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Abstract DEX is a qualitative multi-criteria decision analysis method. The method
supports decision makers in making complex decisions based on multiple, possi-
bly conflicting, attributes. The attributes in DEX have qualitative value scales and
are structured hierarchically. The hierarchical topology allows for decomposition of
the decision problem into simpler sub-problems. In DEX, alternatives are described
with qualitative values, taken from the scales of corresponding input attributes in the
hierarchy. The evaluation of alternatives is performed in a bottom-up way, utilizing
aggregation functions, which are defined for every aggregated attribute in the form of
decision rules. DEX has been used in numerous practical applications—from every-
day decision problems to solving decision problems in the financial and ecological
domains. Based on experience, we identified the need for three major methodological
extensions to DEX: introducing numeric attributes, the probabilistic and fuzzy aggre-
gation of values and relational models. These extensions were proposed by users of
the existing method and by the new demands of complex decision problems, which
require advanced decision making approaches. In this paper, we introduce these three
extensions by describing the extensions formally, justifying their contributions to the
decisionmaking process and illustrating themon a didactic example,which is followed
throughout the paper.
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2 N. Trdin, M. Bohanec

1 Introduction

Decision making is a process in which a decision maker (DM) selects an alternative
from among several possible alternatives which best satisfies his/her goals (Bouys-
sou et al. 2006; Figueira et al. 2005; French 1986). Decision analysis (Clemen and
Reilly 2001; Nagel 1993; Skinner 2009) is a discipline that provides a framework for
analysing decision problems, which typically involves the development of a model
for the evaluation and analysis of alternatives. A common class of models employs
methods of multi-criteria decision analysis (MCDA), where alternatives are evaluated
using multiple, possibly conflicting, criteria (Bouyssou et al. 2006; Figueira et al.
2005; Ishizaka and Nemery 2013).

A common group ofMCDAmethods use numerical variables for values and prefer-
ences; typical representatives are the Analytic Hierarchy Process (AHP) (Saaty 2008;
Saaty and Vargas 2012), French abbreviation for Elimination and Choice Express-
ing Reality (ELECTRE) (Roy 1991), Preference Ranking Organization METHod for
Enrichment of Evaluations (PROMETHEE) (Brans and Vincke 1985) and French
abbreviation for Additive Utilities (UTA) (Jacquet-Lagrèze and Siskos 1982). In con-
trast, there is a class of qualitative multi-criteria methods which are characterized
by using qualitative variables whose value scales contain a finite predefined set of
qualitative (or symbolic, “verbal”) values. There are two groups of qualitative MCDA
methods which differ in the way knowledge is acquired from the DM while building
a decision model (Boose et al. 1993): (1) methods based on an interactive questioning
procedure for obtaining the DM’s preference, and (2) methods that acquire the DM’s
preferences directly.

Representative methods of the interactive questioning procedure are MACBETH,
ZAPROS and ORCLASS. Measuring Attractiveness by Categorical Based Evaluation
Technique (MACBETH) (Bana eCosta andVansnick 1999) uses attractiveness and dif-
ferential judgments between attributes in order to build preferential relations between
alternatives. ZAPROS and ORCLASS are methods belonging to Verbal Decision
Analysis (VDA) (Larichev and Moshkovich 1994, 1997; Moshkovich and Mechi-
tov 2013). Russian abbreviation for Closed Procedures near Reference Situations
(ZAPROS) (Larichev 2001; Larichev and Moshkovich 1995) provides outranking
relationships among alternatives through a verbal decision making approach. ORdinal
CLASSification (ORCLASS) (Gomes et al. 2010) assigns alternatives to predefined,
ordered classification categories, where alternatives are placed into classes using a set
of criteria.

Typical representatives of the second group are the methods DRSA, Doctus and
DEX. Dominance-based Rough Set Approach (DRSA) (Greco et al. 2001, 2002)
uses rough sets theory with the goal of solving alternative classification and sorting
problems represented by decision tables, using the principle of dominance. DRSA
has a strong mathematical foundation (Greco et al. 2001) and has evolved in many
directions—for example, considering imprecise evaluations and assignments (Dem-
bczyński et al. 2009) and dealing with decisions under uncertainty and time preference
(Greco et al. 2010). Doctus (Baracskai andDörfler 2003) is aKnowledge-BasedExpert
System Shell used for evaluation of alternatives and supporting three types of alterna-
tive evaluation: Rule-Based Reasoning, Case-Based Reasoning and Case-Based Rule

123



Extending the multi-criteria decision making method DEX… 3

Reasoning. The third method from this group is DEX, which is addressed in this
work.

Decision EXpert (DEX) is a qualitative multi-attribute modelling method which
integrates multi-criteria decision modelling with rule-based expert systems (Bohanec
et al. 2013). A DEX model consists of hierarchically structured qualitative attributes
whose values are words rather than numbers. The aggregation is defined by decision
rules. DEX has been widely used in practice to support complex decision processes
in health threats and crisis management (Žnidaršič et al. 2009), the use of genetically
modified crops (Bohanec et al. 2009; Bohanec 2008; Bohanec and Žnidaršič 2008;
Žnidaršič et al. 2008), the evaluation of data mining work flows (Žnidaršič et al. 2012),
the evaluation of public administration portals (Leben et al. 2006), the assessment of
bank reputational risk (Bohanec et al. 2014), environmental decision making (Kuz-
manovski et al. 2015; Žnidaršič et al. 2006b) and many others (Bohanec et al. 2013).
DEX is described in Sect. 2.

