CEJOR (2019) 27:39-67 @ CrossMark
https://doi.org/10.1007/510100-017-0489-4

ORIGINAL PAPER

Computing strong lower and upper bounds for the
integrated multiple-depot vehicle and crew scheduling
problem with branch-and-price

Marké Horvath! . Tamds Kis!

Published online: 11 September 2017
© Springer-Verlag GmbH Germany 2017

Abstract In the problem of the title, vehicle and crew schedules are to be determined
simultaneously in order to satisfy a given set of trips over time. The vehicles and the
crew are assigned to depots, and a number of rules have to be observed in the course
of constructing feasible schedules. The main contribution of the paper is a novel
mathematical programming formulation which combines ideas from known models,
and an exact solution procedure based on branch-and-price. The method is tested on
benchmark instances from the literature and it provides suboptimal schedules using
limited computational resources.

Keywords Vehicle and crew scheduling - Branch-and-price - Exact methods - Integer
programming

1 Introduction

The vehicle scheduling and the crew scheduling problems are two main planning
problems that arise in the operational phase of the planning process of public trans-
port companies, and have several real-world applications, e.g., at the public transport
company of Rotterdam, the Netherlands (Huisman 2004), in Ljubljana, Republic of
Slovenia (Békési et al. 2009) and in Szeged, Hungary (Balogh and Békési 2014).
Briefly stated, the aim of these problems is to find an assignment of minimum cost
of a given set of trips to vehicles, and to create a minimal cost set of crew duties that
cover tasks resulted from vehicle schedules. In the traditional sequential approach,

B Tamas Kis
tamas.kis @sztaki.mta.hu

Institute for Computer Science and Control, Hungarian Academy of Sciences, Kende str. 13-17,
Budapest 1111, Hungary

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10100-017-0489-4&domain=pdf
http://orcid.org/0000-0002-2759-1264

40 M. Horvith, T. Kis

the vehicle scheduling problem is solved first and then the crew scheduling problem
next, but Bodin et al. (1983) criticize scheduling vehicles independently of the crew,
because in the mass transit case crew costs mostly dominate vehicle operating costs.
The integrated vehicle and crew scheduling problem aims to schedule vehicles and
the crew simultaneously, rather than sequentially.

In this paper we describe a novel mathematical programming formulation for the
integrated multiple-depot vehicle and crew scheduling problem, where we combine
the advantages of the existing modeling approaches. While most of the known MIP
formulations model the vehicle and crew schedules separately, and join the two parts
by linking constraints, we model crew schedules along with some extra variables and
constraints that ensure that from any integer feasible solution a valid vehicle schedule
can be deduced as well. Further on, any optimal solution of our MIP formulation
represents an optimal solution for the integrated vehicle and crew scheduling problem.
Our modeling approach is quite general, the set of columns represents the valid crew
schedules, and a subset of it is generated in the course of the solution procedure
guided by the rules to be observed by valid driver schedules. We also present our
exact branch-and-price procedure for this formulation, where we develop an efficient
variable pricing method, some branching rules, and we apply several acceleration
strategies. We test our approach on well-known problem instances.

To our best knowledge, the only paper proposing an exact method for the integrated
multiple-depot vehicle and crew scheduling problem is that of Mesquita et al. (2009),
where a variant of the problem is studied in which some of the common assump-
tions we and other authors make on feasible crew schedules are neglected. Their MIP
formulation, unlike ours, models vehicle and crew schedules separately and contains
additional linking constraints to join the two parts.

This paper is organized as follows. In Sect. 2 we give a formal problem statement
along with the assumptions on the input and admissible solutions. We review the
related literature in Sect. 3, where we also highlight the novelty of our approach. In
Sect. 4 we present our problem formulation, and we describe our solution method in
Sect. 5. We summarize our computational results in Sect. 6, and conclude the paper
in Sect. 7.

2 Problem definition

A trip is a project for vehicles to carry passengers between two given stations, and
we assume that each trip is timetabled, that is, it has fixed departure and arrival time.
A fleet of vehicles may consist of different vehicle types, and some trips may not be
operated by all vehicle types. Thus, although a depot basically is a storage facility,
where vehicles can be parked when not in use, we treat a depot as a facility with
homogeneous fleet of vehicles (that is, if such a facility consists of several vehicle
types, we partition its inhomogeneous fleet into homogeneous ones). The vehicle
scheduling problem (VSP) can be stated as follows: we are given a set of trips, a
fleet of vehicles divided into depots and the goal is to find an assignment of trips to
vehicles such that each trip is assigned exactly once; each vehicle performs a feasible
sequence of trips; each sequence starts and ends at the same depot; and asset and

@ Springer

Computing strong lower and upper bounds for the integrated. .. 41

vehicle itinerary

vehicle block | vehicle block 11
T 1 T 1 A

e A BB C B C A B . B AA B . | N
o £ g . .

& ‘ ‘ ‘ ‘ & & l:l trip from A to B
- °) =/ a

B C
D deadhead from B to C

task | task 11 task 111 task IV

piece of work | piece of work 11 piece of work 111

driver duty

Fig. 1 Route of a vehicle and some driver activities (based on Figure 1.4 in Steinzen 2007)

operational costs are minimized. Based on the number of depots, we have the single-
depot vehicle scheduling problem (SDVSP), or the multiple-depot vehicle scheduling
problem (MDVSP).

A vehicle itinerary describes the route of a vehicle, i.e., the movements made by
the vehicle, e.g., performing a trip, waiting at a station or in a depot, pulling out
from/pulling in a depot, performing a deadhead (that is, traveling between stations
without passengers). Each vehicle itinerary starts with a pull-out and ends with a pull-
in, but vehicles can return to the depot at any time. A vehicle block is the part of the
vehicle itinerary between a pair of consecutive pull-out and pull-in (both included).
In Fig. 1 we depict a vehicle itinerary consisting of two vehicle blocks. Some vehicle
movements require driver attendance (e.g., performing a trip/deadhead or pulling out
from/pulling in a depot), while typically no driver is required to be present if the
vehicle is waiting in a depot. Drivers can board/leave the vehicle only at relief points,
these are the depots and certain designated stations. Moreover, each trip has at most
two relief points: one at the beginning and one at the end of the trip, i.e., drivers cannot
board/leave the vehicle while it is performing a trip. According to these restrictions,
each vehicle itinerary defines tasks that have to be assigned to drivers. More precisely,
a task is a sequence of driver requiring vehicle movements between two consecutive
relief points, i.e., tasks are the most elementary portion of work that can be assigned to
a driver. For example, in Fig. 1 we present a situation, where a driver is required to be
present if a vehicle is outside of the depot, and the only relief point other than the depot
is station C. Thereby, vehicle block I and vehicle block II consist of 3 and 1 tasks,
respectively. A piece of work is a sequence of tasks without any break (i.e., each task
in a piece of work begins at the time point when the previous one ends), and a (driver)
duty is either a single piece of work or a sequence of pieces of work separated by
breaks. The first three tasks in Fig. 1 could define six pieces of work [these are (task I),
(task II), (task III), (task I, task II), (task II, task III) and (task I, task II, task III)],
while task IV can be contained by only one piece of work. In this figure we depict only
three pieces of work. Again, these three pieces of work could define four driver duties
[these are (piece of work 1), (piece II), (piece III), and (piece II, piece III)], however
we depict only one.

The crew scheduling problem (CSP) can be stated as follows: find a set of duties for
a given set of tasks such that each task is covered by a duty that can be performed by

@ Springer

42 M. Horvith, T. Kis

a single driver; each duty satisfies a wide variety of federal laws, safety regulations,
and (collective) in-house agreements; and labor costs are minimized.

Finally, the integrated vehicle and crew scheduling problem (VCSP) can be stated
as follows: for a set of trips find a minimum cost set of vehicle itineraries and driver
duties such that both the vehicle and the crew schedules are feasible and compatible
with each other (that is, the driver schedule is feasible according to tasks determined by
the vehicle schedule). Again, based on the number of depots we have the single-depot
vehicle and crew scheduling problem (SDVCSP), or the multiple-depot vehicle and
crew scheduling problem (MDVCSP).

2.1 Assumptions

In the followings we introduce our assumptions about the MDVCSP.

Rule 1 Each vehicle is assigned to a depot where its daily schedule starts end ends.
Eachdepot is unlimited in capacity, that is, it can store an unlimited number of vehicles.

Rule 2 A vehicle returns to its depot if the idle time between two consecutive trips is
long enough to perform a round trip to the depot.

Rule 3 Each driver is assigned to a depot and may only conduct tasks on vehicles
from this particular depot. However, a duty does not necessarily start and end in this
depot.

Rule 4 A piece of work is only restricted by its duration. It may have a minimum and
maximum duration.

Rule 5 (continuous attendance) A driver is required to be present if a vehicle is outside
of a depot, while no driver is needed when the vehicle is parked in the depot.

Rule 6 (restricted changeover) Drivers may only change their vehicle during a break,
i.e., between two pieces of work.

Rules 1-6 are customary assumptions in the literature (Huisman 2004; Huisman
et al. 2005; Steinzen 2007; Steinzen et al. 2010).

