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Abstract Characterization of optimization problemswith respect to their solvability is
one of the focal points ofmany research projects in the field of global optimization.Our
study contributes to these efforts with the usage of the computational andmathematical
tools of network science. Given an optimization problem, a network formed by all the
minima found by an optimization method can be constructed. In this paper we use the
Basin Hopping method on well-known benchmarking problems and investigate the
resulting networks using several measures.

Keywords Benchmarking · Network science · Continuous global optimization ·
Basin Hopping

1 Introduction

The task of box-constrained global optimization (GO) is to find the solution to the
problem

min
x∈S f (x), (1)

where f : S ⊂ R
n → R is a continuous function and S is a box. The vast literature

of GO contains several proposed algorithms for solving (1), and it is a question of
high interest how these algorithms perform on different problems. To this end, sev-
eral benchmarking techniques have already been proposed (see, e.g. Dolan and Moré
2002; Mittelmann 2017; Neumaier et al. 2005; Rios and Sahinidis 2013). Our method
complements these works with the help of the emerging field of network science
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(Newman 2010). The proposed methodology follows the core idea of the early work
of Stillinger and Weber (1984), in which potential energy landscapes of atom clusters
were formed into graphs. This is done in a way that the landscapes can be divided
into basins of attraction surrounding each locally minimal energy level. This approach
was later applied in the analysis of network topology of small Lennard-Jones clusters
(Doye 2002). In that paper, the so-called inherent structure network (ISN) was built
in which vertices correspond to the minima and the edges link those minima which
are directly connected by a transition state. The same idea can be used for combinato-
rial optimization problems (Scala et al. 2001; Tomassini et al. 2008). We give here a
possible extension of these ideas to the space of continuous optimization problems1,
under the assumption that the optimizationmethod used is Basin Hopping (BH). BH is
a primary heuristic method which could be considered as the basis of many elaborate
heuristic-based global optimization algorithms.

Once the network representation G of a global optimization problem P is con-
structed, similarly to the above mentioned ISN, many interesting graph metrics and
measures of G can be calculated which can shed a light on several detailed char-
acteristics of P . The important questions we aim at answering in this paper are the
following:

– What kind of graph representations can be constructed for continuous global opti-
mization problems?

– Practically, how difficult is it to find these graphs?
– From the network science literature, what are the interesting and relevant mea-
sures and what are the interpretations of them in the context of continuous global
optimization?

– Given the networks and their measures, how can these be meaningfully applied
together on (well-known) optimization problems and what are their implications?

In the following we first give an overview of the methodology producing the graph
models. Then, we discuss several graphmetrics andmeasures together with their inter-
pretation in the context of continuous global optimization problems. This is followed
by numerical experiments in which some benchmark optimization problems from the
literature are investigated. Details on the network models of the tested functions are
given, which we believe give further contributions to the understanding of why some
problems are easy or hard for a particularly efficient optimization scheme called Basin
Hopping.

2 Methodology

2.1 Network representation of optimization problems

Interestingly, an early paper of Locatelli (2005) and the recent book of Locatelli and
Schoen (2013) already contain the idea of the (possible) construction of the network
representing a continuous global optimization problem. In the following, using the

1 Note that the optimization problem (1) can also be extended to have constraints, although in the experi-
mental part of our paper we will investigate only box-constrained problems of form (1).
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terminology from Locatelli and Schoen (2013), we give the necessary definitions of
the graph construction.

First of all, we assume that a local search procedure L (·) is available which,
given a starting point y returns a locally optimal solution z of f characterized by
‖x − z‖ ≤ ε �⇒ f (z) ≤ f (x) (∀x ∈ S). We associate a neighborhood structure
N (·) to each point in the search space S: for a given point x ∈ S, N (x) contains
those points of S which we get by perturbation of x and subsequently starting a local
optimization method from the perturbed point. Practically, the structure N depends
on the underlying local optimization algorithm used to solve the global optimization
problem (1). The local optima network G(V, E) can be defined in the following way.
First of all, it is assumed that L (x) = x if x is a local minimizer point of f .

– The set V of vertices are the local minimizer points of f :

V = {y ∈ S : ∃x ∈ S, y = L (x)}.
Note that we need to assume that |V | < ∞.

– The set E of edges is defined as

E = {(x, y) ∈ V × V | ∃z ∈ N (x) : L (z) = y and x �= y}.
Remark that the elements of set E are directed. Similarly to Locatelli and Schoen
(2013), a monotonic graph Gm(V, Em) can also be defined with the edge set

Em = {(x, y) ∈ V × V | ∃z ∈ N (x) : L (z) = y and f (y) ≤ f (x) and x �= y}.
We say that a local minimizer y is a neighbor of another local minimizer x iff

(x, y) ∈ E . Note that in Gm(V, Em) all nodes with no outgoing arcs are locally
optimal solution of (1).

