided ground relief services during the aftermath of the earthquake. In our
test setting, one depot for relief goods and vehicles is located in Nepalgunj, securely
located outside the affected region. 28 major cities were determined as candidate
locations for distribution centers, which are installed in existing buildings such as
schools or municipal buildings. Based on population figures, 3912 agents represents
the residents living in these cities. A transportation network from the depot to the
candidate locations for distribution centers was generated based on the existing road
connections. Risks in the transport network, e.g., due to collapsing infrastructure or
landslides, were assumed based on a detailed analysis of aerial images of the affected
regions. Therefore, major hazards in the transport network were identified. These
points were evaluated by comparing the impact of the corresponding road segment
being disrupted to a non-disrupted network. In total, 35 points showed major impacts
on relief operations. Figure 4 plots the study area and considered locations for potential
network disruptions. All input data are available at http://short.boku.ac.at/instances.

Table 1 states the investigated settings within the computational experiments. For
comparison, the static setting ignores the possibility of sudden transport disruptions
and assumes that each resident travels to the closest active distribution point. The
dynamic setting incorporates such sudden transport disruptions, however, it also
assumes that residents always travel to the closest distribution point. Furthermore,
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Fig. 4 Study region indicating the depot and distribution points as well as the locations of potential network
disruptions during the simulation

Table 1 Settings investigated within the computational experiments

Setting Network disruptions Agent behavior Word of mouth

Static setting No disruptions Assigned distribution point visited
and unlimited waiting times

No interactions

Dynamic setting Sudden damages Assigned distribution point visited
and unlimited waiting times

No interactions

Choice setting Sudden damages Distribution point visited based on
travel distances and limited waiting
times

No interactions

Joint setting Sudden damages Distribution point visited based on
word of mouth and limited waiting
times

Availability of relief
goods shared

both settings assume that residents wait an unlimited time for the relief goods in case
of a delayed arrival. In contrast, the choice setting assumes that residents are more
likely to travel to closer distribution points, however, some randomness in the selec-
tion of the distribution point is considered based on a biased-randomized selection
following a geometric distribution. Additionally, each resident has an upper limit on
the maximum waiting time after which the resident decides to travel to another loca-
tion. Agent interactions are analyzed in the joint setting, where information on the
availability of relief goods is shared among residents. This information impacts travel
choices by favoring locations that received positive word of mouth recommendations
and penalizing ones which received negative feedback.

5.2 Parameter setting

Table 2 provides the specific parameter values used within the computational experi-
ments. Fixed costs, variable costs and maximum travel duration for residents to reach
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Table 2 Parameters used within the computational experiments

Parameter Description Value

Fixed costs Costs to run distribution point e200.00
Variable costs Costs of kilometer traveled e1.00
Vehicle arrival time Time at which relief goods are expected to arrive 11 a.m.

Resident departure time Time when a resident starts moving to a distribution
point

8 a.m → 2 p.m.

Maximum waiting time Maximum duration a resident waits for a delayed
vehicle

60 min → 120 min

Maximum travel time Maximum duration a resident travels to a
distribution point

120 min

Word of mouth range Percentage of agents receiving the message of the
resident

2%

Disruption speed reduction Percentage of maximum speed a special vehicle
travels on a disrupted arc

75%

Repair time Duration for a repair vehicle to fix a disrupted arc 150 min

Regular cost factor Cost factor used to adjust costs of regular vehicle 1.00

Special cost factor Cost factor used to adjust costs for special
equipment

1.25

Repair cost factor Cost factor used to adjust costs for repair equipment 1.50

a distribution point are based on Burkart et al. (2017). It is assumed that all ship-
ments are scheduled to arrive at 11 a.m. at the distribution points and residents start
moving to these distribution points each day at a uniformly randomly selected time
between 8 a.m. and 2 p.m. Similarly, the maximum waiting time of each resident is
uniformly randomly drawn between 60 and 120min and a word of mouth range of 2%
is set, indicating which percentage of all residents receive and process the resident’s
message.

