
CEJOR (2019) 27:15–38
https://doi.org/10.1007/s10100-017-0488-5

ORIGINAL PAPER

Improved bounded dynamic programming algorithm
for solving the blocking flow shop problem

Ansis Ozolins1

Published online: 14 September 2017
© Springer-Verlag GmbH Germany 2017

Abstract In this paper, the blocking flow shop problem is considered. An exact algo-
rithm for solving the blockingflowshopproblem is developed bymeans of the bounded
dynamic programming approach. The proposed algorithm is tested on several well-
known benchmark instances. Computational results show that the presented algorithm
outperforms all the state-of-the-art exact algorithms known to the author. Additionally,
the optimality is proven for 26 previously open instances. Furthermore, we provide
new lower bounds for several benchmark problem sets of Taillard requiring a relatively
short CPU time.

Keywords Scheduling · Blocking flow shop · Bounded dynamic programming ·
Exact method

1 Introduction

The permutation flow shop problem is a special case of the flow shop problem where
n jobs have to be processed on m machines. The objective is to minimize the time
at which all jobs are completed. If there does not exist any storage space between
machines, then the problem is called the blocking flow shop problem denoted by
Fm|block|Cmax. This problem will be considered in the present paper. For the two
machine case, Reddi and Ramamoorthy (1972) presented a polynomial algorithm
which gives an exact solution. However, for m > 2, the Fm|block|Cmax| problem is
strongly NP-hard as it is shown by Hall and Sriskandarajah (1996) using a result from
Papadimitriou and Kanellakis (1980).

B Ansis Ozolins
ansis.ozolins1989@gmail.com

1 University of Latvia, Zellu Street 25, Riga LV-1002, Latvia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10100-017-0488-5&domain=pdf
http://orcid.org/0000-0002-6550-5291

16 A. Ozolins

The majority of research is focussed on developing the heuristics. We will high-
light only the most important papers. Grabowski and Pempera (2007) developed a
tabu search method for the Fm|block|Cmax problem. However, there were not done
further investigations of the tabu search approach. Wang et al. (2010) proposed a
novel hybrid discrete differential evolution algorithm. Ribas et al. (2011) presented
an iterated greedy (IG) algorithm. Lin and Ying (2013) developed a revised artificial
immune system algorithm (AIS) that is a stochastic computational technique. This
technique combines the features of the artificial immune system with the annealing
process of simulated annealing algorithms. Pan et al. (2013) developed a memetic
algorithm. By means of this algorithm, 75 out of 120 best-known solutions for Tail-
lard benchmark instances were improved. Zhang et al. (2015) proposed an algorithm
that combines the variable neighborhood and simulated annealing approach. Tasge-
tiren et al. (2015) developed an extremely effective populated local search algorithm.
The idea is to learn some unknown parameters through a differential evolution based
on the work of Tasgetiren et al. (2013). Ultimately, 90 out of 120 best-known solutions
for Taillard benchmark instances were improved showing the effectiveness of the pro-
posed algorithm. Recently, Tasgetiren et al. (2017) presented highly efficient iterated
greedy algorithms. Also, speed-up methods are used to obtain a better performance of
the algorithms. Computational results show that the iterated greedy algorithms pro-
posed by Tasgetiren et al. (2017) outperform all the state-of-the-art heuristics currently
reported in the literature.

Several articles stress the necessary of developing exact procedures for the
Fm|block|Cmax problem, e.g. Lin and Ying (2013). However, only a few exact meth-
ods have been given for the Fm|block|Cmax problem.The simplestway is to enumerate
all permutations. However, thismethod is not practical even for problems of small size.
Ronconi (2005) proposed an exact branch and bound (B&B) algorithm. This algorithm
provides lower and upper bounds for several sets of benchmark instances. Companys
and Mateo (2007) proposed the LOMPEN algorithm. This algorithm is based on the
double branch and bound method. The idea is to apply simultaneously B&B algo-
rithms to direct and reverse instances and then to create links and data exchanges
between both processes. Companys and Ribas (2011) proved the optimality for only
one Taillard 20×10 type benchmark instance using the LOMPEN algorithm. Bautista
et al. (2012) proposed the bounded dynamic programming (BDP) algorithm. This
method combines features of dynamic programming with features of B&B. The BDP
algorithm is proposed as a heuristic. However, this algorithm can easily be interpreted
as the exact algorithm.

The dynamic programming approach has also been developed for the job shop
scheduling problem. This problem is another variant of the shop scheduling. Gromicho
et al. (2012) [a corrigendum on this paper by van Hoorn et al. (2016)] proposed the
DP algorithm with a complexity proven to be exponentially lower than exhaustive
enumeration. Recently, van Hoorn (2016) provided the BDP algorithm that extends
the previous version of the DP algorithm for the job shop.

The objective of the present paper is to develop the exact procedure to solve the
Fm|block|Cmax problem. Main contributions of this paper can be summarized as
follows. We improve the BDP approach. Computational results confirm that our ver-
sion of the BDP algorithm significantly outperforms the base version proposed by

123

Improved bounded dynamic programming algorithm... 17

Table 1 Basic notations

J = {1, . . . , n} Set of jobs

M = {1, . . . ,m} Set of machines

i, j ∈ J Job indices

k ∈ M Machine index

pi,k Processing time associated with machine k and job i

Cmax Maximum completion time

t = |S| Cardinality of set S, i.e. number of scheduled jobs

S = J \ S Set of unscheduled jobs

n = n − t Number of unscheduled jobs

�(S) Set of all job permutations associated with S

π ∈ �(S) Job permutation associated with S ⊂ J
ek (π) Departure time of the last scheduled job on machine k

rk (π) The earliest possible starting time of unscheduled job in
machine k

�i (k1, k2) Time lag between machines k1 and k2 associated with job i

π1 ≺ π2 π1 ∈ �(S) dominates π2 ∈ �(S)

π1 ≡ π2 π1 ∈ �(S) is equivalent to π2 ∈ �(S)

π ⊕ i Expansion of π ∈ �(S) adding job i

Z(S) ⊂ �(S) Specific set of job permutations associated with S

|Z |t Number of job permutations stored at t

|Z | Total number of job permutations

|Zmax| Maximum number of job permutations stored at one stage

LB(π) Lower bound of optimal makespan of π

Bautista et al. (2012). Furthermore, computational results show that our version of the
BDP algorithm outperforms all the afore mentioned state-of-the-art exact algorithms.
Finally, we show that the presented BDP algorithm can be successfully applied for
lower bound calculations.

This paper is organized as follows. Section 2 presents a problem description and
basic notations. In Sect. 3, we describe lower bounds that are used in the present
work. Section 4 proposes our version of BDP. Computational results are given in
Sect. 5. Finally, concluding remarks and some possible directions for future research
are described in Sect. 6.

2 Basic notations

The basic notations used in this paper are summarized in Table 1.
In the permutation flow shop problem, n jobs have to be processed in m machines

in the same order, from machine 1 to machine m. However, this order is not known.
The processing time associated with a specific machine k ∈ M = {1, . . . ,m} and
a specific job i ∈ J = {1, . . . , n} is denoted by pi,k . These times are non-negative.