We will also use the concept of the adjacency matrix A of a graph G in the later
notations, which is defined as

Ai j =
{
1 if (i, j) ∈ E(G), and

0 otherwise.

Finally, we define the natural local optima network (NLON). In this representation,
two nodes are connected if they are separated by a critical point (i.e. a stationary
point where the Hessian has a single negative eigenvalue More and Munson 2002).
Separation of two local minima x1 and x2 means that starting a gradient descent local
search L from a point which is given by arbitrarily small perturbation of the critical
point can lead to either x1 or x2.

Illustration As an illustrative example, NLON of the classical, two dimensional Six
Hump Camel Back (SHCB) global optimization problem is shown on Fig. 1. This
problem has 6 local optima among which two of them are global optima (shown as
larger (blue) nodes). The labels on the nodes represent the two dimensional coordinates
of the corresponding local optima. Size of the nodes are proportional to their degree.
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Fig. 1 The natural local optima network of the SHCB global optimization problem

2.2 Basin Hopping method

The Basin Hopping (BH) method is a metaheuristic, which proved to be very efficient
in solving global optimization problems (Leary 2000; Locatelli and Schoen 2013;
Wales and Doye 1997). Using the terminology of Locatelli and Schoen (2013) the
high level description is given in Algorithm 1. In the following, we refer to the lines of
Algorithm 1 to give a detailed description. It is assumed that a uniform pseudorandom
generatorU (·) is provided and the input is a continuous global optimization problem
of form (1). In Line 1 a starting point y is generated uniformly at random in the search
space S. Using a local search procedureL a local minimizer point x is found in Line 2.
Line 4 selects a new starting point from the global neighborhood (to be defined later)
of x . In order to do so, we let d be an n-dimensional Gaussian(0, 1) random vector
with ‖d‖ = 1 (e.g. d is a random direction), and r2 be a positive fixed step size. The
new starting point z is generated as being x+r2d. In Line 5 a local search is performed
starting from z and its result is stored as x (a local minimizer point). Line 7 selects
a new starting point z from the local neighborhood of x . This is done by sampling a
uniformly random point over S ∩ B[x ′, r1], where B[x, r ] is a box centered at x and
having half-edge length r > 0. We start a local search from z and its result is stored as
y (Line 8). In Line 9 we check whether y is a better solution than x (being ’better’ is to
be defined later). In Lines 12 and 13 we check whether the local and global stopping
criteria are satisfied, respectively. The algorithm returns with the local minimizer point
x and the corresponding function value f (x) in Line 14.

The conditional statement in Line 9 requires the procedure IsAcceptable(x, y) to
be given. This procedure can be implemented in different ways, the most common
approaches are as follows:

Monotonic: the procedure IsAcceptable(x, y) returns whether f (y) < f (x).
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Algorithm 1 Basin Hopping method
1: y := U (S);
2: x := L (y);
3: repeat
4: z := U (Ng(x));
5: x := L (z);
6: repeat
7: z := U (N�(x));
8: y := L (z);
9: if IsAcceptable(x, y) then
10: x := y;
11: end if
12: until local stopping rule is not satisfied
13: until global stopping rule is not satisfied
14: return x, f (x)

Generic: the procedure IsAcceptable(x, y) returns whether

U [0, 1] ≤ exp(−( f (y) − f (x))/T ),

where T is a nonnegative parameter (called temperature in the literature), which
iteratively gets decreased during the execution of Algorithm 1. Note that this
version of the algorithm occasionally accepts non-improving local solutions as
well.

Furthermore, there are two procedures in Algorithm 1, namely Ng(·) and N�(·),
which needed to be defined in detail. These procedures correspond to the local search at
Level 3 and Level 2, respectively, of the multi level optimization approach of Locatelli
(2005). We employ the scheme from Locatelli (2005), where the neighbors of a local
minimum x0 are all the local minima whose basins of attraction have a nonempty
intersection with the box B[x0, r ] ∩ S. Here B[x0, r ] := [x0 − r1, x0 + r1], with
half-edge length r > 0 and centered at x0 (and 1 is the vector whose components
are all equal to 1). As this definition depends on the parameter r (which appears to
be either r1 or r2 in Algorithm 1) an adaptive scheme can be used which iteratively
updates its value—for full details see Locatelli (2005).

2.3 Building the Basin Hopping Network

In order to build the local optima network for a particular optimization problem we
applied an optimization scheme based on the BHmethod. Using the same terminology
as in Sect. 2.2 the high level description is given in Algorithm 2.