Themany uses of DEX have indicated a great practical value of themethod but have
also revealed the need to extend it in several directions. Three substantial extensions
(Trdin and Bohanec 2012, 2014a) were identified by practical needs, especially with
the aim to provide additional features for DMs. The extensions were proposed by the
developers, users and other contributors to the method, who are facing new and more
demanding decision problems.

The main purpose of this paper is to propose and formally develop the following
three extensions to DEX:

1. The inclusion of numeric attributeswhich allow for combined qualitative and quan-
titative modelling and eliminate the current need to transform numeric attribute
values to qualitative.

2. Support for probabilistic or fuzzy value distributions, allowing one to cope with
uncertainty in models and data.

3. Support for relational models and alternatives, allowing for the opportunity to han-
dle relational connections between alternatives and their parts, when alternatives
are composed of multiple similar sub-parts.

Each extension is developed formally and illustrated using a didactic example.
The structure of this paper is as follows. Section 2 describes the DEX method and

introduces a didactic example, which is used throughout the paper. Sections 3, 4 and
5 present the proposed extensions of DEX: using numerical attributes, probabilistic
and fuzzy distributions and relational models, respectively. The contributions and
consequences are discussed in Sect. 6. Section 7 concludes the paper.

2 DEX method

DEX (Bohanec 2015a; Bohanec and Rajkovič 1990, 1999; Bohanec et al. 2013;
Bohanec and Trdin 2014; Trdin and Bohanec 2012, 2014a) is a qualitative multi-
criteria decision modelling method. DEX uses qualitative scales which consist of a
finite set of symbolic attribute values, such as “bad”, “medium” and “good”, rather than
numeric values. These values are usually, but not necessarily, preferentially ordered.
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4 N. Trdin, M. Bohanec

Consequently, a DEX model generally consists of attributes, some of which are pref-
erentially ordered and can be thus referred to as criteria.

A DEX model has a form of a hierarchy, which represents the decomposition of
the decision problem and relations between attributes: higher-level attributes depend
on lower-level ones. The terminal nodes of the hierarchy are called input or basic
attributes, whereas all other attributes are called aggregated attributes. Additionally,
attributes without any parents are called roots. A typical model has only one root,
which represents the primary outcome of the evaluation of alternatives. There are no
conceptual limitations, however, to having multiple roots—for example, to represent
evaluations from different viewpoints. In MCDA, hierarchies are commonly used in
methods such as AHP (Saaty 2008) and Multiple Criteria Hierarchy Process (MCHP)
(Corrente et al. 2012).

The aggregation of values in the model is facilitated by decision rules. To com-
pute an aggregated attribute’s value from the values of its children, each aggregated
attribute has an associated total aggregation function. The function is defined by a
decision table—interpretable as a set of decision rules. The total aggregation function
needs to specify an output value for each combination of children’s values. Such tables
are typically prepared by the DM according to his/her preferences. Another method in
MCDA that relies on decision tables is DRSA (Greco et al. 2001). There, a decision
table is understood mainly as a collection of decision alternatives rather than a con-
structed specification of an aggregation function. In contrast to DEX, decision tables
in DRSA may contain both qualitative and numeric criteria.

The evaluation of alternatives is done in a bottom-up way. The input attribute
values for some alternative are acquired directly from the alternative. The evaluation
is carried out progressively from the lowest attributes in the hierarchy to its roots.
Each aggregate attribute’s value is computed using the corresponding aggregation
function.

Currently, DEX method is implemented in the software called DEXi (Bohanec
2014, 2015b). DEXi supports an interactive construction of the decision model and
alternatives. The software aids in defining decision rules and checking their complete-
ness and consistency and provides a number of analytical decision tools. The user
can make an in-depth analysis of evaluations and decision alternatives. For exam-
ple, each computed value has an associated decision rule, which was used to obtain
that value; the rule explains how the evaluation was obtained. Moreover, the decision
rule was applied on the basis of values computed by previous evaluations, which can
also be drilled down even further, explaining the sources for such evaluation and thus
providing evidence of why the evaluation was such.

DEXi software includes four different analysis procedures for the evaluated alterna-
tives (Bohanec 2014): (1) “Plus-minus-1 analysis” checks to which extents alternative
evaluations are affected by small changes to the input attribute values; (2) “Selective
explanation” informs the user about the strong and weak components of each alter-
native; (3) “Compare” compares the pre-selected alternatives attribute-wise, and (4)
“Charts” are able to plot k sided utility diagrams based on the selected alternatives
and k selected attributes.
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Extending the multi-criteria decision making method DEX… 5

2.1 DEX model

Formally, a DEX model M is a four-tuple M = (X, D, S, F), where X is the set of
attributes, S is the descendant function that determines the hierarchical structure of M ,
D is the set of value scales (domains) of attributes in X and F is the set of aggregation
functions.

The set X consists of n attributes:

X = {x1, x2, . . . , xn} . (1)

In practice, attributes are usually given a name, which uniquely identifies the
attribute—for instance “price”, “quality”, “location”, etc. In the didactic example,
introduced later in Sect. 2.2, we will often denote an attribute by its name (e.g. loca-
tion) and use a named subscript to denote related components (e.g. Dlocation).

Each attribute xi ∈ X has a corresponding value scale Di ∈ D, which is an ordered
set of symbolic (qualitative) values:

Di =
{
wi1 , wi2 , . . . , wimi

}
, l �= k ⇔ wil �= wik . (2)

Here, mi is the number of values in the scale of attribute xi . In practice, attribute
values are also represented by words, such as “low”, “good”, “acceptable” and “yes”.