Rule 2 was originally proposed for vehicle scheduling problems to reduce the num-
ber of constraints by introducing the concept of short arcs, and long arcs, see e.g.,
Freling et al. (1995b). Basically, in their network model arcs representing vehicle
movements with appropriate long idle time were replaced with so-called long arcs
representing round trips to the depot, and for such arcs they did not require the contin-
uous attendance. This idea was applied for integrated problems as well (e.g., Freling
et al. 2003; Huisman et al. 2005; Steinzen et al. 2010), however, it is worth mentioning
that omitting such long waiting and deadheads may change the set of potential tasks
(see Rule 5), hence the set of feasible duties can be changed. Rule 2 can create another
problem when time-space network approaches are used for the VCSP. Steinzen (2007)
and Steinzen et al. (2010) suggested to eliminate appropriate (long) arcs from network
to ensure Rule 2, but it is not sufficient by itself as we will show in Sect. 4.1. That is

@ Springer

Computing strong lower and upper bounds for the integrated. .. 43

why we will handle Rule 2 as a lazy rule, i.e., we will eliminate long arcs from the
network model of the problem, but we will not make further efforts to satisfy Rule 2.

To ensure Rule 6, we need to redefine the concept of a piece of work, that is, in
the rest of this paper a piece of work is a sequence of tasks without any break that is
performed by the same vehicle. Remark that pieces of work in Fig. 1 correspond to
the new concept.

Rule 7 A duty consists of one or two pieces of work. Each duty starts with a sign-
on and ends with a sign-off by the driver. Feasibility of a duty can depend only on
earliest/latest (sign-on) start/(sign-off) end time; minimum/maximum piece length;
minimum/maximum break length; minimum/maximum working time; minimum/maxi-
mum spread time.

In our terminology working time is the time that driver spends on the vehicle (i.e.,
the total duration of the pieces of work consisted by the duty), and spread time is the
total duration of the sign-on, the sign-off, the pieces of work and the breaks.

Rule 8 Vehicle cost is a combination of a fixed asset cost for using the vehicle and a
variable operation cost. Asset cost depends only on depot. Operation cost is a linear
Sfunction of travel and idle time outside the depot.

Rule 9 Duty cost is a combination of a fixed driver cost for using a driver and a
variable working cost. Driver cost depends only on depot. Working cost is a linear
function of working time.

In fact, fixed costs in Rules 8-9 are not restrictions as we assumed that each depot
consists of a homogeneous fleet of vehicles and crew is a group of anonymous drivers.

3 Literature review
3.1 Sequential vehicle and crew scheduling

The MDVSP is shown to be NP-hard by Bertossi et al. (1987), which is in strong
contrast with the polynomial solvability of the SDVSP, see e.g., Freling et al. (2001).
An overview of different vehicle scheduling models can be found in Bunte and Kliewer
(2009). For heuristic solution approaches for the MDVSP we refer to Pepin et al.
(2006).

Both the VSP and the CSP can be interpreted as an assignment problem, the CSP
is more complicated than the VSP because of the wide variety of working rules (e.g.,
minimum/maximum working time for drivers, minimum/maximums spread time for
duties, etc.). Fischetti et al. (1987, 1989) show that the CSP is NP-hard if either spread
time or working time constraints are present.

3.2 Partial integration
Until the late nineties the complete integration of vehicle scheduling and crew schedul-

ing was computationally intractable, thus most of the early approaches are based on a
heuristic integration.

@ Springer

44 M. Horvith, T. Kis

Ball et al. (1983) propose the first partially integrated approach for the single-depot
case. They schedule crew first including vehicle scheduling considerations and con-
struct a feasible vehicle schedule afterward. Similar heuristics for the single-depot case
are proposed by Tosini and Vercellis (1988), Falkner and Ryan (1992), and Patrikalakis
and Xerocostas (1992).

Other approaches schedule vehicles first but include crew scheduling considerations
and subsequently generate feasible crew schedules, see e.g., Scott (1985) and Darby-
Dowman et al. (1988).

Gintner et al. (2008) apply another partial integration approach for the multiple-
depot case. They perform vehicle scheduling first and crew scheduling afterward, but
they use a time-space network approach for vehicle scheduling that allows to change
the corresponding optimal vehicle schedule without loss of optimality in the crew
scheduling phase.

3.3 Complete integration

In Table 1 we collect the core of modeling and solution approaches of completely
integrated models, details are explained below.

3.3.1 Single-depot case

Freling et al. (1995a) propose the first fully integrated approach for the single-depot
case. Their integer programming model uses a so-called connection-based network and
consists of three components: a quasi-assignment formulation for vehicle scheduling,
a set partitioning formulation for crew scheduling, and additional linking constraints
that ensure the compatibility of vehicle and crew schedules. Their solution approach
uses column generation in combination with Lagrangian relaxation. That is, linking
constraints are relaxed in a Lagrangian way and the crew scheduling part is relaxed
to a set covering formulation that yields two independent Lagrangian subproblems:
a single-depot vehicle scheduling problem and a selection problem. They solve the
Lagrangian dual problem with a subgradient algorithm, and suggest a two-phase pric-
ing method to generate new columns (i.e., duties) for the crew scheduling part. They
apply several heuristics to obtain feasible integer solutions for the original problem.
This modeling and solution approach provides the basis for many other publications,
e.g., Freling et al. (2003), Huisman (2004), Huisman et al. (2005), Steinzen (2007)
and Steinzen et al. (2010).

Friberg and Haase (1999) propose the first exact algorithm for the single-depot
case. Their mathematical programming formulation is a combination of set parti-
tioning formulations for the vehicle scheduling problem and for the crew scheduling
problem, respectively. They develop a branch-and-cut-and-price algorithm, i.e., the
LP-relaxation in each node of the search-tree is solved by column generation, more-
over, polyhedral cuts are added to strengthen the relaxation. Columns for the vehicle
scheduling subproblem are generated by solving shortest path problems on acyclic
graphs, however, the pricing problem for the crew scheduling subproblem is mod-
eled as a resource constrained shortest path problem which is solved by a dynamic
programming algorithm.

@ Springer

45

Computing strong lower and upper bounds for the integrated...

doud-pue-youelq g

youelq-pue-ooud (paseq uonexe[al-J7) J

ampaocoid yoress aandepe pazrwopuer Apadin)
oord-pue-no-pue-youerg P

UONEIOUST UWN]0D PIseq uonexe[al ueidueide] ,
poau 1oexa 77 ‘yoeordde dusLnay ¢

doeds-owin § 7 ‘paseq-IOALIP g(J {PISLq-uondduuod g9 ,

001 H Sutuonnred jo8 A0} ANIpowodn NN SL (0107) Te 10 uZUINS
sdd I/H Suraaoo/Iuruonnied 10§ MOp AJIPOWWOdNNIA [<ie) (6002) "I® 12 eymbsay
14d H Suaaoo/Iurtuonnied 10§ MO AJIPOWOdN NIA! a0 (8007) sered pue e)nbsopy

DO-¥1 H Sutuonnred jog Moy Arpowroonny a0 (8000) T8 10 1oj1QpUIOg

DD-¥1 H Sutuonnred jo8 Moy Arpowrtoon A a0 (S002) ' 10 urWISIY

DO-IT H Suruonnied 108 JuwuIsse-1sen() a0 (6661) OIRUON puE Ujen)

aseo jodap-ordnniy
»dSVID H (yoroidde Surwrer3oid jurensuod) (8007) OeH pue juaIne|
DO-¥1 H Suruonnired 129 JueWUSISse-ISeny a0 (€007) 'Te 30 Surjar]
dod q Moy Arpowroon A SJUTenSUOS 9pIg da (1002) 'Te 12 oseey
pdOd q Suruonnaed jog Suruonnaed jog q0 (6661) @seey pue 31aqLi]
500U H Suruonnaied 108 juawugisse-1sene) q0 (®S661) ‘T8 10 Suraig
ased jodap-o[3urg
10D nom@ Jred Surnpayds mar) jred Surnpayos [OIYA SHOMION
yoeoidde uonnjog yorordde Jurjopon AOUAIRJY

uone13aul 93a[dwod oy 10J sayorordde uonnjos pue JurfPpojN | dqeL

pringer

as

46 M. Horvith, T. Kis

Haase et al. (2001) propose another exact solution approach for the single-depot
case. In their view each driver duty must start and end in the depot. Their crew-
based mathematical model is a multicommodity flow formulation that relies on a so-
called driver network structure. Side constraints are used to guarantee that an optimal
compatible vehicle schedule could be derived. That formulation uses a set of path flow
variables for drivers and only one additional variable to count vehicles. They propose
a branch-and-price algorithm, where cutting planes are added to the master problem
to reinforce linear relaxations throughout the search-tree. Each pricing problem is
transformed into a shortest path problem with resource constraints and solved by a
dynamic programming algorithm.

Laurent and Hao (2008) consider a situation where all vehicles are parked in the
same depot, however, the vehicles may belong to different categories. Thus, their case
is more general than a single-depot case, but more special than the general multiple-
depot case which we consider in this paper. They also use simplified crew constraints
in contrast to Rule 7, e.g., they have restrictions only for the spread and working times.
Their formulation relies on a constraint satisfaction and optimization model, and they
apply a heuristic greedy randomized adaptive search procedure to solve the problem.

3.3.2 Multiple-depot case

Gaffi and Nonato (1999) introduce the integrated problem for the multiple-depot case.
However, their approach is developed for the extra-urban mass transit setting, where
drivers are virtually tied to their vehicles. Hence, for example, they assume that a
driver is assigned to the same vehicle during the whole duty, and all pieces of work
start and end in the depot. Their heuristic procedure is based on column generation in
combination with Lagrangian relaxation.