In the following, we refer to the lines of Algorithm 2 to give a detailed description.
The algorithm starts with an empty graph Gw, which iteratively gets expanded if new
nodes and edges are found. In Line 1 a starting point y is generated uniformly at
random in the search space S. The first node x of the graph Gw is found in Line 2.
Line 4 selects a new starting point from the global neighborhood of x using the same
technique in Algorithm 1. In Line 5 a local search is performed starting from z and
its result x (as a local minimizer point) is added to the set of vertices. Note that it is
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Algorithm 2 Basin Hopping Network builder algorithm
Require: Global optimization problem P
1: y := U (S);
2: x := L (y); V := {x};
3: repeat
4: z := U (Ng(x));
5: x := L (z); V := V ∪ {x};
6: repeat
7: x ′ := x ;
8: y := U (N�(x));
9: x := L (y); V := V ∪ {x}; E := E ∪ (x ′, x)
10: until local stopping rule is not satisfied
11: until global stopping rule is not satisfied
12: return Gw(V, E)

possible that the local search finds a solution which has already been found earlier.
In a computer implementation using floating-point arithmetic, one needs to apply ε-
tolerance here, e.g. to check if ‖x − x̃‖2 < ε for any x̃ ∈ V and prescribed ε > 0.
Thus it is not given that the set V gets expanded in each iteration. In Line 7 we store
the previously found local solution x in a temporary variable x ′. This will be needed
to construct new edges of the graph Gw. Line 8 selects a new starting point y from the
local neighborhood of x ′, similarly to Line 7 Algorithm 1. What is done in Line 9 is
that we start a new local search from y, and its result x is added to the set of nodes V ,
as well as the edge (x ′, x) to the set of edges E . In Line 10 and 11 we check whether
the local and global stopping criteria are satisfied, respectively.

It is important to note that the output graph of Algorithm 2 is usually an approxi-
mation of the natural local optima network of the input problem P . This is due to the
fact that finding the natural LON is a computationally intractable task, especially for
higher dimensions. Moreover, a computer implementation is based on floating-point
numbers, thus checking if a new node is found can only be done with pre-defined and
fixed precision only.

The efficiency of Algorithm 2 highly depends on the parameters r1, r2, on the
stopping criteria used in Line 10 and 11, and on the local search procedure L . The
algorithm needs to find all local minima, thus it is usually better to let it run for longer
time while allowing a larger number of iterations. According to our experiments, this
usually leads to an output graph that has all the local minima of the optimization
problem but with more edges than the natural LON. This means that, depending on
L , nodes which are not neighbors of each other in the natural LON get connected
by an edge in the Basin Hopping Network. Thus, post-processing is necessary, which
needs a slight modification of Algorithm 2 in the following way. When a potentially
new edge is added to the graph in Line 9 we count how many times this edge has
been found already. In this way, each edge in the resulting graph has a weight. The
post-processing procedure then iterates through the list of edges and removes those
ones whose weight is below a certain threshold. This threshold is chosen to be the
P-th percentile calculated by the nearest rank method. In the numerical examples (see
Sect. 4) we experimented with different values of P . Note that a similar procedure
was proposed in Daolio et al. (2011).
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Fig. 2 A Basin Hopping Network of the SHCB global optimization problem

Illustration A possible Basin Hopping Network of the two dimensional Six Hump
Camel Back function is shown in Fig. 2. Note the differences between Figs. 1 and 2.

3 Graph measures

In the following we give a list of relevant graph measures, taken from network science
literature, together with their interpretations in the context of LONs.

Size of the network This measure is defined as the number of nodes, i.e. |V |. Clearly,
this represents the number of local minima. As it has been argued, e.g., in Locatelli
(2005) a higher number of minima does not imply that the problem at hand is more
difficult to solve.

Neighborhood of a node Besides the size of the network, this is also a critical feature
to be found by Algorithm 2, as these two provide the basis for the following measures
which are to capture the structural characteristics of the corresponding network. Put it
differently, if Algorithm 2 is not able to find the correct network representation of the
investigated global optimization problem P , then the measures listed in this section
can lead to incorrect claims on P . The neighborhood set of node i ∈ V in graph
G(V, E) is denoted by Ni (G).

Path and shortest path These are important definitions for further measures. The
series of nodes x = x0, x1, . . . , xk = y, where xi is adjacent to xi+1, is called a walk
between the nodes x and y. If xi �= x j (∀i, j), then it is called a path. The path length
is k. Given all paths between nodes x and y, a shortest path is a path with fewest
edges. Shortest paths are usually not unique between two nodes. Note that most of the
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heuristic based global optimization methods basically do random walks on paths in a
specific underlying graph. If the method is of monotonic type (like Monotonic Basin
Hopping Wales and Doye 1997 or Differential evolution Storn and Price 1997) then
it walks on Gm . Some methods, like Simulated Annealing (Kirkpatrick et al. 1983),
allow steps towards non-improving solutions, thus they walk on graph G.