With respect to the DM’s preferences, scales can be either ordered or unordered. If
the scale is totally ordered, then the DM defines the preferential operator �. For each
j ≤ k, j, k ∈ [1,mi ], we write wi j � wik and interpret that wik is preferentially at
least as good as wi j . For ordered scales, we use the notation:

Di =
(
wi1 , wi2 , . . . , wimi

)
. (3)

According to the usual convention (Greco et al. 2001), attributes with preferentially
ordered scales are called criteria.

Attributes are structured hierarchically: each attribute xi may have some descen-
dants (children) and/or predecessors (parents) in the model. This relationship is
described by the function S : X → 2X , which maps each attribute xi ∈ X to a
set of its descendants S (xi ):

S (xi ) = {
xi1 , xi2 , . . . , xik

}
, l �= m ⇔ xil �= xim ,

xi j �= xi , j = 1, . . . , k, (4)

xi1 , xi2 , . . . , xik ∈ X.

The relations induced by S must represent a hierarchy—that is, a connected and
directed acyclic graph. Such a graph contains finitely many edges and vertices, where
each edge is directed from one vertex to another. Further, starting in arbitrary vertex
x and traversing the graph through all possible paths, one will never reach vertex x
again. In most practical cases the graph induced by S represents a tree—all attributes
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6 N. Trdin, M. Bohanec

except one root attribute, have exactly one parent. In general, however, a hierarchy
may have several roots and may contain attributes that influence more than one parent
attribute. If S does not form a hierarchy, then the directed graph contains one or more
cycles, and the evaluation of alternatives is generally not possible—for that reason we
restrict S to acyclic graphs.

Themodel input attributesmodelInputsM constitute a set of all attributes that do not
have any children in the hierarchy. Additionally, the model input space inputSpaceM
is defined as the Cartesian product of attributes’ scales in modelInputsM :

modelInputsM = {xi ∈ X | S (xi ) = ∅},
inputSpaceM = Dj × Dl × · · · × Dk, x j , xl , . . . , xk ∈ modelInputsM .

(5)

Model output attributes and model output space are defined similarly—
modelOutputsM as a set of all attributes in model M that are not children of any
other attribute; outputSpaceM as the Cartesian product of these attributes’ scales:

modelOutputsM =
⎧⎨
⎩xi ∈ X | xi /∈

⋃
x j∈X

S
(
x j

)
⎫⎬
⎭ ,

outputSpaceM = Dj × Dk . . . × Dl , x j , xl , . . . , xk ∈ modelOutputsM .

(6)

Another useful set is the set of all aggregated attributes, aggAttributesM . These
attributes are the ones whose values have to be computed when evaluating alternatives.
Structurally, they appear as internal nodes in the hierarchy:

aggAttributesM = {xi ∈ X | xi /∈ modelInputsM }. (7)

Each aggregated attribute xi ∈ aggAttributesM needs an aggregation function, so
that the decision alternatives can be evaluated. We denote fi ∈ F as the aggregation
function corresponding to attribute xi . Each aggregation function fi is a total function
that maps all scale value combinations of xi ’s inputs to an interval value in scale Di :

fi : Di1 × Di2 × · · · × Dik → I (Di ),
{
xi1 , xi2 , . . . , xik

} = S (xi ) . (8)

Here, I (Di ) represents the space of all possible intervals [vl , vh] = {v j |vl � v j �
vh ∧ vl , v j , vh ∈ Di }.

Such aggregation functions are usually represented as tables which assign an output
value to each possible input value combination. Such tables can also be interpreted as
if-then rules. Examples of such tables are given in Sect. 2.2.

For the purpose of using functions fi in the evaluation of alternatives, especially in
the extended DEX method described later in this paper, we also define functions Fi ,
which are generalizations of fi and are defined on sets of values rather than on crisp
values. The Fi function definition corresponding to the associated function fi is:

Fi : 2Di1 × 2Di2 × · · · × 2Dik → 2Di . (9)
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Extending the multi-criteria decision making method DEX… 7

Functions Fi are expected to produce the same results on the same singleton input
values as their fi counterparts:

∀vi1 ∈ Di1, vi2 ∈ Di2 , . . . , vik ∈ Dik : Wi1 = {
vi1

}
,

Wi2 = {
vi2

}
, . . . ,Wik = {

vik
} ⇒

Fi
(
Wi1 ,Wi2 , . . . ,Wik

) = { fi
(
vi1 , vi2 , . . . , vik

)}. (10)

Given fi , the value for function Fi is computed as:

Fi
(
Wi1 ,Wi2 , . . . ,Wik

) =
⋃

(
vi1 ,vi2 ,...,vik

)∈Wi1×Wi2×···×Wik

{ fi
(
vi1 , vi2 , . . . , vik

)
)}.

(11)
With AM , we denote the set of all decision alternatives for some model M :

AM = {a1, a2, . . . , am} . (12)

Here, each alternative is defined in the Cartesian space inputSpaceM , so that ai ∈
inputSpaceM .

Alternatives in AM are evaluated with model M with function evaluationM :

evaluationM : inputSpaceM → outputSpaceM . (13)

The evaluation of alternative ai on model M is done by computing the function
evaluationM (ai ) and assigning output values to all attributes from outputSpaceM .
The evaluation is done as a bottom-up aggregation of model inputs toward its outputs
according to the hierarchical structure of the model. Algorithmically, all aggregated
attributes in model M are first topologically sorted with respect to S. The sorting
determines the order of aggregation function evaluations and ensures that all inputs
to the current aggregation function are readily available. The values of aggregated
attributes are computed using the corresponding functions Fi in the given order. This
produces the output evaluations in modelOutputsM .