Huisman (2004) and Huisman et al. (2005) propose the first general approaches for
the multiple-depot case. Huisman (2004) explicitly introduces Rules 1, 3, 4, 5, 6, and
Rule 2 is applied in his mathematical formulation to reduce the number of constraints.
That formulation complies also with Rules 7, 8 and 9. Huisman (2004) and Huisman
et al. (2005) extend the modeling and solution approaches of Freling et al. (2003) and
Haase et al. (2001) for the multiple-depot case. That is, they use a multicommodity
flow formulation for the vehicle scheduling part which is based on connection-based
networks, and additional constraints are used to link duty and flow variables. In the first
phase of their solution approach they calculate a lower bound on the optimum using
a column generation algorithm where the master problem is solved with Lagrangian
relaxation by a subgradient algorithm. For generating duties they apply a two-step
procedure similar to that of Freling et al. (1995a), that is, they generate pieces of work
with shortest path algorithms, while duties are generated by a simple enumerating
procedure. Feasible solutions are obtained in the second phase. Huisman (2004) and
Huisman et al. (2005) propose an alternative formulation obtained from the previous
one containing only variables related to crew duties. However, additional constraints
are added to count the number of vehicles and to consider fixed vehicle costs. They
apply a solution approach similar to the one for the previous formulation.

In Huisman (2004) and Huisman et al. (2005) the authors propose their randomly
generated instances which are widely used in the literature (Borndorfer et al. 2008;

@ Springer

Computing strong lower and upper bounds for the integrated. .. 47

Mesquita and Paias 2008; Mesquita et al. 2009; Steinzen 2007; Steinzen et al. 2010)
and in this paper as well.

Borndorfer et al. (2008) use a modeling approach similar to that of Freling et al.
(1995a). Their solution approach also relies on a Lagrangian relaxation based col-
umn generation procedure, but they use inexact proximal bundle method to solve
Lagrangian dual problems. The bundle method is embedded in a backtracking proce-
dure to produce an integer solution in the second phase.

Mesquita and Paias (2008) propose a modeling approach similar to that of Huis-
man (2004). However, there are some fundamental differences between the problem
definition of Mesquita and Paias (2008) and that of Huisman (2004). For example,
in Mesquita and Paias (2008) the authors consider each end location of a trip as a
potential relief point. Moreover, they allow drivers to change vehicles whenever there
is a relief point, and to use vehicles from any depot, that is, their model does not com-
ply with Rules 3 and 6. They use a multicommodity flow formulation for the vehicle
scheduling part, and set partitioning/covering formulations for the crew scheduling
part. They apply a price-and-branch algorithm, that is, they solve the LP-relaxation of
the problem with a column generation approach, and if the resulted optimal solution is
fractional they apply a branch-and-bound procedure to obtain feasible integer solution
to the problem. The pricing problems are modeled as resource constrained shortest
path problems and are solved by a dynamic programming algorithm.

Mesquita et al. (2009) propose exact and non-exact branch-and-price procedures
for the same problem definition and formulation as in Mesquita and Paias (2008).

Steinzen (2007) and Steinzen et al. (2010) use a similar modeling approach for the
multiple-depot case as in Huisman (2004), however, their mathematical formulation is
based on time-space networks. Their Lagrangian relaxation based column generation
approach is also similar to that of Huisman (2004), but in their case pricing problems
are modeled by resource constrained shortest path problems on time-space networks
which are solved by a dynamic programming algorithm. Finally, they devise a heuristic
branch-and-price procedure which alternates between vehicle and crew scheduling to
obtain feasible solutions.

Our contributions In this paper we present a novel problem formulation derived from
that of Steinzen et al. (2010). We developed a branch-and-price procedure including
(1) an effective pricing procedure based on that of Freling et al. (1995a) using sev-
eral acceleration strategies, (ii) some branching strategies, (iii) and a simple primal
heuristic. We also present our computational results compared with other well-known
solution approaches.

As we discussed above, several problem definitions have been proposed for the
(integrated) vehicle and crew scheduling problem. Because of the differences between
these assumptions, fair comparisons cannot be established between all approaches.
That is, a feasible solution for a given approach may not be feasible for another one,
and vice-versa. As we mentioned in Sect. 2.1, our assumptions comply with those
of Huisman et al. (2005) and Steinzen et al. (2010), however, they differ from the
assumptions of Mesquita and Paias (2008) and Mesquita et al. (2009).

@ Springer

48 M. Horvith, T. Kis

station A
{3 \‘
. — trip arc
station B * pull-out/in arc
to ta t5 waiting arc
station C circulation arc

deadhead arc

depot . e . o000 ° ° . o

Fig. 2 Time-space network

4 Problem formulation

In this section we discuss our mathematical formulation for the MDVCSP, and we
shortly present the well-known time-space network structure the formulation bases on.
First of all, we remark that we use the concept of vertex in graph/network terminology,
and we use the concept of node for search-trees.

4.1 Time-space network structure

In a time-space network each vertex represents a (time, space) pair (where space is
either a station or the depot), and arcs represent vehicle movements. In the following
we present how we build a time-space network for a given depot. For a detailed
description about building time-space networks we refer to Kliewer et al. (2006).

For each trip that can be operated from the depot we add four vertices to the network
representing the (departing time, departing station), (arriving time, arriving station),
(pull-out time, depot) and (pull-in time, depot) pairs, respectively. Additionally, we
add a trip arc to the network from the departing vertex to the arriving vertex, and a
pull-out arc (pull-in arc) from the pull-out vertex (arriving vertex) to the departing
vertex (pull-in vertex). Of course, if a vertex or a pull-in/out arc already exists we do
not duplicate them (e.g., arriving vertex of trip #3 and departing vertex of trip 74 are
the same in Fig. 2).

To represent waiting at a station or in the depot we create for each space its timeline,
that is, we collect all vertices that represent this space and sort them in increasing order
according to their represented time, then we add a waiting arc between consecutive
vertices. Let s and ¢ be the first and last vertex of the timeline of the depot, respectively.
We add an extra circulation arc from ¢t to s. Note that at a station it is sufficient to
start that connecting process with the first vertex that represents arriving event, since
there is no reason for a vehicle to wait at a station until a trip ends there. Moreover,
according to Rule 2 we do not connect consecutive vertices together if the duration
of that waiting arc would not be shorter than the duration of a round trip. As you
can see in Fig. 2 we do not connect the arriving vertex of trip #; with the departing
vertex of trip #, at station C, since there is enough time for a vehicle to perform a
round trip. It is worth mentioning that both of the two waiting arcs are necessary at
station B—as they ensure the connections between trips f, and #4, and trips #3 and fs,
respectively—however, a vehicle operating trips #, and s can use these arcs to wait

@ Springer

Computing strong lower and upper bounds for the integrated. .. 49

in station B instead of performing a round trip as required by Rule 2. That is why we
mentioned that omitting long arcs is not sufficient to satisfy Rule 2, and that is why
we do not strive to satisfy Rule 2 in the rest of our solution approach.

To represent deadhead movements between stations we add deadhead arcs con-
necting the arriving vertex of a trip with the departing vertex of an another trip. One
of the most important properties of time-space networks is that we should not rep-
resent all of the deadhead movements explicitly. For example, in Fig. 2 trips #3 and
t¢ are compatible (i.e., can be performed by the same vehicle), thus we connect their
corresponding arriving/departing vertices with a deadhead arc. However, trips f, and
t6 are also compatible, but is not necessary to add any deadhead arc between them,
since these can be operated by the same vehicle by using the first waiting arc and the
deadhead arc. Of course, we omit a deadhead arc if it is longer than the corresponding
round trip.

Note that each path from s to ¢ corresponds to a vehicle itinerary (and vice versa),
and a piece of work can be represented as a path between two relief points using
nondepot-arcs only.

4.2 Mathematical formulation

In this section we describe our formulation used in the rest of the paper. But before,
we describe that of Steinzen et al. (2010), from which our formulation will be derived.

4.2.1 The problem formulation of Steinzen et al. (2010)

Let D = {di, d>, ..., dp} be the set of depots, and T be the set of trips. Let D4 =
(V4, A%) be the time-space network for depot d € D, and let A4 c A9 be the set of
nondepot-arcs (i.e., all arcs but the arcs of the timeline of the depot and the circulation
arc). It is worth mentioning that A¢ is the set of arcs that require both of vehicle and
driver activities. Remember that a path between two vertices that correspond to relief
points and using nondepot-arcs only represents a piece of work. Let K¢ be the set of
feasible duties that can be operated from depot d € D and K%(i, j) € K¢ the set of
duties covering arc (i, j) € A4 For depot d € D we denote by A% (1) C A? the set of
arcs corresponding to trip t € 7. Note that A4 (r) is empty if trip # cannot be operated
from depot d, otherwise it contains a single arc.