123

18 A. Ozolins

The objective is to find a permutation π of n jobs such that the maximum completion
time (the time when all jobs are completed) is minimal. However, if there does not
exist any storage capacity amongst machines, a job cannot leave the machine while
the next machine is not free. In this case, the permutation flow shop problem becomes
the blocking flow shop problem which is denoted by Fm|block|Cmax.

Let S be a set of scheduled jobs and let π ∈ �(S) be the job permutation associated
with S. Here �(S) stands for the set of all job permutations associated with S. Let

e(π) = (e1(π), . . . , em(π))

be the vector consisting of departure times ek(π) on machine k ∈ M and let

r(π) = (r1(π), . . . , rm(π))

be the vector consisting of the heads rk(π) for each machine k. These heads can be
interpreted as lower bounds for the starting time of any job in machine k. By defining
the head rk(π) we take into account that no job can be processed simultaneously
by two or more machines. Define time lags �i (k1, k2) between machines k1 and k2
(k1 < k2) for each job i in the following way:

�i (k1, k2) =
k2−1∑

k=k1

pi,k .

The head rk(π) is defined as

rk(π) = min
i∈S

ri,k(π), (1)

where S = J \ S and

ri,k(π) = max{ek(π), ri,1(π) + �i (1, k), . . . , ri,k−1(π) + �i (k − 1, k)}. (2)

From 2 it follows that ek(π) ≤ rk(π) for all k ∈ M, S ⊂ J , and π ∈ �(S).
We study an example in order to explain the concepts of heads. In this example we

have five jobs and five machines. The sequence π = (4, 5) is depicted in Fig. 1. Thus,
S = {1, 2, 3}. Processing times of remaining jobs are given in Table 2.

Figure 1 shows that

ek(π) < rk(π)

for k ∈ {2, 3, 4}. The heads ri,k for i ∈ {1, 2, 3} and k ∈ M are given in Table 2.
These heads are calculated using (2). Values in bold correspond to those r j,k that are
minimal among all ri,k with i ∈ S.

We define dominance ‘≺’ and equivalence ‘≡’ relations between job permutations
π1, π2 ∈ �(S) in the following way:

123

Improved bounded dynamic programming algorithm... 19

Fig. 1 Example of the departure times and heads

Table 2 Processing, departure
times, and heads of an example
with π = (4, 5)

k 1 2 3 4 5

p1,k 6 10 6 1 2

p2,k 9 5 2 1 6

p3,k 7 9 7 4 1

ek (π) 7 9 16 19 25

r1,k (π) 7 13 23 29 30

r2,k (π) 7 16 21 23 25

r3,k (π) 7 14 23 30 34

rk (π) 7 13 21 23 25

π1 ≡ π2 ⇐⇒ rk(π
1) = rk(π

2) for all k ∈ M;
π1 ≺ π2 ⇐⇒ π1
≡ π2 and rk(π

1) ≤ rk(π
2) for all k ∈ M. (3)

In (3), Bautista et al. (2012) used e(π) instead of r(π) to define the dominance and
equivalence. However, our version of the DP can also discard additional job permuta-
tions. It is shown by the following theorem aswell as by the counterexample illustrated
in Fig. 2:

Theorem 1 Let S ⊂ J , S
= J , and let π1, π2 ∈ �(S). If ek(π1) ≤ ek(π2) for all
k ∈ M, then π1 ≺ π2 or π1 ≡ π2.

Proof We will prove that

ri,k(π
1) ≤ ri,k(π

2) (4)

for all i ∈ S and k ∈ M. Then the statement
[
rk(π

1) ≤ rk(π
2) for all k ∈ M

]
�⇒

[
π1 ≺ π2 or π1 ≡ π2

]
.

follows from (1)

123

20 A. Ozolins

Fig. 2 On the left side π1 = (1, 2). On the right side π2 = (2, 1)

Table 3 Processing, departure
times, and heads of an example
with π1 = (1, 2) and
π2 = (2, 1)

k 1 2 3

p1,k 3 2 3

p2,k 2 3 1

p3,k 10 1 1

ek (π
1) 5 8 9

ek (π
2) 5 7 10

rk (π
1) 5 15 16

rk (π
2) 5 15 16

Fix i ∈ S and set k = 1. Then ri,k(π1) = e(π1) and ri,k(π2) = e(π2) from which
it follows that (4) holds for k = 1.

Assume that (4) holds for all k ∈ {1, . . . , h} where h ∈ {1, . . . ,m − 1}. Then we
prove that (4) holds also for k = h + 1. Using the assumptions formulated in the
theorem we have

ek(π
1) ≤ ek(π

2),

ri,1(π
1) ≤ ri,1(π

2) ⇒ ri,1(π
1) + �i (1, k) ≤ ri,1(π

2) + �i (1, k),

. . .

ri,k−1(π
1) ≤ ri,k−1(π

2) ⇒ ri,k−1(π
1) + �i (k − 1, k) ≤ ri,k−1(π

2) + �i (k − 1, k)

from which it follows that (4) holds. Since i is fixed, then by recursion it can be
obtained that (4) is true for all i ∈ S and k ∈ M. �

Now a simple example will be given. This example shows that π1 ≡ π2, whereas
the statement

ek(π
1) ≤ ek(π

2), k ∈ M

is not true.
Processing times are given inTable 3. Select S = {1, 2}, π1 = (1, 2), π2 = (2, 1).

Then from Table 3 it can be seen that π1 ≡ π2. On the other hand,

123

Improved bounded dynamic programming algorithm... 21

e2(π
1) > e2(π

2),

e3(π
1) < e3(π

2).

3 Lower bounds for bounded dynamic programming algorithm

The performance of the BDP algorithm is strongly dependent on the quality of lower
bounds. In this section, we will briefly describe lower bounds used in the current work.
These LB are based on the optimal makespan of one or two machines.

Let S ⊂ J (S
= J) and π ∈ �(S) be given. The lower bound LB(0) was used by
Bautista et al. (2012). Here,

LB(0)
k (π) = ek(π) +

∑

i∈S
pi,k + min

i∈S
qi,k, (5)

where the tails qi,k are obtained as follows:

qi,k =
m∑

k1=k+1

pi,k1 .

The first lower bound used in the current work is a slight modification of LB(0)
k where

ek(π) in (5) is replaced by rk(π), i.e.

LB(1)
k (π) = rk(π) +

∑

i∈S
pi,k + min

i∈S
qi,k .

Hence, a valid lower bound for π is

LB(h)(π) = max
1≤k≤m

LB(h)
k (π), h ∈ {0, 1}. (6)

The lower bound LB(0) will be used only for an illustrative example. The lower bound
LB(1)(π) can be computed in O(m · n) time.

The second lower bound used in the present work is based on twomachines. Denote
by Ck1,k2(π) the optimal makespan of the two machine scheduling problem with time
lags F2|�i (k1, k2)|Cmax. This makespan is computed for the machine pair (k1, k2)
where k1 < k2. Lenstra et al. (1977) showed that Ck1,k2 can be obtained by applying
Johnson rule to F2||Cmax with processing times (�i (k1, k2), pi,k2 +�i (k1, k2)− pi,k1).
In this case the artificial job 0 is added with the following characteristics:

p0,k1 = 0,

p0,k2 = rk2(π) − rk1(π), (7)

�0(k1, k2) = �1.