2.2 Didactic example

We will follow the same didactic example through the whole paper: choosing an
apartment to buy. At the first stage, the model is developed using the DEX method
without any extensions. Later, we will gradually develop the example using the DEX
extensions proposed in this paper.

The model has one root attribute, apartment, and three children: price, location and
layout. These three attributes are split into finer detail, which can be seen in Fig. 1.
For example, price depends on the buying price and the price of utilities.

All attributes have qualitative values assigned to their value scales, which are also
shown in Fig. 1 beneath the attributes’ names. Notably, the model has a simple tree
structure, in which none of the attributes influences more than one parent attribute. In
total, there are 18 attributes: 11 input and 7 aggregated, including one root attribute.
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8 N. Trdin, M. Bohanec

apartment
v-bad, bad, ok, good, v-good

price
high, med, low

buying price
high, med, low

utilities
high, med, low

location
bad, ok, good

neighbourhood
bad, ok, great

proximity
far, manag., near

work
far, near

shops
far, near

layout
bad, ok, good

interior
bad, ok, good

size
small, big

equipment
no, some, yes

balcony
no, yes
#rooms

1, 2, more

exterior
bad, ok, good

parking
no, yes

appearance
bad, ok, good

Fig. 1 Model for evaluating an apartment. The tree structure of attributes is presented. A name and value
scale is shown for each attribute. The type of the attribute is indicated by the box shape: input attributes
(rectangular) and aggregate attributes (round corners)

Formally, the model has attributes:

X = {apartment, price, location, layout, buying price, utilities,

neighbourhood, proximity, interior, exterior,work, shops, size, equipment,

balcony, #rooms, parking, appearance}. (14)

The scales of the attributes are defined in Fig. 1. All the scales are ordered prefer-
entially, for instance:

Dapartment = (v-bad, bad, ok, good, v-good) . (15)

The function S can be read directly from the model structure presented in Fig. 1:

S (apartment) = {price, location, layout} ,

. . .

S (exterior) = {parking,appearance} ,

S (buyingprice) = · · · = S (appearance) = ∅. (16)

With all of these in place, we can now define modelInputsM , inputSpaceM ,
modelOutputsM , outputSpaceM , and aggAttributesM , where M is the Apartment
model. These can be directly constructed from Fig. 1:
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Table 1 Aggregation function
for final apartment assessment,
based on its price, location and
layout

price location layout apartment

high bad bad v-bad

high bad ok v-bad

high bad good v-bad

high ok bad v-bad

high ok ok v-bad

high ok good v-bad

high good bad v-bad

high good ok v-bad

high good good bad

med bad bad v-bad

med bad ok v-bad

med bad good v-bad

med ok bad bad

med ok ok bad

med ok good bad

med good bad bad

med good ok ok

med good good ok

low bad bad bad

low bad ok bad

low bad good ok

low ok bad good

low ok ok good

low ok good good

low good bad good

low good ok v-good

low good good v-good

modelInputs = {buyingprice, utilities, neighbourhood,work,
shops, size, equipment, balcony, #rooms, parking, appearance},

inputSpace = (high,med, low) × (high,med, low) × · · · × (bad, ok, good),

modelOutputs = {apartment},
outputSpace = (v-bad, bad, ok, good, v-good),

aggAttributes = {apartment, price, location, layout, proximity, interior, exterior} . (17)

Finally, to complete the model, we need formal definitions of aggregation functions
for the aggregated attributes. The aggregation functions for attributes in aggAttributes
are described by the sets of decision rules in Tables 1, 2, 3, 4, 5, 6 and 7. Even though
generally DEX aggregation functions map their arguments to interval values over
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10 N. Trdin, M. Bohanec

Table 2 Aggregation function
for price, dependent buying
price and monthly utilities

buying price utilities price

high high high

high med high

high low med

med high high

med med med

med low med

low high med

low med low

low low low

Table 3 Aggregation function
for location, dependent on
neighbourhood and proximity

neighbourhood proximity location

bad far bad

bad manag. bad

bad near ok

ok far bad

ok manag. ok

ok near good

great far ok

great manag. good

great near good

Table 4 Aggregation function
for layout, based on interior and
exterior

interior exterior layout

bad bad bad

bad ok bad

bad good ok

ok bad bad

ok ok ok

ok good ok

good bad ok

good ok good

good good good

Table 5 Aggregation function
for proximity, dependent on
proximity to work and shops

work shops proximity

far far far

far near manag.

near far manag.

near near near
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Table 6 Aggregation function
for interior, based on size,
equipment, balcony presence
and number of rooms

size equipment balcony #rooms interior

small no no 1 bad

small no no 2 bad

small no no more bad

small no yes 1 bad

small no yes 2 bad

small no yes more bad

small some no 1 bad

small some no 2 bad

small some no more bad

small some yes 1 bad

small some yes 2 ok

small some yes more ok

small yes no 1 bad

small yes no 2 ok

small yes no more ok

small yes yes 1 ok

small yes yes 2 ok

small yes yes more ok

big no no 1 bad

big no no 2 bad

big no no more bad

big no yes 1 bad

big no yes 2 bad

big no yes more ok

big some no 1 bad

big some no 2 bad

big some no more ok

big some yes 1 ok

big some yes 2 good

big some yes more good

big yes no 1 ok

big yes no 2 ok

big yes no more ok

big yes yes 1 ok

big yes yes 2 good

big yes yes more good
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12 N. Trdin, M. Bohanec

Table 7 Aggregation function
for exterior, dependent on
parking space availability and
appearance

parking appearance exterior

no bad bad

no ok bad

no good bad

yes bad ok

yes ok good

yes good good

xi ∈ X (Eq. (8)), only single values are used in this case. This is done by convention
if the lower and upper bounds of an interval are equal to some word wm ; then, instead
of writing [wm, wm], we write just wm . For example, a decision rule from Table 6 is:

fapartment (high,ok,ok) = v-bad. (18)

It can be interpreted as: “if price is high and location is ok and layout is ok, then
apartment is v-bad”.