Steinzen et al. (2010) use two types of variables. First, they associate a flow variable
ylfij with each arc (i, j) € A? indicating whether that arc is used and assigned to depot

d € D. The binary duty variables x,‘f (k € K4) indicate whether duty k is selected for
depotd € D.
On the one hand, Steinzen et al. (2010) assign a vehicle cost cfz. toeacharc (i, j) €

A4 That s, cldj is the asset cost for using a vehicle if (i, j) is the circulation arc of D

cfj is the operation cost of the represented vehicle movement if (7, j) € Ad; otherwise
.

ij
eacharc (i, j) € A?. With this, the duty cost fk‘l of duty k € K is the sum of the fixed
driver cost, and the working cost of its pieces of work. The formulation of Steinzen

et al. (2010) is the following:

is equal to zero. On the other hand, one could associate a working cost gl.dl. with

@ Springer

50 M. Horvith, T. Kis

min Yo > e+ D0 D0 sl 0

deD (i, j)eAd deD kekd

YooY =1 VieT)

deD (i, j)eAd ()

Yoovhi— Y =0 vdeDVievd)
j:(j.iead j:Gi, j)eAd
Yo o xl-yli=0 vdeDvi et @
keK4(,j)
0<yl <uly, yieN, YdeD Vi jeA’ (5

xkef0,1}, VdeD,Vkek? (6)

The objective (1) minimizes the sum of vehicle and crew costs. Constraint set (2)
ensures that the set of trips are partitioned among the depots and each trip is covered by
a single vehicle. Constraints (3) are the flow conservation constraints corresponding to
the multicommodity flow formulation for the vehicle scheduling problem. Constraint
set (4) links the vehicle and crew schedules, that is, each nondepot-arc should be
covered by the same number of vehicles and duties. Constraints (5) ensure that the
maximum capacity of flow variables is satisfied. Steinzen et al. (2010) set u?} to 1

on trip arcs (i, j) € A4, however, these constraints are redundant according to (2).
They also set u;ij to 1 on pull-in/out arcs (i, j) € Ad, which are technical constraints
(note that they use unique pull-in/out arcs for each trip). For all other arcs they use
maximum capacity u¢ equal to the number of vehicles available in depot d € D.

4.2.2 Our problem formulation

Our mathematical programming formulation is obtained from that of Steinzen et al.
(2010) described above by dropping the redundant and technical capacity constraints
from (5), and eliminating most of the flow variables by substituting them using con-
straints (4).

However, our formulation can also be interpreted directly from the problem defi-
nition. We use the same notations as before. Further on, let A = A4 \ A4 be the set
of depot-arcs (i.e., the arcs of the timeline of the depot and the circulation arc), and
V4 c V¥ be the set of depot-vertices of D (i.e., vertices of the timeline of the depot).
For depot d € D we denote by K¢(r) € K¢ the set of duties covering trip t € 7,
furthermore, we denote by K 44y c K4 (K i (i) € K9) the set of duties that contain
a piece of work starting (ending) in vertex i € V<.

We also use two types of variables. First, we associate a flow variable ylf‘!j with each

depot-arc (i, j) € A indicating the number of vehicles that cross arc (i, j). To ensure
continuous attendance (Rule 5), and restricted changeover (Rule 6), the second type
of our variables combines drivers and vehicles outside of a depot. Remember that a
path between two vertices that correspond to relief points and using nondepot-arcs
only represents a piece of work. From a different angle, such a path can be considered

@ Springer

Computing strong lower and upper bounds for the integrated. .. 51

as a part of some vehicle block, that is why we can handle a piece of work as a driver-
vehicle pair. That is, binary duty variable x,f indicates whether duty k € K¢ is selected
for depot d € D, if so, it means that a driver is assigned to duty k and for each piece
of work of the duty a vehicle is assigned.

We also assign vehicle costs c;il. to each arc (7, j) € A4 and a working cost gl.dj to

each arc (i, j) € A?. With this, the driver cost (vehicle cost) of a piece of work is the
cost of the corresponding path according to arc costs gldj (cflj), and the combined duty

cost fkd of duty k € K is the sum of the fixed driver cost, the vehicle cost of its pieces
of work, and the working cost of its pieces of work. Now, we formulate the MDVCSP
as:

min Z Z c?jyfij + Z Z fkdxf @)

deD (i, jeAd deD kekd
Z Zx,le, VieT ®)
deD keK4 (1)
Yooxl— > xl=0 vdeDvievi\V!
kek4 (i) kek4 (i)
)
doovi+ > = > yi— Y xl=0 VYdeDVieV! (10)
(i,j)eAd keK4 (i) (j.i)eAd keKe (i)
0<yf yieZ VYdeDV(,j) eA
(11)
xke{0,1), VdeD Vkek?
(12)

The objective (7) minimizes the sum of vehicle and crew costs, as the fixed asset costs
for the vehicles are built in the first term of (7), and all the other costs are contained in
the second term of (7). Constraint set (8) ensures that each trip is covered by exactly
one duty. Constraint sets (9)—(10) connect flow variables with the vehicle part of duty
variables. That is, (9) specifies for a nondepot-vertex i that the number of pieces of
work ending in vertex i (i.e., the number of vehicles arriving at vertex i) must be
equal to the number of pieces of work starting in vertex 7 (i.e., the number of vehicles
departing from vertex 7). Constraint set (10) is analogous for depot-vertices, but it
takes into consideration that vehicles can wait in the depots. Note that flow variables
are implicit integer, that is, they are always integer if duty variables are integer.

It is worth mentioning that in our formulation a duty variable (i.e., the correspond-
ing column) contains only relevant information about the duty, namely, the start/end
vertices of the piece(s) of work of the duty and the trips covered by the duty, if any.
Notice that deadhead routes (e.g., routes between two consecutive trips) are not con-
sidered by the constraints. Moreover, the rules concerning the feasibility of duties do
not appear explicitly in this formulation, only in the set K<.

@ Springer

52 M. Horvith, T. Kis

Note that limits on the number of vehicles in depots can be imposed by adding the
constraints yfl‘Y < u? to the model, where (¢, s) is the circulation arc of the correspond-
ing depot.

By construction, we have the following result.

Proposition 1 Each optimal solution of the formulation (7)—(12) corresponds to an
optimal solution for the MDVCSP, and each optimal solution for the MDVCSP is
represented as an optimal solution for the formulation (7)—(12).

5 Solution approach

In this section we present our solution method for the MDVCSP which is a branch-
and-price procedure to solve master problem (7)—(12). That is, we compute a MIP
containing just a few columns of the master problem (called restricted master problem)
and perform a branch-and-bound procedure such that in each node of the search-tree
we may add new columns (i.e., duties) to the LP-relaxation of the current restricted
master problem.

More precisely, we create an initial restricted master problem (described in
Sect. 5.1). We solve each node LP to optimality, that is, for each node we gener-
ate new duties until no one with a negative reduced cost is left as we describe in
Sect. 5.2. At the root node we apply a two-stage approach. In the first stage we gener-
ate duties that contain one or two pieces of work starting and ending in the depot, and
at the end of this stage we perform a primal solution search (described in Sect. 5.4).
The reason for this is that with such a column set the constraints (9)—(10) are easy
to satisfy, hence we expect that the search procedure can quickly find a good primal
solution. In the second stage we generate duties without any limitations for their start
and end locations, and we may also perform a primal solution search at the end of the
stage. We describe our branching rules in Sect. 5.3. Our primary branching strategy is
to assign trips to depots, and we use the SPP-based branching strategy as a secondary
rule (if the primary rule failed to branch), and as a last resort, one may rely on the
default branching strategy of the MIP solver.

5.1 Initial restricted master problem

The initial restricted master problem contains all of the flow variables and a set of
initial duty variables that we create by obtaining a feasible solution for the MDVCSP
by using a sequential procedure. That is, we first formulate the MDVSP problem as
a minimum cost multicommodity flow problem on the time-space networks using the
given vehicle costs as in Kliewer et al. (2006), and solve the MIP model with a standard
software. Then, independently for each depot we create a set-partitioning formulation
for the CSP (e.g., Freling et al. 2003) to assign drivers to the obtained vehicle schedules.
We solve the LP-relaxations of these problems with a column generation approach
similar to the one we discuss in Sect. 5.2, then we solve the resulting restricted master
problems with branch-and-bound, and use the solutions as initial column set for the
MDVCSP.

@ Springer

Computing strong lower and upper bounds for the integrated. .. 53

Note, that if we failed to obtain feasible integer solution for any of the CSP problems,
we could use fictive columns for the initial restricted master problem penalized by a
high cost, or we could start branch-and-price with an initial restricted master problem
containing no duty variables (see Farkas pricing in Sect. 5.2.3).

5.2 Pricing variables

Once the corresponding restricted master problem is solved we attempt to price out
new variables (i.e., new duties) by using the dual information of the solution. Let X;
(t € T)and ufi (i € V4, d e D) be the dual variables associated to constraints (8)
and (9)—(10), respectively.

To generate feasible duties we use a two-phase procedure similar to the one proposed
by Freling et al. (1995a), that is, in the first phase we generate a set of feasible pieces
by using a so-called piece generation network, and in the second phase we derive
feasible duties. Since we generate pieces of work and duties independently for each
depot, in the rest of this section we fix a depot d € D.