123

22 A. Ozolins

Then
LB(2)

k1,k2
(π) = rk1(π) + Ck1,k2(π) + min

i∈S
qi,k2 , (8)

where 1 ≤ k1 < k2 ≤ m. The resulting lower bound is

LB(2)(π) = min
1≤k1<k2≤m

LB(2)
k1,k2

(π). (9)

Computing LB(2)
k1,k2

(π) in (8) requires the complexity O(n log n). However, the com-
plexity can be reduced by pre-calculating the order of tails at the beginning of the
algorithm. Therefore, applying Johnson rule to F2||Cmax will require only O(n).
Thus, the computation of LB(2) in (9) leads to the complexity O(m2 · n)

Consider now the machine pair (k, k + 1) where 1 ≤ k < m. Gilmore and Gomory
(1964) algorithm can be applied for the F2|block|Cmax case since this problem can
be reduced to the travelling salesman problem (TSP) with n + 1 nodes. In this case
the following parameters for the artificial job 0 are used:

p0,k = 0, (10)

p0,k+1 = min

{
rk+1(π) − rk(π),min

i∈S
pi,k+1

}
. (11)

Thus,

LB(3)
k (π) = rk(π) + Ck(π) + min

i∈S
qi,k+1, 1 ≤ k < m, (12)

where Ck(π) is obtained using the Gilmore and Gomory algorithm to the F2|block|
Cmax including the artificial job 0. Finally,

LB(3)(π) = min
1≤k<m

LB(3)
k (π). (13)

TheGilmore andGomory algorithm requires sorting n jobs that cannot be initialized
at the beginning of the algorithm. Therefore, the complexity is O(n · log n) in order
to calculate LB(3)

k (π) (see (12)). Finally, looping through all machines requires the
overall complexity O(m · n log n)) to calculate the lower bound LB(3)(π) in (13).

Consider now the example that illustrates the calculation of lower bounds. Bench-
mark instance car1 with processing times depicted in Table 4 is chosen and the job
permutation π = (8, 5, 4, 2, 3, 6) is taken. Table 5 shows that LB(1)

5 (π) > LB(0)
5 (π)

since r5(π) is greater than e5(π). This leads to the greater overall lower bound
LB(1)(π) > LB(0)(π). Further, LB(2)

k1,k2
(π) > LB(1)(π) for several machine pairs

(k1, k2) as can be seen in Tables 5 and 6. Therefore, the second lower bound

LB(2)(π) = LB(2)
4,5(π) = 7395 > LB(1)(π).

123

Improved bounded dynamic programming algorithm... 23

Table 4 Processing times for benchmark instance car1

Machines Jobs

1 2 3 4 5 6 7 8 9 10 11

1 375 632 12 460 528 796 532 14 257 896 532

2 12 452 876 542 101 245 230 124 527 896 302

3 142 758 124 523 789 632 543 214 753 214 501

4 245 278 534 120 124 375 896 543 210 258 765

5 412 398 765 499 999 123 452 785 463 259 988

Table 5 Parameters of the job
sequence π = (8, 5, 4, 2, 3, 6)

k 1 2 3 4 5

ek (π) 2962 3207 3839 4477 4600

rk (π) 2962 3219 3839 4477 4722
∑

i∈S pi,k 2592 1967 2153 2374 2574

mini∈S qi,k 811 731 517 259 0

LB(0)
k (π) 6365 5905 6509 7110 7174

LB(1)
k (π) 6365 5917 6509 7110 7296

Ck,k+1(π) 2604 2773 3012 2918

LB(2)
k,k+1(π) 6297 6509 7110 7395

Ck (π) 2968 2552 2827 3121

LB(3)
k (π) 6661 6288 6925 7598Bold values indicate the

maximum value in a row

Table 6 Parameters of the job
sequence π = (8, 5, 4, 2, 3, 6)

(k1, k2) (1, 3) (1, 4) (1, 5) (2, 4) (2, 5) (3, 5)

Ck1,k2 (π) 3438 3889 4431 3632 4077 3525

LB(2)
k1,k2

(π) 6917 7110 7393 7110 7296 7364Bold value indicates the
maximum value in a row

Fig. 3 Calculation of the lower bound LB(2)
4,5(π)

123

24 A. Ozolins

Fig. 4 Calculation of the lower bound LB(3)
4 (π)

Table 7 Lower bounds of the
given example

h 0 1 2 3

LB(h)(π) 7174 7296 7395 7598

Finally, the third lower bound

LB(3)(π) = LB(3)
4 (π) = 7598

is greater than LB(2)(π) because the Gilmore andGomory TSP algorithm for machine
k = 4 gives a better makespan than the Johnson algorithm, which ignores the blocking
constraint.

Figures 3 and 4 illustrate how the lower bounds LB(2)(π) and LB(3)(π) are
obtained. In Fig. 3 it is shown that job j = 9 on machine k = 5 is delayed (i.e.
starts later than the completion time of job on machine 4) because of the inequality
r5(π) − r4(π) > p9,4. This case demonstrates the usefulness of artificial job 0 with
parameters defined in (7). TheGilmore andGomory algorithmgives different job order
than that of the Johnson algorithm because the latter ignores the blocking constraint.
In addition, the use of artificial job 0 with parameters defined in (10) strengthens the
lower bound LB(3)(π), see Fig. 4 for the explanation. Summary of the lower bounds
is given in Table 7. This example shows that the values of all four lower bounds may
differ.

4 Bounded dynamic programming algorithm

Let �(S) be a set consisting of all job permutations associated with S and let Z(S) be
a subset of �(S). We formulate the following generalized Bellman equation for the
Fm|block|Cmax problem:

123

Improved bounded dynamic programming algorithm... 25

Z({i}) = {(i)}, i ∈ J ; (14)

Z(S) = Min

⎧
⎨

⎩
⋃

π∈Z(S\{i}) : i∈S
π ⊕ i

⎫
⎬

⎭ , S ⊂ J : 1 < |S| < n; (15)

Z(J) = arg min
π∈Z(J \{i} : i∈J)

em(π ⊕ i). (16)

Here, Min A ⊂ A stands for the set of all minimal elements according to ‘≺’ and ‘≡’.
It means that for all π ∈ Min A there does not exist another element that dominates π

or is equivalent to π . The solution of the blocking flow shop problem is Z(J). Note
that for the solution Z(J) of system (14)–(16) the property |Z(J)| = 1 holds. Thus,
em(π) (π ∈ Z(J)) is the optimal makespan of the given Fm|block|Cmax problem.
The state space of the dynamic programming algorithm can be reduced by discarding
those job permutations π for which LB(π) ≥ UB. In addition, if |Z |t > H (i.e. the
number of the job permutations with a size t is greater than a fixed window width H),
then a sub-problem can be solved. Let Z1(S) be another subset of �(S). Then the
following Bellman equation is formulated for Z1:

Z1(S) =
{
Z(S), S ∈ T

∅, otherwise
, S ⊂ J : |S| = t0; (17)

Z1(S) = Min

⎧
⎨

⎩
⋃

π∈Z1(S\{i}) : i∈S
π ⊕ i

⎫
⎬

⎭ , S ⊂ J : t0 < |S| < n; (18)

Z1(J) = arg min
π∈Z1(J \{i} : i∈J)

em(π ⊕ i), (19)

where t0 = t−1 and T ⊂ {S ⊂ J : |S| = t0}. Note that if t0 = 1 and T = {{i}|i ∈ J },
then the Bellman equation (14)–(16) is equivalent to the Bellman equation (17)–(19)
for a sub-problem.