Variable costs are multiplied by a cost factor depending on the vehicle type to
consider the different cost levels for the various vehicles and equipment. This cost
factor is set to 1.00, 1.25 and 1.50 for regular, special and repair vehicles respectively.
Additionally, it is assumed that the special vehicles travel at 75% of the regular speed
on disrupted arcs. To repair a street segment, a time delay of 150min is set.

The focus is set on the first response phase where little data on transport damages
and residents’ needs are known. In this phase, fast relief is crucial to avoid panic reac-
tions such as stockpiling, which complicates resource deployment, e.g., if supplying
residents or repairing street damages should be prioritized (Berariu et al. 2016). There-
fore, a single week of operations is considered within the computational experiments
in which distribution points are supplied daily and vehicle types are fixed.

6 Results and discussion

Figure 5 shows the approximated set of Pareto-optimal solutions derived by the devel-
oped solution procedure for each of the calculated problem settings. If a static system
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Fig. 5 Approximated set of Pareto-optimal solutions for the various problem settings

Table 3 Detailed results of the derived set of solutions

Setting # Solution Av. distribution points Regular (%) Special Repair

Static setting 20 3.30 100 – –

Dynamic setting 47 3.45 62.96 27.16% 9.88%

Choice setting 72 4.96 36.13 61.90% 1.96%

Joint setting 69 5.57 30.73 67.19% 2.08%

is assumed in the planning procedure, i.e., disruptions and the behavior of residents
are ignored, the results indicate that the highest service coverage can be achieved at
relatively low costs compared to the other settings. Real-world operations, however,
are subject to such uncertainties. The impact of transport disruption is analyzed in the
dynamic setting. It enables relief organizations to serve all residents at higher costs by
facilitating special or repair equipment. If resident behavior is incorporated as done in
the choice setting, costs further increase and service decreases as multiple residents do
not receive any goods due to stock-outs. Additionally, compared to the choice setting,
considering word of mouth improves performance as residents know where goods
are available and consequently travel to promising distribution points. This results in
shorter waiting times and fewer residents not receiving any relief goods.

Details of the test runs are provided in Table 3, indicating the number of non-
dominated candidate solutions, the average number of operated distribution points
and the relative amount of times a certain vehicle type was chosen within the derived
solutions. When impacts of word of mouth and transport disruptions are incorporated
in the planning of relief operations, the results show that it is beneficial to operate
more distribution points than in static settings where such characteristics are ignored.
If a single distribution point can no longer be reached due to road damages, residents
can still shift to other nearby locations, particularly if information on availability of
goods are shared. Nevertheless, operation costs increase as more distribution points
and vehicles need to be operated.

123



Agent-based simulation optimization for dynamic disaster… 439

Fig. 6 Snapshots after 2000 simulated minutes for a sample solution for each problem setting indicating
vehicles types (blue = regular, green = special) and resident movements (yellow dots) (color figure online)

Concerning fleet mixes, in the static setting, regular vehicles are exclusively used.
As transport disruptions are not considered, no need to employ special or repair equip-
ment occurs. The consideration of such disruptions in the dynamic setting leads to an
increased utilization of special equipment, while the option to repair road segments
is used for highly critical links in the segment. If maximum waiting times and travel
choice of residents are considered, it is critical to minimize delays. Consequently,
special equipment gains importance due to the benefit of traversing roads amid dis-
ruptions. In contrast, repair equipment is rarely facilitated due to long repair times and
the high need to reach residents on time, particularly within the first days where word
of mouth occurs and residents select their distribution points.

Figure 6 shows snapshots of a single simulation run of selected solutions for each
setting. Six distribution points are operated and vehicle types as well as resident move-
ments are visualized. Furthermore, costs and achieved service coverage are reported.
All solutions represent settings where a high service coverage is desired. The results
show that the derived solutions differ substantially, particularly concerning the oper-
ated distribution points. Nevertheless, if transport disruptions are incorporated, the
planning procedure favors employing special equipment on long trips to mitigate
potential delays, while shorter routes are performed by less costly regular vehicles.