5.2.1 Generation of pieces of work

For each depot we derive a piece generation network from the corresponding time-
space network consisting of all original arcs but depot-arcs, that is, the piece generation
network for depot d is D = (v, Al \ A?). We recall that each path in D4 between
two vertices that correspond to relief points represents a piece of work. For a piece
of work p let A[p] and 7 [p] be the set of arcs and the set of trips covered by p,
respectively, and let s[p] and e[p] be the start and the end vertex of p, respectively.
The combined cost / of a piece of work p is the sum of vehicle and driver costs for
all arcs covered by the piece of work, formally

h(py= Y cfi+gf.
ijeAlp]

The reduced cost & of a piece of work p (and the reduced cost of the corresponding
path) is

h(py=h(p) = Wiy + 1oy = D X
teT[p]

For the sake of efficiency, we do not generate all of the pieces of work, but obtain
a set of feasible pieces by considering only the minimum reduced cost path between
any two vertices in D?. To do this, we predetermine a processing order of vertices
of D (which is a topological order in case the network is acyclic). By that, for any
given node we can determine the shortest path arborescence in O(|A|) time, thus we
can determine the minimum reduced cost path for each pair of vertices in O (|A||V])
total time.

@ Springer

54 M. Horvith, T. Kis

At the root node of the search-tree it is clear that considering only the minimum
reduced cost paths is sufficient in the sense that we will find at least one piece of
work with negative reduced cost, if any. However, when branching decisions are to be
considered this strategy may fail to find appropriate pieces. For example, assume that
piece of work p corresponding to the minimum reduced cost path between vertices
u and v is infeasible according to some of the branching decisions, but there is an
another u—v path with negative reduced cost that admits a piece of work p” which is
feasible according to all of the branching decisions. It is clear that we will fail to find
the feasible piece of work p’, since it is overshadowed by the infeasible piece of work
p. That is why we should take branching decisions into consideration during piece
or/and duty generation. We postpone the details until Sect. 5.3.

5.2.2 Generation of duties

Duties consisting of one piece of work can be easily generated by iterating over the pre-
viously obtained piece of work set. To generate combined duties (i.e., duties consisting
of two pieces of work) we apply a straightforward pairing procedure using proper data
structures and several acceleration techniques in order to avoid enumerating inherently
infeasible pairs.

Once a set of pieces of work is obtained we build two piece handler data structures:
A and B. In piece handler A (B) we create a time block for each time ¢ in the time
horizon containing pieces of work with sign-on start time (start time) ¢, and pieces of
work in a block are sorted in increasing order according to their end time (sign-off
end time).

Algorithm 1 Generating combined duties

1: procedure GENERATEDUTIES(A, B, D)
2: ESjy < earliest sign-on start time for the first piece

3: LSy < latest sign-on start time for the first piece

4: for bf in ESf e LSf do

5: for psin A[bs] do

6: ES; < earliest start time for the second piece

7: LS5 < latest start time for the second piece

8: for by in ES ... LS do

9: LEg < latest sign-off end time for the second piece

10: for ps in B[bs] do

11: if (py, ps) is feasible according to type D and
(pf, ps) is feasible according to branching decisions and
(p £, ps) has negative reduced cost then

12: save duty (p . ps)

13: end if

14: end for

15: end for

16: end for

17: end for

18: end procedure

In the following we describe how we generate feasible duties for a given combined
duty type using the piece handlers. Briefly stated, we choose a piece of work as the

@ Springer

Computing strong lower and upper bounds for the integrated. .. 55

first piece of the potential duty, then we enumerate the appropriate second pieces. The
sketch of the procedure is presented in Algorithm 1.

For a combined duty type D let Dy, and D37, be the earliest and latest sign-on
starF time, Dg‘la[;‘ be the latest sign-off end time, D,Til?ce be the minimum piece length,
Dl‘f;‘éla and Dl‘f}‘l’; « be the minimum and maximum break length, pmax be the

working
maximum working time, D‘;;ixe 4 D€ the maximum spread time. For a given piece of

work p denote with p¢’ its end time; with p*’ its working time; and with p%°"
p*°I1 its sign-on start time and sign-off end time, respectively.

First, we calculate an earliest and latest sign-on start time for the first piece of work
(ES¢ and LSy, respectively) using the properties of duty type D. For example, we
can simply use the trivial values ES; = D™ and LS; = DM, however we can
easily strengthen LSy such that:

and

LSy =min { DI, prax — ppin,
After these values are calculated we iterate over the appropriate blocks of piece handler
A (denoted by A[-]), and over the pieces of these blocks (line 4-5). For the actual first
piece p s we calculate an earliest and latest start time for the potential second piece of
work (E S5 and LS;, respectively). Again, we can use trivial bounds where we only
take break length into c.onsideration: ES, = p;’f + Dy and LSy = p;’f + Dp ..
however we can use stricter bound for LS, that is
LS, = min { pf + Dps,, D — D).

Then, we iterate over the appropriate blocks of piece handler B, and over the pieces
of these blocks (line 8 and 10). However, we can avoid to iterate over all the seconds
pieces that constitute infeasible duty with the actual first piece. That is, we calculate
a latest sign-off end time LE, for the potential second piece, and if pi// > LE,
holds for the current second piece ps then we can stop to iterate over the pieces of the
current block, since pieces are sorted in increasing order according to their sign-off
end time. For example, we can use the following value:

LE, = min | DI by + (DS, — Y. DIty = v}
where by is the common start time of pieces of work in the current block. Once we
have a piece of work pair (ps, ps) we check whether it constitutes a feasible duty
according to the given type, if so, we can check whether it is feasible according to
branching decisions.
5.2.3 Farkas pricing
After branching is performed the restricted master problem of a new node may be

infeasible due to fixings, but it does not mean that the master problem of the node is
infeasible, so the node cannot be pruned.

@ Springer

56 M. Horvith, T. Kis

Again, one could resolve this issue by adding fictive columns to the LP penalized by
a high cost, but instead, in such cases we perform a so-called Farkas pricing. That is,
if the restricted master problem is infeasible we can obtain dual Farkas multipliers A,
and ;l‘lf associated with constraints (8) and (9)-(10), respectively, to prove infeasibility
according to the Farkas-Lemma. To make restricted master problem feasible we have
to find a new column that violates this proof. It can be shown that this pricing problem is
similar to the pricing problem for reduced cost pricing, but now we use a zero objective
function and the dual Farkas multipliers instead of the original objective function and
the dual solution. Thus, we can use the pricing method discussed in Sect. 5.2 with a
minor modification to make the restricted master problem feasible.

5.3 Branching strategies

Now, we present our strategies to perform branch in a node where the optimal solution
for the final restricted master problem is fractional. Remark, that flow variables yid/ are

implicit integer, hence it is sufficient to consider only duty variables x,f in a branching
rule.

5.3.1 Assign trips to depots

Our first branching strategies can be used in the multiple-depot case when there exists
a trip that belongs to several depots in the current LP-relaxation. Formally, consider
a fractional solution (x, y) to the relaxation of the corresponding restricted master
problem, and let Cx (¢, d) denote the commitment of trip ¢ to depot d, that is

Ce(t.dy= Y if.

keKd(r)

If 0 < Cx(7,d) < 1 holds for a trip 7 and a depot d it means that trip 7 is committed to
multiple depots according to solution x. In this case we choose a trip f and a depot d
such that (7,d) = argmin) |Cx(t, d) — 0.5]. We have two possibilities to perform
branch on pair (7, d):

1. Partitioning We create exactly two branches. We require to cover trip 7 by a duty

from depot d on the one branch, and to cover by a duty from a depot that differs
from d on the other branch. Formally,

3" x{ =1, binding branch (13)
kekd(p)

Z x,f = 0, banning branch. (14)
keKd(f)

2. Splitting Assume that trip 7 can be performed from depots d;,, d;,, . .., d; . We
create g branches, and force to cover trip 7 by a duty from depot d; ; onthe jth
branch (1 < j < g). Formally, for the jth branch we have

@ Springer

Computing strong lower and upper bounds for the integrated. .. 57

3 x:ij =1 (15)

di. _
keK "7 (t)

Note that these two branching rules are the same if we have exactly two depots.

As we remarked above, these branching rules are not complete in the sense that
they cannot be used if each trip ¢ is committed for a single depot, i.e., Cz(¢,d) = 1
holds for some depot d. However, handling these branching rules is quite easy without
adding any inequalities of (13)—(14) or (15) to the problem. That is, on the one hand we
can easily fix the appropriate existing variables to zero according to the corresponding
branch. On the other hand, if a trip is forbidden to cover by a duty from the depot
for which we want to price out new duties, we just erase the corresponding trip-arc
from the piece generation network of the depot, and the pricing procedure described
in Sect. 5.2 can be used without any modification.

5.3.2 SPP-based branching

This branching strategy is based on the branching scheme proposed by Ryan and
Foster (1981) for problems with set partitioning structure, i.e., for MIPs of the form
minfwx | Ax = 1,x € {0, 1}*}, where A is a m x n matrix with 0/1 columns
representing some subsets of a set. Their branching scheme uses the observation that in
every fractional solution of the LP-relaxation, there exists a pair of rows (a;., a;.) with
0 <> cecq,jyXe < 1, where C(i, j) is the set of columns covering both constraints
a;. and a;., ie., C(@i, j) = {c € {1,...,n} | ajc = aj. = 1}. Their branching rule
creates two branches: one forcing to cover rows ¢;. and a;. by the same column, and
another one forcing to cover the two rows by different columns.