Algorithm 2 presents the dynamic programming algorithm based on the Bellman
equation. This algorithm creates Z(J). If it is necessary, then T is also created.

Nowwe briefly describe Algorithm 2, which solves the Fm|block|Cmax problem to
optimality. Initially, n job permutations, which consist of a single job, are constructed.
Then a loop through stages t = 1 to n − 2 has been done (line 1.2). For each stage
t , we loop through all subsets S of size t (line 1.3) and for each chosen subset S,
we loop through all job permutations π ∈ Z(S) (line 1.4). These job permutations
are expanded with job i , which is not scheduled. If there does not exist another job
permutation that dominates π ⊕ i or is equivalent to π ⊕ i , then the lower bound of
π ⊕ i is estimated. Finally, if

max
{
LB(1)(π ⊕ i), LB(2)(π ⊕ i), LB(3)(π) ⊕ i

}
< UB,

thenπ⊕i is included in Z(S∪{i}). In addition, all job permutations that are dominated
by π ⊕ i are removed from Z(S ∪ {i}).

123

26 A. Ozolins

Algorithm 1: Pseudocode of the procedure BDP.
1.1 Procedure BDP(t0,UB, Z)

1.2 for t = t0 to n − 2 do
1.3 forall the S ⊂ J : |S| = t do
1.4 forall the π ∈ Z(S) do
1.5 Z(S) = Z(S) \ {π}
1.6 forall the i ∈ S do
1.7 if π1 ⊀ π ⊕ i and π ⊕ i
≡ π1 for all π1 ∈ Z(S ∪ {i}) then
1.8 if LB(π ⊕ i) < UB then
1.9 D = {π2 ∈ Z(S ∪ {i})|π ⊕ i ≺ π2}

1.10 Z(S ∪ {i}) = Z(S ∪ {i}) ∪ {π ⊕ i} \ D

1.11 if termination criterion is met then
1.12 Z1 = Z
1.13 t1 = t
1.14 BDP(t1,UB, Z1)
1.15 Z(S) = ∅ for all S ⊂ J with |S| = t

1.16 if ∃i ∈ J : Z(J \ {i})
= ∅ then
1.17 Z(J) is created from (16)
1.18 Select π ∈ Z(J)

1.19 UB = em (π)

Algorithm 2: The BDP algorithm that solves the Fm|block|Cmax problem to
optimality.
2.1 Step 1: initialization
2.2 t0 = 1
2.3 UB = UB0
2.4 Z({i}) = {(i)}, i ∈ J
2.5 Z(S) = ∅, where S ⊂ J and |S| > 1
2.6 Step 2: BDP(t0,UB, Z) - the main part of the BDP algorithm.
2.7 Step 3: Opt = UB - the optimal makespan is obtained.

If the size of Z(S ∪ {i}) becomes too large, then the memory can be exceeded. A
typical termination criterion can be |Z |t+1 > H , i.e. the number of job permutations
that are stored in new stage t + 1 becomes greater than a fixed constant. In general,
H depends on m, n, and the computer system requirements. The procedure BDP is
recursively executed (line 1.14) and we go to the next stage by setting t = t + 1 since
there does not exist S ⊂ J with |S| = t . When the for loop is ended (line 1.2), the
optimal makespan Opt = em(π) (π ∈ Z(J)) is found. However, if Z(J) is empty,
then the optimal makespan is equal to UB. Generally speaking, UB0 can be replaced
by the general bound B0. If the final UB is not less than B0, then the BDP algorithm
will prove that B0 is the lower bound of the given blocking flow shop instance.

The major changes of the BDP against the algorithm given by Bautista et al. (2012)
are summarized below.

1. The given algorithm is proposed as an exact algorithm instead of heuristics.

123

Improved bounded dynamic programming algorithm... 27

Table 8 Processing times for
benchmark instance car7

Machines Jobs

1 2 3 4 5 6 7

1 692 581 475 23 158 796 542

2 310 582 475 196 325 874 205

3 832 14 785 696 530 214 578

4 630 214 578 214 785 236 963

5 258 147 852 586 325 896 325

6 147 753 2 356 565 898 800

7 255 806 699 877 412 302 120

2. Bautista et al. (2012) used only the lower bound LB(0). In this work tighter lower
bounds LB(1), LB(2), and LB(3) are used. These lower bounds have been described
in Sect. 3.

3. The head r(π) (see equation (1)) instead of the vector of the departure times e(π)

is used. It can be expected that the total number of job permutations |Z | will be
reduced in this case. In addition, the lower bounds LB(h), h ∈ {1, 2, 3}, can be
strengthened if rk(π) > ek(π) for at least one machine k ∈ M.

4. The value |Z |t+1 can grow too large. Therefore the procedure BDP is recursive
and the termination criterion is included to avoidmemory overreaching (lines 1.11–
1.14). Therefore, the given algorithm is theoretically able to solve any instance
without running out of the given amount of memory. Note that when the sup-
problem (line 1.14) has been solved, then the upper bound UB can be improved.

5. We have formulated the Bellman equations (14)–(16) and (17)–(19) for the
Fm|block|Cmax problem that has not been done before.

Now we inspect an example to illustrate Algorithm 2. Bechmark instance car7 with
processing times given in Table 8 is chosen.

Initially, we set UB = 6888 and H = 13. The DP algorithm returns the optimal
schedule πOpt = (4, 5, 2, 6, 7, 3, 1) with

e(πOpt) = (3752, 4062, 5172, 5802, 6060, 6207, 6788) .

Hence, the optimal makespan is Opt = e7(πOpt) = 6788. Table 9 shows that the
value |Z |3 exceeds the window width H = 13. Therefore, the sub-problem has to be
solved with the initial condition

Z1(S) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{(4, 6)}, S = {4, 6};
{(4, 7)}, S = {4, 7};
{(5, 1)}, S = {1, 5};
{(5, 3)}, S = {3, 5};
∅, otherwise.