Consequently, the results indicate that if transport disruptions and agent behaviors
are not considered in the planning of disaster relief distribution, costs of the relief
processes are underestimated and service coverage overestimated. This gives various
implications for relief operations. It shows the importance of providing residents with
accurate estimated arrival times of relief vehicles and further indicates benefits of
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developing counter-measures to reduce delivery delays. Additionally, results highlight
that the behavior of residents impacts disaster relief operations and, therefore, needs
to be incorporated in planning procedures. Such considerations further allow one to
adjust delivery quantities to improve service coverage or actively share information
with residents to influence travel choices. As a result, in case of transport disruptions,
providing information on the availability of relief goods, e.g., through social media
channels, can help to improve service coverage.

Nevertheless, the following limitations and assumptions of this study have to be
considered when interpreting the results. A study period of one week was chosen to
focus on the first response phase where high uncertainty exists in the problem setting.
Consequently, the long-term impact of performed decisions, e.g., benefits of repairing
street segments or setting up a distribution point, are not explicitly considered. If the
study period is extended by a post-disaster phase, i.e., a time period where relief goods
are distributed, but no further sudden disruptions occur, preliminary experiments indi-
cate benefits of employing more repair equipment early. Such a longer time horizon,
however, also enables the relief organizations to alter supply and vehicle decisions
based on continuous developments, which is not modeled within the simulation opti-
mization framework. Additionally, the risk of transport disruption is set to the same
probability for each location of a potential network disruption and no interdependen-
cies among multiple segments are considered. If such data is available, it can easily be
integrated into the framework by adjusting the likelihoods of disruptions. Addition-
ally, each resident is placed according to their home location and prefers traveling to
distribution points within close range. Consequently, due to a lack of data, no further
influencing factors on travel choices are integrated such as work places or where fam-
ily members are living. Furthermore, we consider that all information spread by word
of mouth contains accurate data on the availability of relief goods, i.e., no information
distortion occurs within the studied problem setting.

7 Conclusions

A simulation optimization framework was developed to provide decision-makers the
option to both investigate the impact of word of mouth and uncertain transport condi-
tions on relief operations in a dynamic manner. It combines an agent-based simulation
to model behavioral factors with a bi-objective optimization procedure. Various rout-
ing networks are further implemented to enable one to consider various transport
disruptions present in disaster relief operations. To evaluate the performance, com-
putational experiments based on the April 2015 earthquake in central Nepal were
conducted, evaluating the impact of word of mouth on the performance of relief oper-
ations. Results show that it is of high importance to both consider transport disruptions
and travel choices of residents in the planning of disaster relief distribution. Ignoring
such factors potentially leads to a substantial underestimation of expected costs and
an overestimation of the expected service level provided.

A main benefit of employing an agent-based simulation within this work is that
the framework can be easily adjusted to varying regional characteristics in both oper-
ational area and the culture of residents. The former can be achieved by adjusting

123



Agent-based simulation optimization for dynamic disaster… 441

vehicle types, e.g., by adding special routing graphs for air or water transportation,
while the latter is enabled by adjusting or extending residents’ behaviors and inter-
actions. Nevertheless, computational efficiency is a major drawback as the solution
evaluation is time-consuming when modeling complex interactions within the simu-
lation. Additionally, as shown in this work, more studies focusing on word of mouth
during natural hazard events is required to improve understandings of its impacts and
characteristics.

Consequently, various research directions for future work are derived by this work.
Evaluating methods on how to improve the computational efficiency of agent-based
simulation optimization frameworks in detail, e.g., by limiting the number of replica-
tion runs or working with restricted neighborhoods, facilitate the implementation of
such systems in operational settings. Studying residents’ behavior and actions during
various natural hazard events supports applicability and quality of results. In this con-
text, it would be of further interest to study the impact of wrong information shared
via word of mouth on operations. Considering such factors enables implementing
developed simulation optimization methods in real-world decision support system to
provide decision-makers an integrated view of the various interrelated factors impact-
ing relief operations.
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