Average path length This is defined as the average value of all shortest paths in the
network, denoted by �. Networks with low average path length are called small worlds.
More specifically, in small world networks the average path length grows proportion-
ally to log(|V |). Intuitively, the small world property is a desirable feature in graphs
corresponding to global optimization problems.

Diameter The size of the longest of all shortest paths is called diameter, and it is
denoted by D. This gives a worst-case scenario regarding the number of jumps that
have to be taken to reach the global optimum. Similar to the average path length, the
smaller the diameter is, the better it is.

Clustering coefficient It measures the average probability that two neighbors of a node
are themselves neighbors of each other. Formally, the local clustering coefficient of
node i is

Ci = |{(x, y) ∈ E : x, y ∈ Ni }|
ki (ki − 1)

,

where ki = |Ni |. The definition of global clustering coefficient is based on triplets. A
triplet consists of three nodes that are connected by either two (open triplet) or three
(closed triplet) undirected ties. The global clustering coefficient C is the number of
closed triplets over the total number of triplets (both open and closed).

Note that small world networks tend to have high clustering coefficient. Intu-
itively, networks with high C value correspond to easier to solve global optimization
problems.

Node degree The neighborhood structure N can be quantified. This gives the defi-
nition of node degree, which is the number of edges adjacent to a node. In our case,
this measures the number of adjacent local optima. Since our graphs are directed, we
have indegree and outdegree for a given node. Formally, the outdegree is a function
d+ : V → N0 which for a node x gives d+(x) = |{y ∈ V : (x, y) ∈ E}|. The
indegree is defined as d−(x) = |{y ∈ V : (y, x) ∈ E}|. Nodes with degree that
greatly exceeds the average degree in the graph are called hubs. It is known that high
degree nodes are easier to be found by random walks (Newman 2010). Hence, if the
global optimum vertex is a hub, then a heuristic method can perform well on the
problem.

Average degree This measure is the ratio 1
|V |

∑
x∈V d(x), where d(x) is either the

indegree and outdegree (the average is the same value in both cases); and it is denoted
by 〈k〉.
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Degree distribution This measure is defined as the probability distribution of all
degrees in the graph. Formally, pk is the fraction of nodes with degree k:

pk = |{x ∈ V : d(x) = k|
|V | ,

where d(x) can be indegree or outdegree, or the sum of the two (i.e. the graph is
made undirected). Degree distributions have two categories of particular interest: (i)
random networks [also called Erdős–Rényi graphs (Erdős and Rényi 1959)] have
binomial distribution of degree k:

pk =
(|V | − 1

k

)
pk(1 − p)|V |−1−k,

where p is the probability that two nodes are connected; and (ii) scale-free networks
(Albert and Barabási 2002), which follow a power law distribution of the form pk ∼
k−α , where α is a parameter typically in the range 2 < α < 3.

The degree distribution is an important global measure of a network. Both random
and scale-free networks have advantages and disadvantages. These networks tend to
have small clustering coefficients and short average path length. By definition, scale-
free networks contain a few hubs with high degree and lots of nodes with low degree.
In contrast, random networks contain very similar nodes.

Community structure It can be informally defined as a partition of vertices into groups
in such a way that nodes are more connected within a group and sparsely connected
between different groups (Radicchi et al. 2004). Let H be a subgraph of G including
node i . If the graph is directed, then define

kini (H) := Ni (H), and kouti (H) = Ni (G)\Ni (H).

Moreover, ki (H) := kini (H) + kouti (H). Now, one can define a subgraph H as a
community in a strong sense, which is the case when kini (H) > kouti (H) holds ∀i ∈
V (H); and also in a weak sense, when

∑
i∈H kini (H) >

∑
i∈H kouti (H). The number

of communities we find in a network is denoted by K . Note that most of the community
detection algorithms treat the graph as undirected. A high number of communities in
G does not necessary imply a hard-to-solve optimization problem. However, if the
problem is multimodal and the local minima are located in different communities
then the Monotonic Basin Hopping method can have difficulties to find the global
minimum.

Modularity This quantity, denoted by Q, measures the fraction of the edges in the net-
work that connect vertices of the same type (i.e., within-community edges) minus the
expected value of the same quantity in a network with the same community divisions
but random connections between the vertices (Newman 2006). Formally,
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Q =
∑
i

(
eii − a2i

)
,

where ei j is the fraction of edges with one end vertices in community i and the other
in community j , and ai is the fraction of ends of edges that are attached to vertices in
community i . Modularity intends to measure the strength of the community structure
in a graph.

Betweenness centrality This measure gives a local score to vertices by measuring
the extent to which a vertex lies on paths between other vertices (Freeman 1977).
Mathematically, let nist be the number of shortest paths from s to t that pass through i ,
and define gst as the total number of shortest paths from s to t . Then the betweenness

centrality (BC) of vertex i is
∑

st
nist
gst

. BC is usually calculated on undirected graphs.
Since a global optimization method does not necessarily take shortest paths on G, a
variant called Random Walk BC will instead be investigated in Sect. 4.