123

28 A. Ozolins

Table 9 Example of the proposed DP algorithm

t π ∈ Z(S) with |S| = t |Z |t
1 (1),(2),(3),(4),(5),(6),(7) 7

2 (2,5),(4,1),(4,2),(4,3),(4,5),(4,6),(4,7),(5,1),(5,2),(5,3),(5,4) 11

3 (4,2,1),(4,2,3),(4,2,5),(4,2,7),(4,1,2),(4,3,2),(4,3,5),(4,5,1),(4,5,2),(4,5,3), 13*

(4,5,6),(4,5,7),(5,4,2)

2 (4,6),(4,7),(5,1),(5,3)

3 (4,6,5),(4,7,1),(4,7,3),(4,7,5),(5,1,4),(5,3,2) 6

4 (4,7,3,2) 1

4 (4,2,5,3),(4,5,2,1),(4,5,2,6),(4,2,7,6),(4,5,1,2),(4,3,5,2),(4,5,3,2),(4,5,6,3) 8

5 (4,5,3,2,6),(4,5,2,6,3),(4,5,2,6,7),(4,5,1,2,6) 4

6 (4,5,2,6,7,3) 1

7 (4,5,2,6,7,3,1) 1

Opt = 6788, |Z | = 52, |Zmax| = 13

*The window width is exceeded

In this case the set T used in equation (17)) is equal to {{4, 6}, {4, 7}, {1, 5}, {3, 5}}.
For the sub-problem |Z1|5 = 0 since the lower bound is greater than UB for all
extensions of π = (4, 7, 3, 2).

An unanswered question remains about the effective calculation of r . Let π be a
given job permutation with |π | < n. The vector of departure times e(π ⊕ i) can be
recursively obtained from e(π) using the following recurrence equation:

ek(π ⊕ i) = max{ek−1(π ⊕ i) + pi,k, ek+1(π)}, k ∈ M (20)

with the artificial departure times

e0(π ⊕ i) = e1(π),

em+1(π) = 0.

An index i in (20) denotes the job given in Algorithm 1. Clearly, the computation
of e requires the complexity O(m) in the worst case. However, the calculation of r is
more expensive requiring the worst case complexity O(nm2). Since rk ≥ ek for all
k ∈ M, we can efficiently obtain r in practice using Algorithm 3.

The effectiveness of Algorithm 3 lies in the principle that the use of (1) can be
avoided as well as the further search through the set J if job j satisfying r j,k(π) =
ek(π) (line 3.6) is found.

We continue to inspect the previously described example (see Tables 4 and 5). Table
10 demonstrates the application of Algorithm 3. For example, if jobs are selected in
increasing order of the job numbers, then it is sufficient to calculate r1,3(π) and r1,4(π)

in order to obtain r3(π) and r4(π) respectively. However, when k = 2 or k = 5, it
is necessary to calculate ri,k for all i ∈ {1, 7, 9, 10, 11} since rk(π) > ek(π) for
k ∈ {2, 5}.

123

Improved bounded dynamic programming algorithm... 29

Algorithm 3: Algorithm that builds r(π).

Input : S ⊂ J , i ∈ S, π ∈ �(S)

Output: r(π)

3.1 get e(π) from equation (20)
3.2 r1(π) = e1(π)

3.3 for k = 2 to m do
3.4 forall the j ∈ J \ S do
3.5 get r j,k (π) from equation (2)
3.6 if r j,k (π) = ek (π) then
3.7 rk (π) = ek (π)

3.8 break

3.9 else
3.10 get rk (π) from equation (1)

Table 10 The calculation of
r(π) for the job sequence
π = (8, 5, 4, 2, 3, 6)

k 1 2 3 4 5

ek (π) 2962 3207 3839 4477 4600

r1,k (π) 3337 3839 4477 4722

r7,k (π) 3494 3839 4477 5373

r9,k (π) 3219 3839 4592 4802

r10,k (π) 3858 4754 4968 5226

r11,k (π) 3494 3839 4477 5242

rk (π) 2962 3219 3839 4477 4722
Value in bold: ek (π) = ri,k (π)

5 Computational results

We implement the BDP algorithm in C++ programming environment and compiled
it with Microsoft Visual Studio. Windows 64 bit operating system with 8 GB RAM
memory and 2.8 GHz CPU was used. Several sets of benchmark instances are used:
Taillard (1993), Reeves (1995), Heller (1960). The number of jobs is 20 or 50. The
number of machines goes from 5 to 20. The effectiveness of the proposed algorithm
will be analysed in terms of CPU time, |Zmax|, and |Z | where

|Z | =
∑

S⊂J
|Z(S)|

is the total number of job permutations and

|Zmax| = max
t=1,...,n

|Z |t (21)

is the maximum number of job permutations stored at one stage. The value |Z |t in
(21) stands for the number of job permutations stored at t , i.e.

123

30 A. Ozolins

|Z |t =
∑

S⊂J : |S|=t

|Z(S)|.

The termination criterion (line 1.11 in Algorithm 1) depends on the problem and
is set taking into account the system limits. In practice, the limit of |Zmax| is taken as
4.05 · 107 or 4.1 · 107 for 20× 20 type benchmark instances. The sub-problem should
be solved when the termination criterion is met (line 1.14 in Algorithm 1).

Table 11 reports the results of the improved BDP algorithm with UB0 = BK S in
Algorithm 2. An asterisk in Table 11 refers to the case when it is previously proven
that the best-known solution (BKS) is equal to the optimal makespan, see Companys
and Ribas (2011). All remaining BKS are, in general, not optimal.

Table 11 shows that the optimality is proven for all inspected benchmark instances
with n = 20. Unfortunately, our CPU times cannot be compared with those that
are obtained by Companys and Ribas (2011) since the authors did not report the
corresponding CPU times. Furthermore, the optimality is proven for 13 out of 14
instances of type 20 × 10 and for all 20 × 15 and 20 × 20 type instances that has
not been done before. All 20× 10 type instances were solved within a CPU time less
than 30min except for the instance reC07 that required the CPU time 50min. 20× 15
type instances were solved in less than two hours. It is significantly harder to prove
the optimality for 20 × 20 type instances as shows the CPU times that varies from
2-3 hours up to 35 hours. However, our improved BDP algorithm still cannot solve
benchmark instances with at least n = 30 jobs in a reasonable time limit.

Note that the termination criterion ismet for five instances of type 20×20.However,
lines 1.11–1.14 in Algorithm 1 allow us to avoid from the memory overreaching. For
instances with m equal to 10 or 5, the proposed BDP algorithm solves all instances
being far away from the termination criterion as it is shown under column ‘|Zmax|’ in
Table 11.

Now we apply the BDP algorithm to calculate the lower bounds. We use the fol-
lowing strategy. We start with an initial bound B0 that is placed in Algorithm 2 by
replacingUB0. Then we run the BDP algorithm. If the used bound is not lowered after
the execution of the algorithm, then it is clear that the lower bound cannot be less than
B0. Therefore, the current bound is increased by 10, and we rerun the BDP algorithm.
The run is interrupted if there exists t with |Z |t > H or the optimal makespan is found.
The value

∑ |Z | in Table 12 stands for the sum of all |Z | that is obtained from all
previous bounds. The value LBroot denotes the combination of one- and two-machine
based lower bound max{LB(1), LB(2), LB(3)} (see (6), (9), and (13) in Sect. 3) that
is obtained at the root of the BDP algorithm, i.e. π is empty and S = ∅. The window
width H is set as 1000, 10000, or 100000, respectively. For instances of type 20 × 5
or 20× 10 we also inspect the case when H is not taken into account thus solving the
Fm|block|Cmax problem to optimality. In this case, we do not use BK S values thus
obtaining the optimal makespan independently of other algorithms.