In our branching strategy, we branch on duty variables utilizing the set partitioning
structure of constraints (8). Consider a fractional solution (x, y) to the relaxation of
the corresponding restricted master problem, and for trips ¢, « and depot d let

Bi(t,urd)y:= Y if,

keKd(t,u)

where K(r,u) < K% is the set of duties covering both trips 7 and u. We
select a pair of trips (¢, #) and a depot d to branch on such that (7,i:d) =
argming .4y | Bz (¢, u; d) — 0.5|. The branching scheme requires to cover trips f and
u by the same duty from depot d on one branch and not to cover by the same duty
from depot d on the other. Formally,

Z x,‘j: 1, same branch (16)
kekd(f,i)

3" xf =0, diff branch, (17)
keKd(i.ii)

@ Springer

58 M. Horvith, T. Kis

Note that this branching rule can be used for both of the single-depot and the multiple-
depot case if there exists trips ¢, u and a depot d such that 0 < Bz(¢,u;d) < 1.
Again, we do not intend to add any of the inequalities (16)—(17) to the restricted
master problem, however, handling this branching rule in the pricing procedure is a
bit cumbersome as we explain in the following. Assume that in a node we would like
to generate new feasible duties for a given depot, but a branching decision requires
not to cover trips ¢ and u by the same duty. In addition, assume that a combined duty
consisting of pieces of work p; and p, has a negative reduced cost, where pieces of
work p; and p,, contain trips ¢ and u, respectively. This duty is infeasible according to
the branching decision, and it may shadow a feasible duty with negative reduced cost.
Thus we have to ensure that pieces of work (i) containing trip ¢, (ii) not containing
trip ¢, (iii) containing trip u, (iv) not containing trip u are also generated. These terms
are going to be more complicated in nodes with higher depth. In order to resolve
this difficulties we apply a two-step procedure. That is, in the first step we generate
duties as we described before until no more duties with negative reduced cost are
left. If in the last pricing round we do not refuse any duties according to branching
decisions, we can stop (i.e., the node is solved to optimality), since no overshadowed
duties with negative reduced costs are left. Otherwise, in the second step we choose a
duty which was refused in the last pricing round and generate all duties that may be
overshadowed by this duty. More specifically, assume that the refused duty consists of
pieces of work p; and p> where p; refers to an u;—v; path fori = 1, 2, respectively.
We construct a piece of work set S by generating all pieces of work that correspond
to an u;—v; path (i = 1, 2). To generate duties in the second step we use the piece of
work set corresponding to the shortest paths along with the piece of work set S. We
repeat this procedure until no duties with negative reduced cost are left or refused.

5.3.3 Default 0-1 branching

As we mentioned before, when all of our strategies failed to branch, as a last resort
we rely on the default branching strategy of the MIP solver. That is, a fractional duty
variable x,f is chosen, and it is forced to O on the left branch and 1 on the right branch.
In the former case we need to ensure that this forbidden duty will be not regenerated
during the pricing procedure. Thus, for each node we maintain a list of forbidden duties
and once a potential duty occurs in the pricing procedure (see Algorithm 1, line 11)
we check whether it is in the list, and if so, we reject that duty since it is infeasible
according to branching decisions.

5.4 Primal solution search

Any time during the solution method we can perform an obvious primal solution search
approach, that is we solve problem (7)-(12) with the current column set. However,
such a problem can be hard to solve, so it is not worth to apply this method frequently.

6 Computational results

In this section we present our computational results.

@ Springer

Computing strong lower and upper bounds for the integrated. .. 59

Table 2 Properties of duty types

Tripper Early Day Late Split
Min Max Min Max Min Max Min Max Min Max

Start time 8:00 13:15

End time 16:30 18:14 19:30
Piece length 0:30 5:00 0:30 5:00 0:30 5:00 0:30 5:00 0:30 5:00
Break length - - 0:45 0:45 0:45 1:30

Spread time 9:45 9:45 9:45 12:00
Working time 9:00 9:00 9:00 9:00

6.1 Test environment and implementation

All the computational experiments were performed on a workstation with 4GB RAM,
and XEON X5650 CPU of 2.67 GHz, and under Linux operating system. All experi-
ments were run using a single thread only.

Our solution method was implemented in C++ programming language using SCIP
Optimization Suite (version 3.1.1) (Achterberg 2009) as a branch-and-price frame-
work. We also used FICO Xpress Optimization Suite (version 28.01.09) (FICO 2016)
callable library (Xpress) to solve certain phases. To handle graphs and to perform
network algorithms we used the LEMON C++ library (version 1.3.1) (Dezsé et al.
2011).

6.2 Instances and problem parameters

We tried to comply with Steinzen et al. (2010) as much as possible, that is, we used the
same instance set, the same duty parameters and the same costs as in Steinzen et al.
(2010).

We used the randomly generated problem instances of Huisman available in Huis-
man (2003) and described in Huisman et al. (2005). These instances are classified
into two classes according to travel speed (i.e., length of the trips), that is, class
A consists of shorter trips than class B, hence vehicle blocks and duties cover
more trips, thus instances in class A can be considered more difficult. In class
A for each n = 80, 100, 160, 200, 320 there are ten instances (one trip-file and
one deadhead-file) containing n trips and requiring four depots and four or five
stations.

In accordance with Huisman (2004) we used five types of duties with the properties
described in Table 2. A tripper duty consists of one piece of work with length between
30m and 5h, while the combined duties (early, day, late, split) contain exactly two
pieces of work separated by a break. For duties starting (ending) in a depot we assessed
a sign-on (sign-off) time of 10 (of 5) m, and for duties starting (ending) at a station we
assessed a sign-on (sign-off) time of 15m plus the deadhead time between the start
(end) station and the depot. Start and end times in Table 2 correspond to the sign-on
start and sign-off end time of the duty, respectively.

@ Springer

60 M. Horvith, T. Kis

We assigned a fixed cost of 1000 for each vehicle and a cost of 1 for each minute a
vehicle is outside of the depot. We assigned a fixed cost of 1000 for each duty and a
cost of 0.1 for each minute a driver is working.

6.3 Running details

We solved problems with gap limit set to 0.5%, and time limit set to 20 x |7|s, i.e.,
the solution process could be stopped due to three reasons: (i) the best solution was
proven to be optimal, (ii) the gap limit was reached (i.e., the relative gap between the
lower bound and the current best solution was at most 0.5%), (iii) the time limit was
reached (i.e., the execution time exceeded 20 x |7 |s).

As we mentioned in Sect. 5, at the root node we used a two-stage approach for
generating duties. At the end of the first stage we applied our primal heuristic, that
is, we called Xpress with time limit set to 60s to solve the current restricted master
problem. At the end of the second stage we applied this heuristic only if the number
of variables did not exceed 30,000.

6.4 Experiments
6.4.1 Branching rules

In these experiments we aimed to compare the two branching strategies described
in Sect. 5.3.1. In order to make a more extensive experiment we matched all of the
trip-files with all of the deadhead-files for these tests, i.e., we used 10 x 10 = 100
problem instances. In Table 3 we present our results where we indicate the summarized
solution status [these are, the number of instances that solved to optimality (O), the
number of instances where gap limit was reached (G), the number of instances where
solving process was stopped due to time limit (T)]; the best lower (Lower) and upper
bound (Upper) and the corresponding gap (Gap) which is calculated as 100 x (Upper —
Lower) /Lower; the number of vehicles (v) and the number of drivers (d) in the best
solution; and the execution time in seconds (time).

Both for 80-trip and 100-trip instances, the partitioning based branching strategy
gave the best results in terms of execution time, and the quality of solutions as well.
Moreover, more instances were solved within the time limit with that rule. According
to these results, in the following experiments we used the partitioning rule as the
primary branching strategy.

6.4.2 Evaluation of the integrated method

In Tables 4 and 5 we present the evaluation of our integrated method on 80-trip and
100-trip instances, respectively. In these table we indicate the solution status (optimal:
the instance is solved to optimality; gap/time limit: the solving process is stopped due
to the gap/time limit was reached); the lower bound at the root node (Root), and at
the end of the procedure (Global); the value of the best solution (Upper bound); the

@ Springer

61

Computing strong lower and upper bounds for the integrated...

¥'S0C1 9°¢e 1ce ! [TEESTY L1291y [43 194 S Sumnds
9°9¢l1 gee 1ce ! 0¢ TYIrTY 0¥To' 1y Sy 6y 9 Sutuonnreq VOO0l
SLLL 08¢ 981 S'6 0¢ PI8Y'SE Y'69LYE & 6V 8 Sumnds
9°6SL 08¢ ¢8I ¢'6 8’1 80IYSE TTLLYE 44 0S 6 Sutuonnreq V08
p+A P A (%) den 1ddn IOMOT L D 0
g, uonn[os 1sog punog sme)g oy wo[qoid

son1 Suryouelq uo sjuawradxe jo Arewwing ¢ AqeY,

pringer

As

62 M. Horvith, T. Kis

Table 4 Summary of the evaluation of the integrated method on problem set 80A

Problem Status Lower bound Upper bound Gap (%) Time
Root Global

1 Gap limit 31,619.6 31,619.6 31,702.3 0.3 88.6
2 Time limit 27,497.8 27,498.3 29,079.7 5.8 1602.5
3 Optimal 32,750.7 32,750.7 32,750.7 0.0 87.1
4 Time limit 34,162.4 34,169.8 34,9222 22 1600.6
5 Gap limit 32,175.4 32,1754 32,188.6 0.0 112.0
6 Time limit 31,3939 31,407.5 32,879.4 4.7 1602.6
7 Gap limit 36,133.7 36,133.7 36,266.6 0.4 1159
8 Time limit 43,017.6 43,040.9 44,4193 32 1601.1
9 Optimal 34,638.4 34,638.4 34,643.9 0.0 734.0
10 Time limit 42,583.6 42,619.4 45,716.3 7.3 1601.3
Average 34,597.3 34,605.4 35,456.9 2.5 914.6

Table 5 Summary of the evaluation of the integrated method on problem set 100A

Problem Status Lower bound Upper bound Gap (%) Time
Root Global

1 Optimal 49,183.8 49,183.8 49,183.8 0.0 390.8
2 Time limit 41,311.8 41,326.8 43,552.4 54 2002.3
3 Time limit 35,896.6 35,910.3 38,519.5 7.3 2000.8
4 Gap limit 40,217.2 40,217.2 40,255.5 0.1 175.1
5 Optimal 45,424.8 45,424.8 45,4248 0.0 344.5
6 Gap limit 35,543.3 35,543.3 35,543.8 0.0 230.0
7 Time limit 36,242.3 36,257.3 37,2313 2.7 2003.2
8 Gap limit 45,403.5 45,403.5 45,453.4 0.1 237.1
9 Time limit 50,566.0 50,572.6 53,708.4 6.2 2002.7
10 Gap limit 339122 339122 34,001.5 0.3 683.7
Average 41,370.2 41,3752 42,287.4 22 1007.0

corresponding gap (Gap) which is calculated as 100 x (Upper bound—Global) /Global;
and the execution time in seconds (time).