PageRank This local measure is used on directed graphs, where the score of a vertex is
derived from the scores of its network neighbors and it is proportional to their centrality
divided by their out-degree. Formally, we need to calculate the vector D(D−αA)−11,
where A is the adjacencymatrix of the graphGm , D is a diagonal matrix with elements
Dii = max{d+(i), 1}, 1 is again the vector whose components are all equal to 1 and
α is a damping parameter (default α = 0.85). PageRank was originally designed as
an algorithm to rank web pages (Brin and Page 1998) and essentially the score it
gives to a page reflects the chance that the random surfer will land on that page by
clicking on a link. In the context of global optimization, higher PageRank score means
higher chance to be found by theMonotonicBasinHopping algorithm,which performs
random walks on the directed network representing the optimization problem to be
solved.

4 Numerical results

In this section we demonstrate the usage and implications of the analysis of the Basin
HoppingNetworks of global optimization problems. For this purpose, twowell-known
benchmarking problems have been selected from the literature which we discuss in
Sects. 4.1 and 4.2 in full details. Further test functions are also analyzed in Sect. 4.3.
We are interested to see if the global and local measures listed in Sect. 3 are able to
characterize the solvability of the problems.

The implementation of Algorithm 2 was done in AMPL (Fourer and Kernighan
2002), which allows to use a very general class of objective functions and a large
selection of local optimizer methods. In our tests we used MINOS (Murtagh and
Saunders 2003) as local optimizer L . The parameters were:

– the local stopping rule (in Line 10) was: 10,000 iterations;
– the global stopping rule (in Line 11) was: 50 iterations;
– the parameter γ (see Locatelli (2005) for details) was set to 0.5;
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– and the values of P in the post-processing were starting from 20 up to 70 with
increment 5.

In order to compute the measures listed in Sect. 3, we used the igraph package in
R and the NetworkX package in Python. Modularity Q and number of communities
K were calculated with the method called Multi Level (Blondel et al. 2008), which is
based on local optimization of the modularity measure around a node.

As we have already discussed in Sect. 2.3, the output of the implemented procedure
for a given global optimization problem is a set of graphs. These graphs are then used
for two types of analysis.

– First, we need to select one of them, which gives the BHN representation of the
problem. The selection of this graph is done in the followingway. It is assumed that
the global optimization problem is continuous, hence the BHN representationmust
be a connectedgraph. Furthermore, as a general rule,we select that connectedgraph
which corresponds to a P value at which the diameter of the graph gets increased
in case of choosing a larger P value. This is motivated by aiming at getting such
BHN which is close to the natural LON of the problem. If the diameter of the
graph gets increased then it is an implication that we just removed a significant
amount of edges than before. On the other hand, if the diameter does not change by
removing edges, that means we have removed edges from the short ones from all
shortest paths (i.e. we have removed unrealistic huge jumps between nodes which
are far away from each other in the natural LON).
The graph which represents the optimization problem can then be analyzed using
the measures from Sect. 3.

– Secondly, the series of graphs can be considered as results of a certain edge-deleting
procedure. This way the robustness of the graphs can be measured with respect
to a particular metric called random walk betweenness centrality (RWBC) (New-
man 2005). RWBC is a local measure, a particular variation of the betweenness
centrality (see Sect. 3). It is based on random walks, counting how often a node
is traversed by a random walk between two other nodes. Calculation of RWBC
values are done on the vertices of graph G using the edge weights obtained by
executing Algorithm 2, i.e., where we count how many times this edge has been
found already. In particular, we essentially associate a relative quantity to the node
corresponding to the global optimum and thus it can be seen and compared how
it relates to the other nodes’ RWBC values.

4.1 Griewank function

The first test function we study is proposed by Griewank (1981) and it has the form

Griewankn(x) =
n∑

i=1

x2i
4000

−
n∏

i=1

cos

(
xi√
i

)
+ 1.

Usually the search space used in the literature is xi ∈ [−600, 600], (i = 1, . . . , n).
However, as this function has a huge amount of local minima we restrict the search
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Table 1 Network properties of Griewank graphs

Graph Size 〈k〉 � D C Q K

G (n = 2, P = 30) 123 7.4796 4.7419 12 0.4810 0.6152 7

Gm (n = 2, P = 30) 123 3.7642 3.7609 11 0.4629 0.6179 7

G (n = 3, P = 45) 1359 6.8286 8.7206 20 0.1551 0.7019 12

Gm (n = 3, P = 55) 1359 2.8182 5.9961 17 0.0330 0.7180 13

Fig. 3 A BSN of Griewank2
function. Colors represent
community structure, size of a
node corresponds to its
PageRank value (color figure
online)

space to a much smaller one: x ∈ [−28, 28]n . This restriction results in a smaller
network, whose size can be justified by the literature (Cho et al. 2008).