Table 12 shows that all Taillard 20 × 5 type instances can be solved to optimality
in minutes. 20× 10 type instances were solved in one hour on average. We do not try
to solve 20 × 20 type instances to optimality since even proving the optimality takes
a significant time amount.

123

Improved bounded dynamic programming algorithm... 31

Table 11 The optimality proof offered by BDP

n × m Instance BKS UB = BK S

|Zmax| |Z | CPU

20 × 5 reC01 1418* 702719 3280651 38

reC02 1253* 508792 2323426 30

reC03 1417* 2951273 14151542 152

ta01 1374* 1050007 4980611 54

ta02 1408* 326814 1506333 17

ta03 1280* 1420394 6315020 70

ta04 1448* 456418 2051498 25

ta05 1341* 786769 3616124 40

ta06 1363* 533216 2521293 31

ta07 1381* 746821 3585683 48

ta08 1379* 884623 4139667 42

ta09 1373* 301330 1435959 17

ta10 1283* 1241855 5866129 68

20 × 10 hel2 150 1790813 8077460 264

reC07 1728 15900913 65529580 3196

reC09 1709 8354760 33604196 1427

reC11 1588 4066335 18604927 654

ta11 1698* 611583 2707728 103

ta12 1833 3980354 17171958 711

ta13 1659 7200089 31060780 831

ta14 1535 2824706 12430097 445

ta15 1617 4816045 18452561 618

ta16 1590 10793445 47261705 1529

ta17 1622 1947583 8654402 246

ta18 1731 8372334 39278303 1122

ta19 1747 2638924 11763636 327

ta20 1782 7343976 32682770 955

20 × 15 reC13 2104 18945092 78256828 7039

reC15 2075 3921118 17466701 1327

reC17 2082 13213470 55633121 4934

20 × 20 ta21 2436 40500000 589909534 109475

ta22 2234 16645279 64467948 14538

ta23 2479 40500000 383231517 83010

ta24 2348 11920903 47186700 8145

ta25 2435 40500000 423705792 100036

ta26 2383 40500000 451425366 128244

ta27 2390 27964915 114673847 21037

ta28 2328 41000000 255657708 57675

ta29 2363 17259020 63789377 15291

ta30 2323 20228314 89514396 9513

123

32 A. Ozolins

Ta
bl
e
12

L
ow

er
bo

un
ds

ob
ta
in
ed

us
in
g
di
ff
er
en
tw

in
do
w
w
id
th
s

n
×

m
In
st
.

B
K
S

L
B
ro

ot
H

=
10

00
H

=
10

00
0

H
=

10
00

00
H

=
∞

L
B

C
PU

L
B

C
PU

L
B

C
PU

C
PU

∑
|Z

|
20

×
5

ta
01

13
74

12
78

12
78

0
12

98
1.
2

13
18

10
21

6
34

58
51

5

ta
02

14
08

13
55

13
75

0.
1

13
75

0.
4

13
95

7.
7

57
88

80
44

ta
03

12
80

10
73

11
73

0.
2

11
83

0.
9

12
13

10
.6

30
5

48
96

31
2

ta
04

14
48

12
83

13
53

0.
1

13
83

1.
2

14
13

12
.2

95
14

61
70

5

ta
05

13
41

12
17

12
37

0.
1

12
57

1
12

87
12

.7
18

2
28

15
56

9

ta
06

13
63

12
15

12
75

0.
1

12
95

1.
2

13
25

13
.6

10
4

14
48

54
5

ta
07

13
81

12
26

13
16

0.
1

13
26

0.
9

13
46

11
.4

15
7

20
67

69
4

ta
08

13
79

11
70

12
70

0.
1

12
90

0.
9

13
20

10
.9

16
4

26
76

26
9

ta
09

13
73

12
08

13
08

0.
2

13
18

0.
8

13
48

12
.1

59
85

38
87

ta
10

12
83

11
08

11
88

0.
1

12
08

1.
4

12
28

10
.9

27
3

40
72

47
0

A
ve
ra
ge

13
63

12
13

12
77

0.
1

12
93

1.
0

13
19

11
.2

16
1

24
63

90
1

20
×

10
ta
11

16
98

14
94

16
04

0.
2

16
34

3.
4

16
64

36
.5

35
3

84
91

35
4

ta
12

18
33

15
52

16
72

0.
3

17
02

2.
9

17
42

35
.5

31
09

73
01

56
00

ta
13

16
59

14
07

14
97

0.
3

15
27

2.
2

15
67

32
.6

47
52

12
75

90
39

4

ta
14

15
35

13
37

14
07

0.
3

14
37

4.
2

14
67

43
.4

17
13

36
67

51
77

ta
15

16
17

13
44

14
74

0.
3

15
04

3.
6

15
34

33
.9

32
62

69
72

22
67

ta
16

15
90

13
13

14
23

0.
2

14
53

2.
7

14
83

26
.3

69
08

17
37

84
31

8

ta
17

16
22

14
16

14
86

0.
3

15
16

2.
7

15
56

34
.9

10
42

28
03

13
46

ta
18

17
31

13
79

15
09

0.
3

15
49

3.
4

15
89

34
.3

81
63

21
61

73
45

6

123

Improved bounded dynamic programming algorithm... 33

Ta
bl
e
12

co
nt
in
ue
d

n
×

m
In
st
.

B
K
S

L
B
ro

ot
H

=
10

00
H

=
10

00
0

H
=

10
00

00
H

=
∞

L
B

C
PU

L
B

C
PU

L
B

C
PU

C
PU

∑
|Z

|
ta
19

17
47

15
33

16
43

0.
2

16
63

2
16

93
25

.5
13

40
36

47
75

67

ta
20

17
82

14
53

15
73

0.
3

16
13

3.
2

16
53

29
.9

50
17

12
83

28
75

5

A
ve
ra
ge

16
81

14
23

15
29

0.
3

15
60

3.
0

15
95

33
.3

35
66

89
82

90
23

n
×

m
In
st
.

B
K
S

L
B
ro

ot
H

=
10

00
H

=
10

00
0

H
=

10
00

00

L
B

C
PU

L
B

C
PU

L
B

C
PU

20
×

20
ta
21

24
36

19
96

21
06

0.
8

21
56

11
22

06
12

1.
8

ta
22

22
34

18
15

20
35

1.
3

20
75

14
.2

21
15

14
3.
4

ta
23

24
79

20
08

22
08

1.
5

22
48

12
.7

22
98

15
2.
5

ta
24

23
48

19
17

21
07

1.
3

21
37

9.
9

21
87

13
2.
6

ta
25

24
35

20
22

21
72

0.
9

22
12

8.
7

22
62

10
9.
9

ta
26

23
83

19
69

21
29

0.
8

21
69

10
.5

21
99

82
.4

ta
27

23
90

20
67

21
87

1
22

17
8.
1

22
57

10
0.
6

ta
28

23
28

18
92

20
92

0.
7

21
42

11
.8

21
82

12
6

ta
29

23
63

19
15

21
55

1.
6

21
95

16
.4

22
45

19
1.
4

ta
30

23
23

19
14

21
14

1
21

54
10

.5
21

94
12

5.
4

A
ve
ra
ge

23
72

19
52

21
31

1.
1

21
71

11
.4

22
15

12
8.
6

50
×

5
ta
31

29
74

27
30

27
30

0.
1

27
30

1.
3

27
40

15
.3

ta
32

31
71

29
58

29
58

0
29

58
0.
4

29
58

7.
9

ta
33

29
88

26
57

26
57

0.
1

26
67

4.
4

26
77

49
.8

ta
34

31
11

27
51

27
71

0.
2

27
81

1.
1

27
91

23
.7

ta
35

31
38

28
42

28
62

0
28

62
0.
4

28
62

9.
2

ta
36

31
58

28
27

28
47

0.
1

28
57

3.
3

28
57

18
.6

123

34 A. Ozolins

Ta
bl
e
12

co
nt
in
ue
d

n
×

m
In
st
.