Now that the model is complete, alternatives can be defined and evaluated. Let us
consider three different apartments, each described by a n-tuple of values correspond-
ing modelInputsM . The three apartments are shown in Table 8. Notice that all input
values are formulated in terms of qualitative values. In reality, we determine these
values from real values of alternatives. For example, we may assess the buying price
of 50.000 e as med. We assume that this process has already been carried out by the
DM, as shown in Table 8.

To illustrate the evaluation procedure, let us consider the alternative “Big”. A pos-
sible topological sorting of the aggregated attributes is:

(price, proximity, location, interior, exterior, layout, apartment). (19)

Consequently, the attributes should be evaluated according to this order—that is,
from price to apartment. The value of price is computed by the aggregation function
fprice, given the values for child attributes buying price and utilities. The functional
value for fprice (med,med) is med, which is given in Table 2 in the fifth row. Simi-
larly, the value for proximity is computed by computing function fproximity with values
(far,far)—produced value is far. The values for the remaining aggregated attributes
are produced in the same way, as shown in Table 9. The apartment “Big” is assessed
as very bad. The other two apartments, “Equipped” and “Nice”, are assessed as bad
and good, respectively.

3 Numeric attributes

Most MCDM methods are quantitative—they involve numeric attributes and real-
valued utility functions. DEX is a qualitative method and currently uses only
qualitative attributes. This approach is not always appropriate because it requires
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Extending the multi-criteria decision making method DEX… 13

Table 8 The table describes three different available apartments for evaluation

Alternative buying
price

utilities neighbourhood work shops size equipment balcony #rooms parking appearance

Big med med bad far far big no no more yes bad

Equipped med low ok near far small yes yes 2 yes ok

Nice low med ok near near small some no 1 no ok

Alternative names, input attributes and corresponding values are given

Table 9 Evaluations of three alternatives according to the developed model

Alternative price proximity location interior exterior layout apartment

Big med far bad bad ok bad v-bad

Equipped med manag. ok ok good ok bad

Nice low near good bad bad bad good

Values of aggregated attributes and the final evaluation are presented

that quantitative values are discretized before use, even for quantities that are natu-
rally measured and expressed with numbers. Furthermore, in many decision problems
there is a need to support both qualitative and quantitative attributes within the same
model (Bohanec et al. 2014; Kontić et al. 2014). Even though a few quantitative
features have already been considered within DEX (Mileva-Boshkoska and Bohanec
2012; Trdin and Bohanec 2012, 2014a, b; Žnidaršič et al. 2003), there is a strong need
to systematically introduce numerical attributes into the DEX method.

Introducing numeric attributes in DEX is thus aimed at extending the expressive
power of the method, so that both discrete and numeric attributes can be used and
combined in a single model. We wish to do this in a general and flexible way, making
sure that numerical attributes integrate well into the existing framework. The goal
is not to introduce any specific quantitative MCDA method in DEX, but to provide a
flexible schemawhich allows using different quantitativemethods for eliciting numeric
attributes, their weights and utility functions.

Adding numerical attributes requires a number of representational and algorithmic
extensions, such as adding numerical aggregation functions and handling transfor-
mations between qualitative and numeric values. Attribute value scales have to be
extended to include real numbers, integer numbers, bounded intervals over real num-
bers and bounded integer intervals, as expressed later in Eq. (20).

Supporting numeric attributes does not affect the principle of structuring attributes
in a hierarchy and assigning aggregation functions to aggregated attributes. However,
there is an essential difference in the aggregation functions themselves because, in
general, they have to cope with various combinations of qualitative and quantitative
attributes, both at function inputs (arguments) and function outcomes. For this rea-
son, we consider six different function types which differ by value type. There are
three combinations of basic types the function can receive: (1) all qualitative values
(denoted QQ), (2) all quantitative (numeric) values (NN) or (3) a mix of quantitative
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14 N. Trdin, M. Bohanec

and qualitative values (NQ). Regarding the output, the function can yield only one
type of output—either qualitative (Q) or quantitative (N ). Note that the basic DEX
method covers only one of these cases: functions that map from qualitative arguments
to qualitative values (denoted QQ → Q).

The introduction of quantitative attribute values increases the expressiveness of
attributes’ value scales and the aggregation of such quantitative values. The exten-
sion naturally incorporates numeric values and operations. Consequently, it provides
additional flexibility to the DM and decision analyst, and allows addressing a wider
class of decision problems. Inevitably, the drawback of the extension is an increased
complexity due to new types of aggregation functions.