The Griewankn function, independently from its dimension n, has exactly one
global minimizer point with value 0, located at the origin. Although the number of its
local minima is growing exponentially with n, the locations of these minima follow
a regular pattern. This makes the corresponding network of simple form. Namely, in
n = 2 it is a regular lattice, whose structure remains the same in higher dimensions as
well.

Graph measures The summary of the graph measures are listed in Table 1. Note
that the sizes of the networks reported here are in accordance with the (estimated)
number of local optima reported in Cho et al. (2008) if the search space is restricted
to [−28, 28]n . We chose to study this test function first, mainly because of its regular
structure, which is well illustrated on Fig. 3. As we can see, almost all the nodes (apart
from those at the edge) have the same degree, so this graph is a typical example of the
Erdős–Rényi random networks (see Sect. 3).

It can be immediately noticed that the BHNs have relatively large diameters. This
indicates that an optimization method needs to take a large number of iteration steps
to guarantee success. This fact is already known from the literature, see, e.g. Locatelli
(2003). It is worth mentioning here that although these graphs have large modularity
values, which implicates the presence of communities in the network, their nodes
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Fig. 4 Degree investigation of Griewank networks; the points are jittered for better visibility. a n = 2, b
n = 3

are very similar to each other with respect to their degree. Thus high Q values are
misleading in these cases. We can also notice that the clustering coefficient C is much
smaller for n = 3 than for n = 2, which should also be treated with care. In fact the
simple reason for this is the BSN we found for n = 3 is incomplete compared to the
natural LON representation. As we have already discussed, finding the natural LON
representation of an optimization problem is practically impossible in general. Still,
it can be constructed easily for the Griewank problem given its regular structure.

Concluding the analysis with the graph measures we can say that they do not give
us any particular insights about the Griewank test problems.

Degree investigation For investigating the degree distribution of theBHNswepropose
the usage of a scatter plot on which the degree of the vertex of the undirected graph
and the in-degree of the same vertex of the directed graph can be compared. This
kind of visualization gives a very interesting landscape of the problem’s local optima.
Figure 4 shows the corresponding plots for the Griewank test function. By definition,
no points can be above the red line. Note that in both cases the point representing the
global optimum (which must be on the red line) is at the top right corner of the figure
and the other points are beneath. This implies that the Monotonic Basin Hopping
method has a much better chance to find the global optimizer point than the Generic
BH method in which steps towards non-improving solutions are allowed.

Robustness of BHNs Using the graph sequences we obtained from Algorithm 2 we
calculated the random walk betweenness centrality (RWBC) values. The results of
these experiments are shown on Fig. 5. Note that a higher P value means a sparser
graph, thus higher P values correspond to such runnings of the Basin Hoppingmethod
where the number of iterations are relatively small (compared to those represented by
lower P values). For both cases the RWBC value of the global optimum is higher than
the nodes’ average RWBC value. We can also see that for many P values the global
optimum vertex has the highest RWBC value, especially for low P values. Clearly,
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Fig. 5 Random walk betweenness centralities of Griewank networks. a n = 2, b n = 3
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Fig. 6 PageRank values of Griewank networks. Note that the global optimum vertex has the highest
PageRank score. a n = 2, b n = 3

nodes with high RWBC values are easier to be found by random walks. Thus, we
can conclude that finding the global optimum by Basin Hopping using the general
approach is not hopeless, it is only a matter of allowing large numbers of iterations.
On the other hand, it is also indicated by these figures that the RBWS values do not
really change for lower P values, thus, by only letting the BH search run for a longer
time does not guarantee success in global optimization.

Turning now our attention to the monotonic network representations, we have
already seen in Fig. 3 that due to the special structure of the Griewank functions
the global optimum node has the highest PageRank score. Figure 6 shows the calcu-
lated values for the different P levels together with the mean PageRank scores. Note
that the PageRank value of the global optimum is the highest, hence there are overlaps
on the figures. It is clearly advised that using the BHmethod for solving the Griewank
problems should be done using the Monotonic approach.

4.2 Schwefel

Another test problem we study is the Schwefel function which is defined as follows:
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Table 2 Network properties of Schwefel graphs (directed graph)

Name Size 〈k〉 � D C Q K

G (n = 2, P = 50) 64 14.9688 2.0761 4 0.5712 0.3679 4

Gm (n = 2, P = 45) 64 7.8281 2.0447 5 0.5478 0.4039 4

G (n = 3, P = 30) 502 17.4522 3.4073 7 0.3877 0.5345 6

Gm (n = 3, P = 40) 492 7.849593 3.6651 10 0.3655 0.5501 7

Schwe f eln(x) =
n∑

i=1

−xi sin(
√|xi |) xi ∈ [−500, 500].