B
K
S

L
B
ro

ot
H

=
10

00
H

=
10

00
0

H
=

10
00

00

L
B

C
PU

L
B

C
PU

L
B

C
PU

ta
37

30
04

27
24

27
74

0.
2

27
84

9.
5

27
84

36
.5

ta
38

30
39

28
38

28
38

0
28

38
0.
4

28
38

4.
6

ta
39

28
89

25
47

25
67

0.
2

25
77

2.
3

25
87

25
.6

ta
40

30
94

27
98

28
58

0.
1

28
58

2.
6

28
68

78

A
ve
ra
ge

30
57

27
67

27
86

0.
1

27
91

2.
6

27
96

26
.9

50
×

10
ta
41

36
05

29
26

30
46

1.
6

30
56

9.
1

30
76

13
8.
5

ta
42

34
70

28
28

28
78

0.
9

28
98

9.
6

29
18

10
7.
7

ta
43

34
65

28
30

28
80

0.
9

28
90

5.
3

29
10

11
0.
1

ta
44

36
43

30
21

30
81

0.
8

30
91

8.
3

31
01

73
.8

ta
45

35
82

29
08

30
58

2.
2

30
68

14
.5

30
78

12
4.
8

ta
46

35
71

29
41

30
11

1.
3

30
21

8.
4

30
41

10
0.
2

ta
47

36
67

30
75

30
85

0.
4

30
95

5.
7

31
05

72
.5

ta
48

35
46

29
91

30
21

0.
4

30
31

5.
2

30
41

60
.8

ta
49

35
08

28
23

29
23

1
29

33
6.
2

29
53

77
.8

ta
50

36
03

30
46

30
86

1.
3

31
06

13
.6

31
26

16
3.
8

A
ve
ra
ge

35
66

29
39

30
07

1.
1

30
19

8.
6

30
35

10
3.
0

50
×

20
ta
51

44
79

35
27

37
17

3.
8

37
37

29
37

57
40

7.
3

ta
52

42
62

35
29

36
59

4.
6

36
79

41
.8

37
09

88
3.
1

ta
53

42
61

33
70

35
30

2.
6

35
50

25
.5

35
80

55
2.
0

ta
54

43
38

33
36

35
66

6.
2

35
86

45
.2

36
16

64
4.
4

123

Improved bounded dynamic programming algorithm... 35

Ta
bl
e
12

co
nt
in
ue
d

n
×

m
In
st
.

B
K
S

L
B
ro

ot
H

=
10

00
H

=
10

00
0

H
=

10
00

00

L
B

C
PU

L
B

C
PU

L
B

C
PU

ta
55

42
49

33
71

35
71

7.
8

35
91

60
.9

36
11

55
5.
3

ta
56

42
71

34
95

35
65

1.
8

35
85

22
.4

36
05

45
2.
1

ta
57

42
89

34
80

36
00

3.
9

36
30

46
.6

36
50

37
8.
1

ta
58

42
98

34
51

35
41

3.
2

35
71

45
.1

35
91

39
7.
0

ta
59

43
04

34
57

35
47

3.
4

35
67

31
.1

35
87

31
8.
9

ta
60

43
98

34
98

36
48

3.
7

36
78

45
36

98
39

4.
8

A
ve
ra
ge

43
15

34
51

35
94

4.
1

36
17

39
.3

36
40

49
8.
3

123

36 A. Ozolins

Table 13 Comparison of lower bounds that are obtained by different strategies

n × m BKS RON LBroot H=1000 H=10000 H=100000

LB CPU LB CPU LB CPU LB CPU

20 × 5 1363 1277 7.7 1213 1277 0.1 1293 1.0 1319 11.2

20 × 10 1681 1416 21.9 1423 1529 0.3 1560 3.0 1595 33.3

20 × 20 2372 1847 32.8 1952 2131 1.1 2171 11.4 2215 128.6

50 × 5 3057 2788 16.9 2767 2786 0.1 2791 2.6 2796 26.9

50 × 10 3566 2954 30.5 2939 3007 1.1 3019 8.6 3035 103.0

50 × 20 4315 3414 36.2 3451 3594 4.1 3617 39.3 3640 498.3

Now we analyse lower bounds that are obtained from the BDP algorithm. Table 12
shows that the exact method is able to improve the root lower bound by a substantial
margin. For H = 1000, CPU times are small and do not exceed eight seconds for the
largest instances with 50×20. However, for the most part of instances, CPU times are
less than one second. By increasing thewindowwidth to H = 10000, lower bounds are
improved in a few seconds for most instances. Setting H = 100000 requires minutes
for larger instances. The performance of the BDP algorithm is better if the proportion
m/n is greater. If m/n = 0.1 (the case m = 5 and n = 50), the benefit of the BDP
algorithm is negligible for the selected H values. However, if m/n = 1, the BDP
algorithm is more efficient and LB values are substantially improved by increasing
H .

It is natural to inspect other exact algorithms. We compare our BDP algorithm with
the exact branch and bound algorithm proposed by Ronconi (2005). This algorithm
is denoted as RON in Table 13. CPU times given by RON are comparable with those
obtained by the BDP algorithm since RON is coded using a Pentium 4 with 2.4 GHz.
Results of Ronconi (2005) are reported in Grabowski and Pempera 2007; Wang et al.
2010; Lin and Ying 2013 as reference values. Ronconi (2005) presented an interesting
version of the branch and bound algorithm. However, the one-machine based lower
bound is used. Table 13 reports average values for several benchmark sets of Taillard.
As shown in Table 13, even the root lower bound, which is based on two machines,
is competitive with the final lower bound LBRON provided by RON. For the case
20× 20, LBroot significantly outperforms LBRON on average. It can be observed that
LB values can be significantly improved running the BDP algorithm with the fixed
H . The higher is H , the better is LB on average. However, the balance between CPU
times and the selected H should be respected. Choosing H = 10000 guarantees that
almost all CPU times are less than those reported by RON. On the other hand, LB
values obtained by BDP algorithm can be even drastically higher than those obtained
by RON. Examples with a higher proportion m/n highlight the superiority of BDP
over RON.