3.1 Extension formalization

First, we need to extend the definition of the value scale Di for some xi given in
Eqs. (2, 3) to include numeric quantities:

Di =

⎧
⎪⎨
⎪⎩

(
wi1, wi2 , . . . , wimi

)
, or

[a..b] , a, b ∈ Z ∪ {−∞,∞} , or
[c, d] , c, d ∈ R ∪ {−∞,∞} .

(20)

This equation represents three possibilities for defining the value scale Di :

1. The first option remains the same as before: a finite list of words. The list may be
preferentially ordered.

2. The second option defines an integer interval by specifying two integer values
a, b, a ≤ b. The scale of the particular attribute is then composed of all integers
between a and b, inclusively. Note that we can also specify an unbounded interval
using negative or positive infinities.

3. The third option defines a real interval by choosing two real values c, d, c ≤ d. The
possible values of such attribute are all real values between c and d, inclusively.
Both infinities are also allowed.

These three cases introduce five types of primitive aggregation functions (Fig. 2).
Here, “primitive” means that the function can be defined in “one step”, using either a
single formula or a single decision table. In contrast, a “non-primitive” or “compound”
aggregation is defined by a hierarchical composition of primitive functions.

Function type 1 (QQ → Q): These functions have only qualitative inputs and a
qualitative output. They are already covered by the current DEXmethod andmodelled
by decision rules according to Eq. (8).

Function type 2 (QQ → N ): These functions have only qualitative inputs and a
numeric output. They are modelled similarly to Function type 1 by decision rules; the
only difference is that they output a single number or numeric interval instead of a
single word or interval of words. The output number is restricted to the scale of the
aggregated attribute. Function type 2 is already formally covered by Eq. (8), taking
the extended definition of Di in Eq. (20). Note that this function type includes the
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…

Q

QQ Q …

N

QQ Q

Function type 2

N

NN N

Function type 3

Q

N

Function type 4

…

N

NN N… QQ Q

Function type 5

Function type 1

Fig. 2 The five possible cases for configurations of qualitative and numeric primitive aggregation functions.
The function type is dependent upon its input types and its output type. The letters denote qualitative (Q)

attribute type or numeric (N ) attribute type

special case Q → N , where only one qualitative attribute is converted to a numerical
attribute.

Function type 3 (NN → N ): These functions have only numeric inputs and a
numeric output. They are modelled in a purely mathematical way using mathematical
operators on numeric functions’ arguments, such as +, −, ×, /, power, square, root,
etc., and numeric constants. A common representative of this function type is the
weighted average—for example,

∑n
i=1 wivi—where wi is the i-th attribute’s weight

and vi is its value. Similar to Function type 2, this function type is already formally
covered by Eq. (8). The difference is that all Di1, Di2 , . . . , Dik , Di are numeric scales,
and function fi is a mathematical expression. Functions of this type are commonly
used in quantitative MCDA methods and can thus be easily adopted in DEX, together
with already developed support for their acquisition and use in practice. For instance,
Function type NN → N , can use the weighted sum and employ AHP’s (Saaty 2008)
pairwise comparison to elicit attribute weights.

Function type 4 (N → Q): These functions discretize a single numeric input
attribute to an output qualitative attribute. Generally, a discretization function of the
i-th attribute (NQi ) maps real numbers to qualitative value scales:

NQi : A ⊆ R → Di , (21)

so that:

NQi (y) =
⎧⎨
⎩

wi p |y ∈ [a, b]
. . .

wir |y ∈ [c, d]
, wi p , . . . , wir ∈ Di . (22)

Function type 5 (NQ → N ): These functions have qualitative and numeric inputs
and a numeric output. The primitive specification of such functions is based on decision
tables, similar to function types 1 and 2. First, we define a decision table using all
qualitative function arguments. Second, in each row of the table a numerical function
of the remaining numeric attributes is defined. Formally, suppose that q1, q2, . . . , qk
are indices of all qualitative inputs to xi and n1, n2, . . . , nm all numeric ones. Let
Φ (xi ) denote the set of functions which receive all xi ’s numeric inputs and output a
numeric value in Di .

Φ (xi ) = { f | f : Din1
× Din2

× · · · × Dinm → Di } (23)
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16 N. Trdin, M. Bohanec

Let hi be a function which maps from all combinations of qualitative inputs to
space Φ (xi ):

hi : Diq1
× Diq2

× · · · × Diqk
→ Φ (xi ) . (24)

The overall aggregation function fi is then evaluated in two steps: (1) the value of
hi

(
vq1, vq2 , . . . , vqk

)
is used as a table lookup index to find the corresponding function

g ∈ Φ (xi ), and (2) evaluate g
(
vn1 , vn2 , . . . , vnm

)
. Formally:

fi
(
vq1, vq2 , . . . , vqk , vn1 , vn2 , . . . , vnm

) = hi
(
vq1, vq2 , . . . , vqk

) (
vn1 , vn2 , . . . , vnm

)
.

(25)
Using these five primitive function types, we can express other aggregations of

numeric and qualitative values. Among these, two are of special interest: NN → Q
and NQ → Q.

Compound function type NN → Q: These compound functions have only numeric
inputs and a qualitative output. They can be modelled in two ways:

1. Each numeric attribute can be first discretized and then aggregated by Function
type 1: (N → Q)(N → Q) → Q;

2. A mathematical expression can be constructed by Function type 3, and then a
single discretization can be applied on the output: NN → N → Q.