We can see that two out of ten 80-trip instances are solved to optimality, and three
other instances are solved with gap less than 0.5%, moreover, the average gap of the
80-trips instances is 2.5%. For the 100-trip instances we also solved two out of ten
instances to optimality, and four more instances are solved with gap limit, while the
average gap is 2.2%.

We also remark that most of the computation time was spent at the root node for
finding the optimal LP solution which sometimes required the generation of thousands
of columns. In the other tree nodes, finding the optimum solution took much less effort
in general.

@ Springer

Computing strong lower and upper bounds for the integrated. .. 63

Table 6 Comparing sequential and integrated methods

Problem Method v d v+d Cost Time

80A Seq.? 9.2 24.3 335 40,588.0 1.2
Int. (first)® 9.6 18.6 28.2 35,668.5 4.1
Int. (timelimit)? 9.5 18.5 28.0 35,456.9 914.6
Int. (Steinzen et al. 2010)° 9.2 19.1 28.2 235.0

100A Seq. 11.0 28.2 39.2 47,792.7 1.6
Int. (first) 11.4 22.0 334 42,428.5 31.8
Int. (timelimit) 11.4 21.9 33.3 42,2874 1007.0
Int. (Steinzen et al. 2010) 11.0 22.7 33.7 369.0

4 Tested on a workstation with 4 GB RAM, and XEON X5650 CPU of 2.67 GHz, and under Linux operating
system.

b Tested on a Dell OptiPlex GX620 personal computer with an Intel Pentium IV 3.4 GHz processor and
2GB of main memory under Windows XP

6.4.3 Comparison of methods

In Table 6 we summarize our comparison of sequential and integrated methods, while
the detailed results of our experiments can be found in Tables 7 and 8. Method Seq.
refers to the sequential approach we used to obtain in the initial restricted master prob-
lem, while the next two methods refer to our integrated approach. In case of method Int.
(first) we interrupted the solution procedure right after we found a feasible solution
to the problem. In case of method Int. (timelimit) we interrupted our procedure only
when the time limit was reached (or we found a good enough solution). Method Int.
(Steinzen et al. 2010) refers to the integrated approach of Steinzen et al. (2010) which
was tested on a Dell OptiPlex GX620 personal computer with an Intel Pentium IV
3.4 GHz processor under Windows XP. In this table we indicate the number of vehicles
(v), the number of drivers (d), the cost of the best solution (Cost); and the execution
time in seconds (time). Note that in Table 6 in case of method Int. (Steinzen et al. 2010)
we do not indicate the solution costs, and in Tables 7 and 8 we do not indicate the
results of method Int. (Steinzen et al. 2010) since these are not provided in Steinzen
et al. (2010). We contacted the authors, however, they could not provide these detailed
results.

On the one hand, our experiments re-proved that one can obtain better solutions
using the integrated approach instead of the sequential method. On the other hand,
observe that we could improve on the first integer solution if we run the procedure
until a time limit or a gap limit is reached, however, the average improvement over
the first integer feasible solution is 1.1% in the 80-trip case, and 0.3% in the 100-trip
case.

One can see that our integrated method found solutions with fewer vehicles plus
drivers than Steinzen et al. (2010). Both for 80-trip and 100-trip instances, our method
found the first integer solution quickly in 4.1 and 31.8s, respectively, and on aver-
age it was at least as good as the final solution of Steinzen et al. (2010). We also
note that Steinzen et al. (2010) presented computational results for instances with

@ Springer

64 M. Horvith, T. Kis

Table 7 Comparing sequential and integrated methods on problem set 80A

Problem Method \ d v+d Cost Time
1 Seq. 9 21 30 36,525.2 0.4
Int. (first) 9 16 25 31,702.3 1.4
Int. (timelimit) 9 16 25 31,702.3 88.6
2 Seq. 7 19 26 31,747.5 24
Int. (first) 8 15 23 29,079.7 10.7
Int. (timelimit) 8 15 23 29,079.7 1602.5
3 Seq. 9 28 37 43,155.6 0.4
Int. (first) 9 17 26 32,750.7 1.2
Int. (timelimit) 9 17 26 32,750.7 87.1
4 Seq. 9 22 31 38,551.5 0.6
Int. (first) 9 18 27 34,9222 2.7
Int. (timelimit) 9 18 27 34,9222 1600.6
5 Seq. 9 29 38 43,364.7 1.4
Int. (first) 9 17 26 32,188.6 1.6
Int. (timelimit) 9 17 26 32,188.6 112.0
6 Seq. 8 21 29 35,747.4 2.3
Int. (first) 9 17 26 32,879.4 4.9
Int. (timelimit) 9 17 26 32,879.4 1602.6
7 Seq. 10 25 35 41,946.5 0.9
Int. (first) 10 19 29 36,283.1 0.9
Int. (timelimit) 10 19 29 36,266.6 115.9
8 Seq. 11 28 39 48,293.9 0.6
Int. (first) 11 24 35 44,419.3 1.4
Int. (timelimit) 11 24 35 44,419.3 1601.1
9 Seq. 9 22 31 38,355.7 1.8
Int. (first) 10 19 29 36,742.9 13.6
Int. (timelimit) 9 18 27 34,643.9 734.0
10 Seq. 11 28 39 48,191.6 1.0
Int. (first) 12 24 36 45,716.3 2.7
Int. (timelimit) 12 24 36 45,716.3 1601.3
average Seq. 9.2 24.3 335 40,588.0 1.2
Int. (first) 9.6 18.6 28.2 35,668.5 4.1
Int. (timelimit) 9.5 18.5 28.0 35,456.9 914.6

n = 160, 200, 320, 400, 640, as well, however, solving instances with 160 trips took
already about 1600s on average, while 640-trip instances required about 16h. We
also made experiments on the 160-trip instances, however, we were not able to solve
any of these instances neither to optimality, nor with gap limit, in fact, the column
generation procedure at the root node required more than 3 hours on average. Our
best solutions yielded 11.5% gap on average, and the average number of vehicles and

@ Springer

Computing strong lower and upper bounds for the integrated. .. 65
Table 8 Comparing sequential and integrated methods on problem set 100A
Problem Method v d v+d Cost Time
1 Seq. 13 30 43 53,098.0 1.2
Int. (first) 13 27 40 50,243.2 62.1
Int. (timelimit) 13 26 39 49,183.8 390.8
2 Seq. 11 29 40 48,977.1 0.9
Int. (first) 12 22 34 43,5524 61.5
Int. (timelimit) 12 22 34 43,5524 2002.3
3 Seq. 9 25 34 41,973.9 0.8
Int. (first) 11 19 30 38,519.5 62.2
Int. (timelimit) 11 19 30 38,519.5 2000.8
4 Seq. 11 28 39 47,042.1 1.1
Int. (first) 11 21 32 40,255.5 43
Int. (timelimit) 11 21 32 40,255.5 175.1
5 Seq. 12 29 41 50,366.5 1.1
Int. (first) 12 24 36 45,630.5 4.1
Int. (timelimit) 12 24 36 45,424.8 344.5
6 Seq. 10 23 33 40,405.2 1.3
Int. (first) 10 18 28 35,579.0 2.4
Int. (timelimit) 10 18 28 35,543.8 230.0
7 Seq. 10 23 33 40,954.1 32
Int. (first) 10 19 29 37,231.3 65.5
Int. (timelimit) 10 19 29 37,231.3 2003.2
8 Seq. 12 29 41 50,224.6 1.1
Int. (first) 12 24 36 45,563.4 35
Int. (timelimit) 12 24 36 45,4534 237.1
9 Seq. 13 34 47 57,771.2 2.8
Int. (first) 14 28 42 53,708.4 45.4
Int. (timelimit) 14 28 42 53,708.4 2002.7
10 Seq. 9 32 41 47,113.8 2.6
Int. (first) 9 18 27 34,001.5 7.1
Int. (timelimit) 9 18 27 34,001.5 683.7
average Seq. 11.0 28.2 39.2 47,792.7 1.6
Int. (first) 114 22.0 334 42,428.5 31.8
Int. (timelimit) 114 21.9 333 42,2874 1007.0

drivers used in these solutions (v + d = 50.5) is worse than that of Steinzen et al.
(2010) (v + d = 46.6).