Table 14 reports the average CPU times using different strategies of the BDP
algorithm. BDP0 stands for the results reported in Bautista et al. (2012). BDP1 and
BDP2 stands for our version of the BDP algorithm. BDP1 referees to the case when
UB = BK S (see Table 11), and BDP2 referees to the strategy in which the optimal

123

Improved bounded dynamic programming algorithm... 37

Table 14 Comparison of CPU times with the previous version of the BDP algorithm

n × m aBDP0 BDP1 BDP2

ARPD |Zmax| CPU |Zmax| CPU CPU

20 × 5 0.35 10000 1059 916233 48.8 161.2

20 × 10 1.11 10000 1395 5760132 887.6 3565.8

aVersion of BDP algorithm proposed by Bautista et al. (2012)

makespan was obtained dynamically increasing the bound (see Table 12). Average
relative percentage deviation (ARPD in Table 14) is calculated as

RPD = 100 · UB − BK S

BK S
.

In Table 14, we skip the column ARPD below titles ‘BDP1’ and ‘BDP2’ since the
final RPD = 0 for all smaller benchmark instances.

Table 14 shows that our version of the BDP algorithm drastically increases the
applicability of the BDP approach for solving the Fm|block|Cmax problem. For 20×5
type instances, CPU times decrease by 85% compared to those of BDP0. Moreover,
BDP0 fails to solve optimally any instance from Taillard sets and the ARPD value
was still high. For the 20 × 10 case, CPU times are competitive with those reported
in our work. However, the value ARPD is significantly greater than 0 and the quality
of final upper bounds obtained by BDP0 is poor.

Table 14 above shows that BDP1 is remarkably faster than BDP2. Therefore, in
order to solve small instances to optimality, a better strategy is to use good initial
upper bound of the given instance. Several heuristics reported in the literature can
obtain BKS (not proving the optimality) for smaller Taillard instances in a negligible
time.

6 Conclusions

In this paper, the bounded dynamic programming (BDP) algorithm that solves the
blocking flow shop problems is studied. We developed BDP for solving the blocking
flow shop problem optimally. The proposed algorithm is able to obtain the optimal
solution for instances with up to 400 operations (e.g. 20 jobs and 20 machines), and
we report proven optimal solutions for 26 previously open benchmark instances. In
addition, we provide new lower bounds for several sets of benchmark instances while
requiring a relatively short CPU time.

There is still room for the improvement of the BDP algorithm. The algorithm that
calculates an improved head presented in this paper could be improved thus reducing
the computational expenses. Another idea could be to use some priority rules for
the order of selecting job permutations from which the new job permutations are
developed. The BDP approach could be applied for solving simultaneously direct
and inverse instances exchanging data between them. How to do it remains an open

123

38 A. Ozolins

question. The author believes that the optimal solution of the blocking flow shop
problems could be obtained in a more reasonable time for benchmark instances with
higher n or m (e.g. m = 10 and n = 30) than investigated in the present work.

References

Bautista J, Cano A, Companys R, Ribas I (2012) Solving the Fm|block|Cmax problem using bounded
dynamic programming. Eng Appl Artif Intell 25(6):1235–1245

Companys R, Mateo M (2007) Different behaviour of a double branch-and-bound algorithm on
Fm|prmu|Cmax and Fm|block|Cmax problems. Comput Oper Res 34(4):938–953

Companys R, Ribas I (2011) New insights on the blocking flow shop problem. Best solutions update. Tech.
rep., working paper

Gilmore P, Gomory R (1964) Sequencing a one state-variable machine: a solvable case of the traveling
salesman problem. Oper Res 12(5):655–679

Grabowski J, Pempera J (2007) The permutation flow shop problem with blocking. A tabu search approach.
Omega 35(3):302–311

Gromicho J, Van Hoorn J, Saldanha-da Gama F, Timmer G (2012) Solving the job-shop scheduling problem
optimally by dynamic programming. Comput Oper Res 39(12):2968–2977

Hall N, Sriskandarajah C (1996) A survey of machine scheduling problems with blocking and no-wait in
process. Oper res 44(3):510–525

Heller J (1960) Some numerical experiments for an M × J flow shop and its decision-theoretical aspects.
Oper Res 8(2):178–184

Lenstra J, Rinnooy Kan A, Brucker P (1977) Complexity of machine scheduling problems. Ann Discrec
Math 1:343–362

Lin S, Ying K (2013)Minimizingmakespan in a blocking flowshop using a revised artificial immune system
algorithm. Omega 41(2):383–389

Pan Q, Wang L, Sang H, Li J, Liu M (2013) A high performing memetic algorithm for the flowshop
scheduling problem with blocking. IEEE Trans Auto Sci Eng 10(3):741–756

Papadimitriou C, Kanellakis P (1980) Flowshop scheduling with limited temporary storage. J ACM (JACM)
27(3):533–549

Reddi S, Ramamoorthy C (1972) On the flow-shop sequencing problem with no wait in process. Oper Res
Quart pp 323–331

Reeves C (1995) A genetic algorithm for flowshop sequencing. Comput Oper Res 22(1):5–13
Ribas I, Companys R, Tort-Martorell X (2011) An iterated greedy algorithm for the flowshop scheduling

problem with blocking. Omega 39(3):293–301
Ronconi D (2005) A branch-and-bound algorithm to minimize the makespan in a flowshop with blocking.

Ann Oper Res 138(1):53–65
Taillard E (1993) Benchmarks for basic scheduling problems. Eur J Oper Res 64(2):278–285
Tasgetiren M, Pan Q, Suganthan P, Buyukdagli O (2013) A variable iterated greedy algorithm with dif-

ferential evolution for the no-idle permutation flowshop scheduling problem. Comput Oper Res
40(7):1729–1743

Tasgetiren M, Pan Q, Kizilay D, Suer G (2015) A populated local search with differential evolution for
blocking flowshop scheduling problem. In: 2015 IEEECongress on Evolutionary Computation (CEC),
pp 2789–2796

Tasgetiren M, Kizilay D, Pan Q, Suganthan P (2017) Iterated greedy algorithms for the blocking flowshop
scheduling problem with makespan criterion. Comput Oper Res 77:111–126

van Hoorn JJ (2016) Dynamic programming for routing and scheduling: Optimizing sequences of decisions
van Hoorn JJ, Nogueira A, Ojea I, Gromicho JA (2016) An corrigendum on the paper: solving the job-shop

scheduling problem optimally by dynamic programming. Comput Oper Res
Wang L, Pan Q, Suganthan P, Wang W, Wang Y (2010) A novel hybrid discrete differential evolution

algorithm for blocking flow shop scheduling problems. Comput Oper Res 37(3):509–520
ZhangC,Xie Z, ShaoX, TianG (2015)An effectiveVNSSAalgorithm for the blocking flowshop scheduling

problem with makespan minimization. In: 2015 International Conference on Advanced Mechatronic
Systems (ICAMechS), IEEE, pp 86–89

123

	Improved bounded dynamic programming algorithm for solving the blocking flow shop problem
	Abstract
	1 Introduction
	2 Basic notations
	3 Lower bounds for bounded dynamic programming algorithm
	4 Bounded dynamic programming algorithm
	5 Computational results
	6 Conclusions
	References