This problem differs from the previous one in a sense that it has exponentially growing
number of local minimizer points whose values are very close to the global optimum
and, more importantly, they are located at different regions of the search domain.
Thus, this function is considered as a hard problem instance for global optimization
methods.

Graph measures The properties of the BHNs we found for the Schwefel problems
are listed in Table 2. Comparing the different quantities to the ones we obtained for
the Griewank functions, we can immediately see the differences everywhere. First of
all, the Schwefel networks have very small diameter as well as small average path
lengths. This means that the BHmethod can discover the entire network in reasonable
time. However, it must be emphasized that this is true for the BH using the General
approach. The modularity values are not that high compared to those of the Griewank
networks. Still, the community structure is clearly there in these Schwefel networks,
as it is even shown on Fig. 7. Note that the vertices representing the local optima are
moved to the periphery for better visibility. We can see here a very interesting fact,
namely that 3 out of 4 local optimizer points are in different communities. This is
certainly an indication that the Schwefel functions are difficult problems for global
optimization methods. In particular, applying the Monotonic approach for BH search
is not advised in this case.

Degree investigation Figure 8 shows the degree investigation of the Schwefel prob-
lems. In order to understand what makes this problem difficult to be solved (at least for
BH) we note that the point representing the global optimum is always the one which
has the lowest degree, i.e., it is the bottom left point on the red line, indicated by a label
’GO’. In particular, for n = 3, where the number of local optima is 8, there are many
vertices having larger degree than that of the global optimum vertex and hence they
are having higher probabilities to be found by random walk. Hence, this is another
evidence for indicating the usefulness of applying the Generic BH approach for the
Schwefel problems.

Robustness of BHNs Finally, we have calculated the RWBC and PageRank scores for
the series of Schwefel networks. Figure 9 shows theundirected case, thus it corresponds

123



1000 T. Vinkó, K. Gelle

Fig. 7 A BSN of Schwefel2
function; colors represent
community structure (color
figure online)
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Fig. 8 Degree investigation of Schwefel networks; points are jittered for better visibility. a n = 2, b n = 3
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Fig. 9 Random walk betweenness centralities of Schwefel networks; black lines with square markers
represent local optima. a n = 2, b n = 3
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Fig. 10 PageRank values of Schwefel networks; black lines with square markers represent local optima.
Note the different scales on the y-axes. a n = 2, b n = 3

Table 3 Network properties of additional test functions

Name Size 〈k〉 � D C Q K

Levy8 (n = 2, P = 40) 47 13.0426 1.9172 4 0.5917 0.2035 4

Levy8m (n = 2, P = 70) 45 3.8222 1.8422 4 0.4386 0.3217 4

Levy8 (n = 3, P = 35) 97 9.4124 2.4099 5 0.4728 0.2612 5

Levy8m (n = 3, P = 50) 78 4.3333 2.1189 5 0.4353 0.3928 4

Ackely (n = 2, P = 30) 111 14.5225 2.4985 6 0.5988 0.2103 5

Ackleym (n = 2, P = 20) 109 7.1927 2.3597 7 0.5766 0.3638 6

Ackley (n = 3, P = 30) 358 13.9469 3.0894 7 0.4427 0.2452 5

Ackleym (n = 3, P = 30) 356 7.5365 2.7845 9 0.3928 0.4361 6

Rastrigin (n = 2, P = 20) 118 21.6102 2.2024 6 0.5933 0.1704 4

Rastriginm (n = 2, P = 30) 116 10.0086 2.0473 6 0.5394 0.2714 5

Rastrigin (n = 3, P = 65) 335 13.2298 2.8954 8 0.3728 0.2548 10

Rastriginm (n = 3, P = 60) 351 9.3988 3.0543 14 0.3717 0.2905 9

Sinusoidal (n = 2, P = 25) 178 22.6348 2.3764 6 0.5455 0.2010 5

Sinusoidalm (n = 2, P = 25) 167 10.3353 2.5047 6 0.4918 0.3723 6

Sinusoidal (n = 3, P = 65) 912 12.2983 3.9024 12 0.3365 0.3557 7

Sinusoidalm (n = 3, P = 60) 946 7.7833 3.1646 10 0.2892 0.4276 10

to the Generic Basin Hopping. We can immediately see that in these cases the global
optimum vertex has lower value that those representing the local minima. Moreover,
the node having the maximum RWBC score is a different one. For small P values
(representing longer runs of the optimizer method) and n = 3, interestingly, the
differences between the GO and the local minima are vanishing. However, this is not
the case for n = 2. Though this does not imply that finding the global optimum of
the Schwefel function is easier for higher dimension, it only indicates that for higher
dimension the probabilities of finding any local minima (including the global one) are
roughly equal. Hence, the advice here is to use the Generic Basin Hopping, which can
more easily escape from local minimizer points compared to theMonotonic approach.
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Fig. 11 Degree investigation of Levy8 networks; the points are jittered for better visibility. a n = 2, b
n = 3
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Fig. 12 Degree investigation of Ackley networks; the points are jittered for better visibility. a n = 2, b
n = 3