7 Conclusions

In this paper we have devised an exact method for solving the integrated multiple-depot
vehicle and crew scheduling problem optimally. Our computational results show that

@ Springer

66 M. Horvith, T. Kis

with limited computational resources (computation time + single CPU thread), nearly
optimal schedules can be found for problems with 80-100 trips and 4 depots. In
order to increase the problem size, one possible direction is to exploit multiple CPU
cores/threads, but for that, one needs a parallel branch-and-price solver. Currently, the
parallel branch-and-price implementation of SCIP is at the conceptual stage. Another
option would be to get lower bounds faster, for which further acceleration strategies
are needed.

Acknowledgements This work has been supported by the OTKA Grant K112881, and by the GINOP-
2.3.2-15-2016-00002 Grant of the Ministry of National Economy of Hungary. The authors are grateful to
the developers of the SCIP Optimization Suite for their support.

References

Achterberg T (2009) SCIP: solving constraint integer programs. Math Program Comput 1(1):1-41. http://
mpc.zib.de/index.php/MPC/article/view/4

Ball M, Bodin L, Dial R (1983) A matching based heuristic for scheduling mass transit crews and vehicles.
Transp Sci 17(1):4-31

Balogh J, Békési J (2014) Driver scheduling for vehicle schedules using a set covering approach: a case
study. In: Proceedings of the 10th international conference on applied informatics (accepted)

Békési J, Brodnik A, Krész M, Pash D (2009) An integrated framework for bus logistics management: case
studies. In: VoB S, Pahl J, Schwarze S (eds) Logistik management. Physica-Verlag HD, Heidelberg,
pp 389411

Bertossi AA, Carraresi P, Gallo G (1987) On some matching problems arising in vehicle scheduling models.
Networks 17(3):271-281

Bodin L, Golden B, Assad A (1983) Routing and scheduling of vehicles and crews: the state of the art.
Comput Oper Res 10(2):63-211

Borndorfer R, Lobel A, Weider S (2008) A bundle method for integrated multi-depot vehicle and duty
scheduling in public transit. In: Hickman M, Mirchandani P, Vo S (eds) Computer-aided systems in
public transport, Lecture Notes in Economics and Mathematical Systems, vol 600. Springer, Berlin,
Heidelberg, pp 3-24

Bunte S, Kliewer N (2009) An overview on vehicle scheduling models. Public Transp 1(4):299-317

Darby-Dowman K, Jachnik J, Lewis R, Mitra G (1988) Integrated decision support systems for urban
transport scheduling: discussion of implementation and experience. In: Daduna JR, Wren A (eds)
Computer-aided transit scheduling. Springer, Berlin, pp 226-239

Dezs6 B, Jiittner A, Kovacs P (2011) LEMON—an open source C++ graph template library. Electron Notes
Theor Comput Sci 264(5):23—45

Falkner J, Ryan D (1992) Express: set partitioning for bus crew scheduling in christchurch. In: Desrochers
M, Rousseau J-M (eds) Computer-aided transit scheduling. Springer, Berlin, pp. 359-378

FICO (2016) FICO® Xpress Optimization Suite. http://www.fico.com/en/products/fico-xpress-
optimization-suite/. Accessed 28 Jul 2016

Fischetti M, Martello S, Toth P (1987) The fixed job schedule problem with spread-time constraints. Oper
Res 35(6):849-858

Fischetti M, Martello S, Toth P (1989) The fixed job schedule problem with working-time constraints. Oper
Res 37(3):395-403

Freling R, Boender CGE, Paixdao JMP (1995a) An integrated approach to vehicle and crew scheduling.
Technical report 9503/A, Econometric Institute, Erasmus University Rotterdam, Rotterdam

Freling R, Paixdo JMP, Wagelmans AP (1995b) Models and algorithms for vehicle scheduling. Econometric
Institute, Erasmus University Rotterdam, Rotterdam

Freling R, Wagelmans AP, Paixdao JMP (2001) Models and algorithms for single-depot vehicle scheduling.
Transp Scie 35(2):165-180

Freling R, Huisman D, Wagelmans AP (2003) Models and algorithms for integration of vehicle and crew
scheduling. J Sched 6(1):63-85

@ Springer

http://mpc.zib.de/index.php/MPC/article/view/4
http://mpc.zib.de/index.php/MPC/article/view/4
http://www.fico.com/en/products/fico-xpress-optimization-suite/
http://www.fico.com/en/products/fico-xpress-optimization-suite/

Computing strong lower and upper bounds for the integrated. .. 67

Friberg C, Haase K (1999) An exact branch and cut algorithm for the vehicle and crew scheduling problem.
In: Wilson NHM (ed) Computer-aided transit scheduling. Springer, Berlin, pp 63—-80

Gaffi A, Nonato M (1999) An integrated approach to ex-urban crew and vehicle scheduling. In: Wilson
NHM (ed) Computer-aided transit scheduling. Springer, Berlin, pp 103-128

Gintner V, Kliewer N, Suhl L (2008) A crew scheduling approach for public transit enhanced with aspects
from vehicle scheduling. In: Hickman M, Mirchandani P, Vo S (eds) Computer-aided systems in
public transport. Springer, Berlin, pp 25-42

Haase K, Desaulniers G, Desrosiers J (2001) Simultaneous vehicle and crew scheduling in urban mass
transit systems. Transp Sci 35(3):286-303

Huisman D (2003) Random data instances for multiple-depot vehicle and crew scheduling. http://people.
few.eur.nl/huisman/instances.htm

Huisman D (2004) Integrated and dynamic vehicle and crew scheduling. PhD thesis, Erasmus School of
Economics (ESE)

Huisman D, Freling R, Wagelmans AP (2005) Multiple-depot integrated vehicle and crew scheduling.
Transp Sci 39(4):491-502

Kliewer N, Mellouli T, Suhl L (2006) A time-space network based exact optimization model for multi-depot
bus scheduling. Eur J Oper Res 175(3):1616-1627

Laurent B, Hao J-K (2008) Simultaneous vehicle and crew scheduling for extra urban transports. In: Nguyen
NH, Borzemski L, Grzech A, Ali M (eds) New frontiers in applied artificial intelligence. Springer,
Berlin, pp 466475

Mesquita M, Paias A (2008) Set partitioning/covering-based approaches for the integrated vehicle and crew
scheduling problem. Comput Oper Res 35(5):1562-1575

Mesquita M, Paias A, Respicio A (2009) Branching approaches for integrated vehicle and crew scheduling.
Public Transp 1(1):21-37

Patrikalakis I, Xerocostas D (1992) A new decomposition scheme of the urban public transport scheduling
problem. In: Desrochers M, Rousseau J-M (eds) Computer-aided transit scheduling. Springer, Berlin,
pp 407-425

Pepin A-S, Desaulniers G, Hertz A, Huisman D (2006) Comparison of heuristic approaches for the multiple
depot vehicle scheduling problem. Technical report, econometric institute research papers

Ryan DM, Foster BA (1981) An integer programming approach to scheduling. In: Computer scheduling of
public transport urban passenger vehicle and crew scheduling. pp 269-280

Scott D (1985) A large scale linear programming approach to the public transport scheduling and costing
problem. Computer scheduling of public transport, vol 2. Elsevier, Amsterdam, pp 473-491

Steinzen I (2007) Topics in integrated vehicle and crew scheduling in public transit. PhD thesis, University
of Paderborn

Steinzen I, Gintner V, Suhl L, Kliewer N (2010) A time-space network approach for the integrated vehicle-
and crew-scheduling problem with multiple depots. Transp Sci 44(3):367-382

Tosini E, Vercellis C (1988) An interactive system for extra-urban vehicle and crew scheduling problems.
In: Daduna JR, Wren A (eds) Computer-aided transit scheduling. Springer, Berlin, pp 41-53

@ Springer

http://people.few.eur.nl/huisman/instances.htm
http://people.few.eur.nl/huisman/instances.htm

	Computing strong lower and upper bounds for the integrated multiple-depot vehicle and crew scheduling problem with branch-and-price
	Abstract
	1 Introduction
	2 Problem definition
	2.1 Assumptions

	3 Literature review
	3.1 Sequential vehicle and crew scheduling
	3.2 Partial integration
	3.3 Complete integration
	3.3.1 Single-depot case
	3.3.2 Multiple-depot case

	4 Problem formulation
	4.1 Time-space network structure
	4.2 Mathematical formulation
	4.2.1 The problem formulation of steinzen2010time
	4.2.2 Our problem formulation

	5 Solution approach
	5.1 Initial restricted master problem
	5.2 Pricing variables
	5.2.1 Generation of pieces of work
	5.2.2 Generation of duties
	5.2.3 Farkas pricing

	5.3 Branching strategies
	5.3.1 Assign trips to depots
	5.3.2 SPP-based branching
	5.3.3 Default 0–1 branching

	5.4 Primal solution search

	6 Computational results
	6.1 Test environment and implementation
	6.2 Instances and problem parameters
	6.3 Running details
	6.4 Experiments
	6.4.1 Branching rules
	6.4.2 Evaluation of the integrated method
	6.4.3 Comparison of methods

	7 Conclusions
	Acknowledgements
	References