Compound function type NQ → Q: This function type has qualitative and numeric
inputs and a numeric output. It can be modelled with primitive function types in three
ways:

1. Discretizing the result retrieved from a Function type 5 function: (NQ → N ) →
Q;

2. Discretizing numeric inputs and creating a qualitative function on all qualitative
attributes: (N → Q)Q → Q;

3. Using Function type 3 on numeric attributes, discretizing its output and creating
a qualitative function on the result and qualitative attributes: ((NN → N ) →
Q)Q → Q.

The two compound function types are presented graphically according to their
descriptions in Figs. 3 and 4.

The compound function types NN → Q and NQ → Q can thus be modelled in
a number of different ways. On one hand, this is convenient, as the functions can be
flexibly adapted to the characteristics of the problem. On the other hand, this puts
additional burden on DM, as he/she has to decide which option to use in a given
situation. This decision is important, as different compound functions generally lead
to different results. The proposed approach fulfils the requirement for flexibility, but
does not answer the question on how to decide which option should be used. This is
left for further research and practice. At the time being, we assume that the choice of
compound functions is entirely at the DM’s responsibility.

3.2 Didactic example

We shall introduce numerical attributes in the didactic example while keeping its
hierarchical structure intact. First,we replace the attributesprice,buyingprice,utilities,
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…

Q

NN N

NN→Q

…

Q

QQ Q

NN N

a
(N→Q)(N→Q)→Q

b

…

N

NN N

QNN→N→Q

Fig. 3 Two possibilities for modelling Compound function type NN → Q. Option a suggests that numeric
attributes are first discretized to qualitative and then the function is modelled as a rule based qualitative func-
tion. Option b indicates that numeric attributes are aggregated using Function type 3, and then discretizing
the produced result

…

Q

NN N... QQ Q

NQ→Q

…

N

NN N... QQ Q

Q
c
(NQ→N)→Q

...

Q

NN N... QQ Q

Q

...Q Q

d
(N→Q)Q→Q

e

…

N

NN N... QQ Q

((NN→N)→Q)Q→Q Q

Q

Fig. 4 Three possibilities for modelling Compound function type NQ → Q. Option c gives the config-
uration to use Function type 5 on the inputs and then discretize the computed output. Option d gives the
possibility to discretize the numeric inputs and creates a qualitative function on outputs and remaining
qualitative inputs. Option e presents the possibility to aggregate numeric attributes to single numeric value,
discretize the value and then construct a qualitative function based on this and on qualitative inputs
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apartment
v-bad, bad, ok, good, v-good

price
buying price

u�li�es

loca�on
bad, ok, good

neighbourhood
bad, ok, great

proximity
far, manag., near

work

shops

layout
bad, ok, good

interior
bad, ok, good

size

equipment
no, some, yes

balcony
no, yes
#rooms

exterior
bad, ok, good

parking
no, yes

appearance
bad, ok, good

Fig. 5 Model for evaluating an apartment with numeric attributes included. Attributes with value scales
R

+ and N are numeric; others are qualitative

work, shops, size and #rooms with their numeric counterparts by changing attributes’
scales (Fig. 5). Due to these conversions, the aggregation functions numeric attributes’
parents (i.e., price, apartment, proximity and interior) need to be replaced by functions
of different types. All other functions remain the same.

Given the meaning of the attributes described above, we can safely assume that
their numeric scales are all positive real numbers. An exception is the scale of #rooms,
which is in the form of an integer:

Dprice = Dbuyingprice = Dutilities = Dwork = Dshops = Dsize = R
+,

D#rooms = N. (26)

The new function for price is of Function type 3 (NN → N ). Suppose that we pay
off the apartment in 20 years, so our combined price will represent the buying price
with 20 years of monthly utilities costs added:

fprice = buyingprice + 12 · 20 · utilities. (27)

Next, the aggregation function for proximity is defined based on distance to work
and shops and has a qualitative output of proximity and is hence of Compound type
NN → Q. We compose this function using the schema NN → N → Q. The rationale
for the following function definition is that we will be going to work five times a
week, whereas will be going to the shops only twice a week. Here gproximity is the
intermediate Function of type 3:

123



Extending the multi-criteria decision making method DEX… 19

Table 10 The first part of the
aggregation function for
interior. The function arguments
define a new function, which
depends on the two numeric
inputs (size and #rooms)

equipment balcony interior

no no 0

no yes size
#rooms

some no 0

some yes size
#rooms + 10

yes no size
#rooms + 15

yes yes size
#rooms + 20

gproximity = 5 · work + 2 · shops,

NQproximity (y) =
⎧
⎨
⎩
near|y ∈ (0, 15]
manag.|y ∈ (15, 25]
far|y ∈ (25,∞)

. (28)

The aggregation function for interior is of the Compound type NQ → Q. We
shall compose it according to the schema (NQ → N ) → Q—that is: (1) first using
the primitive Function type 5 and (2) discretizing the result. The output of (1) is an
estimate of each room size (see Table 10). To include some preferential information
in the table, constant values were added to favourable qualitative combinations (e.g.
+20 for the combination (yes, yes) in Table 10). For the unfavourable combinations,
we disregarded the numeric inputs and assigned the value 0. In step (2), we use the
following discretization:

NQinterior (y) =
⎧
⎨
⎩
bad|y ∈ [0, 25]
ok|y ∈ (25, 35]
good|y ∈ (35,∞)

. (29)

Finally, we need to define the aggregation function for apartment, which is also of
the Compound type NQ → Q. Similarly as before, we define Table 11 for step (1)
and the following discretization for step (2):

NQapartment (y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v-good|y ∈ [−10,000, 50,000]
good|y ∈ (50,000, 90,000]
ok|y ∈ (90,000, 110,000]
bad|y ∈ (110,000, 140,000]
v-bad|y ∈ (140,000,∞)

. (30)

With this, the model is completely defined and ready for the evaluation of alter-
natives. The new values for the alternatives are presented in Table 12. All evaluation
results are given in Table 13.