Regarding PageRank values on the directed networks, we obtain a completely
different result, see Fig. 10. In this case we include networks for higher P values,
which represent shorter BH runs. Although all the local optima have higher score than
the average, the global optimum node ranks lower than the other optima. For large P
values all of them are below the maximum score. When the P value is low, i.e., when
the BH algorithm is allowed to take larger amount of iterations, the global optimum
vertex has the highest PageRank score. The reason for this is very simple: being stuck
in a local optimum by the Monotonic Basin Hopping, the only vertex to which we
can jump is the global optimum node. Due to the recursive definition of PageRank,
the global optimum node becomes the vertex of highest rank. Note that this happens
when letting the MBH algorithm run for exceptionally long time.
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Fig. 13 Degree investigation of Rastrigin networks; the points are jittered for better visibility. a n = 2, b
n = 3

4.3 Further test functions

In this sectionwe show the analysis of further global optimization test functions. These
functions are also extensively used as benchmarks in the GO literature, hence we do
not give here the full definitions, only the references: Ackley (2012), Levy8 (Levy
et al. 1981), Rastrigin (Torn and Zilinskas 1989), and Sinusoidal (Zabinsky and Smith
1992). As for the Griewank and Schwefel problems, the 2 and 3 dimensional versions
of these additional functions were investigated. The results of the network measures
are shown in Table 3.

We start with the discussion on Levy8. These functions have the smallest number
of local minima, the smallest average path length and diameter, large clustering coef-
ficients and the smallest number of communities. The degree investigation of Levy8
graphs are shown on Fig. 11. For n = 2 the global optimizer node has the highest inde-
gree in Gm and there is only one node which has higher indegree in G. Similar trend
can be noticed for n = 3. We conclude that the Levy8 functions are the most simple
ones for MBH. These indicators are in lines with the experiments done in Locatelli
et al. (2014) using MBH.

The Ackely and Rastrigin problems are similar to the already analyzed Griewank
problemwith respect to their landscape, their corresponding BH networks show rather
regular grid structure. On the other hand, as we can see from the graph measures, the
Ackely and Rastrigin functions have less number of nodes, larger average degree,
smaller average path length and diameter compared to Griewank. The degree investi-
gation figures of Ackely functions (see Fig. 12) are similar to Griewank in the sense
that there are only a few nodes which have higher degree than the global minimizer.
In line with the experiments done in Locatelli et al. (2014) using MBH, Rastrigin
functions are slightly more difficult to solve, which can also be demonstrated by the
degree investigation, see Fig. 13. We conclude that these test problems can be solved
easier than the Griewank problem.
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Fig. 14 Degree investigation of Sinusoidal networks; the points are jittered for better visibility. a n = 2,
b n = 3

Finally, the Sinusoidal test problem has the largest number of nodes. This simple
fact does not make it difficult to solve. As it can be seen in Fig. 14, especially for
n = 3, the global minimizer node has the highest degree.

5 Conclusions

Basin Hopping Networks are interesting representations of global optimization prob-
lems.Using the rich set ofmeasures andmetrics fromnetwork science lots of properties
can be analyzed regarding the solvability of continuous problems by the fundamental
heuristic method Basin Hopping. In this paper we have investigated some well-known
benchmark problems, hence our contribution here can be regarded as ’telling classical
optimization stories in the language of network science’. It needs to be emphasized
that we did not want to solve the optimization problems but to analyze their structural
properties. Hence, we proposed and successfully applied a graph building scheme
which, in order to discover how the heuristic BH method performs its search, results
in a series of (weighted) networks representing possible outcomes of BH run with
different parameter setups.

As future works we can outline two main directions. Based on the results shown
in this paper, it is worth dealing with the development of an extension of the Basin
Hopping method. That version would work as follows. During its run the algorithm
would build up the BHN representation of the global optimization problem. Using that
network it would adaptively change its parameters (local stopping rule, direction of
search, length of the jumps, acceptance criterion, etc) according to the characteristics
of the BHN. For example, if it detects strong community structure in the network then
the algorithm should make bigger jumps in the search space to discover further details.
This and further techniques might result in a Basin Hopping approach which, although
for a price of larger computational cost, would give higher level of guarantee that the
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best solution found is the real global minimum. This has particular relevance in case
of multimodal optimization.

Another line of research is to discover such network representations of global
optimization problems which correspond to other optimization methods. Although
many heuristic methods share similarities to BH, it would be interesting to see and
compare the different graphs and develop benchmarking methodologies based on
network science.
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