Let us illustrate the evaluation of the alternative “Big”. The other two alternatives
follow the same procedure.

At first, the price of alternative “Big” is obtained by computing fprice (85,000, 100),
which is 109,000. Next, the value of fproximity (6, 5), is a two-stage function: at first,
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Table 11 First part of the
aggregation function for
apartment

location layout apartment

bad bad price + 20,000

bad ok price + 15,000

bad good price + 5000

ok bad price
1.1 + 7500

ok ok price
1.1

ok good price
1.1 − 5000

good bad price
1.1

good ok price
1.1

good good price
1.2 − 10,000

The function produces a new
function dependent on the
numeric input (price)

Table 12 The table gives new values for the input attributes for the three apartments: “Big”, “Equipped”
and “Nice”

Alternative buying
price

utilities neighbourhood work shops size equipment balcony #rooms parking appearance

Big 85.000 100 bad 6 5 80 no no 3 yes bad

Equipped 80.000 60 ok 2 4 40 yes yes 2 yes ok

Nice 50.000 90 ok 1 1.5 30 some no 1 no ok

Table 13 Evaluations of three alternatives according to the newly developed model

Name price proximity location interior exterior layout apartment

Big 109.000 far bad bad ok bad bad

Equipped 94.400 manag. ok good good good good

Nice 71.600 near good bad bad bad good

Values of aggregated attributes and final evaluation are presented

gproximity (6, 5) gives 40, which is discretized by NQproximity to far. Function flocation
is aQQ → Q mapping, which is bad on the inputs bad and far. For interior, the value
of the intermediate function is needed, which simply becomes 0 based on the worst
possible combination of values of equipment and balcony. Then, NQinterior maps 0 to
the value bad. The value for exterior is computed in the same way as in Sect. 2.2, and
the resulting value is ok. The value of layout with flayout (bad,ok), which produces
bad. Finally, the value apartment, which is of Compound type NQ → Q, is computed
in two steps. The first step selects the function price+20,000, where price = 109,000,
so the resulting value is 129,000. Using NQapartment, this value is discretized to the
final evaluation—bad.

Let us compare these results with the evaluations acquired in Sect. 2.2. Because of
the addition of numeric attributes, some values have changed, but most of them stayed
the same. Themost notable difference is the change of the final evaluation of alternative
“Equipped”, which increased from bad to good. Due to added numerical attributes
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and changed aggregation functions, the attributes interior and layout increased by one
value for this alternative. Consequently, the apartments “Equipped” and “Nice” are
both evaluated as good. Now, “Equipped” differs from “Nice” in terms of a better
interior, exterior and layout. On the other hand, “Nice” is better than “Equipped” in
terms of price, proximity and the location of the apartment.

We see that even though the developed model is more complex, the introduction
of numeric attributes brought additional modelling possibilities to the example. The
inclusion of numeric values allowed for amore natural interpretation of some concepts
in comparison to describing them with qualitative values. For example, the price of
an apartment is naturally expressible with monetary values. The extension further
provides the ability to explicitly consider numeric concepts—the average room size
is accurately measured with the quantity si ze/#rooms, whereas the same measure
cannot be accurately obtained given qualitative values for size and #rooms.

4 Probabilistic and fuzzy distributions

In its current form, DEX evaluates alternatives with crisp values. The only exception
is in cases when a decision table yields an interval of values; in this case, the resulting
evaluation is generally a set of values. However, alternatives and the DM’s preferences
are often imprecise or uncertain. For instance, alternatives’ values may be difficult
to measure or assess precisely because they may depend on factors that cannot be
controlled by the DM. Similarly, sometimes it is difficult for the DM to define a
decision rule thatwould produce a single crisp value because the outcome is distributed
between several values. Therefore, we propose an extension to DEX that explicitly
models these types of uncertainty by introducing probabilistic or fuzzy distributions
of values.

The extension of probabilistic distributions incorporates ideas from probabilistic
inference methods (Durbach and Stewart 2012; Shachter and Peot 1992; Yang et al.
2006). These ideas have already been addressed in DEX to some extent. An early
version of the method, called DECMAK, used probabilistic and fuzzy distributions
for the representation of alternatives’ values (Rajkovič et al. 1987). Later, probabilistic
distributions were introduced to aggregation functions, to facilitate the revision of
the models (Žnidaršič et al. 2006a), which was implemented in the system called
proDEX (Žnidaršič et al. 2006b). Some steps towards a decision making method with
probabilistic extension were presented in Trdin and Bohanec (2012, 2013, 2014a) and
applied in real-life decision making scenarios in Bohanec et al. (2016), Kontić et al.
(2014). Similar approaches were explored by other authors (Bergez 2013; Holt et al.
2013; Omero et al. 2005).

Here, we propose a systematic extension to DEX which introduces probabilistic
and fuzzy value distributions to both alternative values and aggregation functions,
taking into account the formal model described in Sect. 2.1 and the other extensions
proposed in this paper. The distributions are introduced at two points:

1. Values describing decision alternatives are extended to probabilistic or fuzzy dis-
tributions of values over corresponding attribute scales, and
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2. outputs of aggregation functions are extended from crisp values or intervals to
distributions of values.

That is, whereverwe could have previously used a crisp value or an interval of values
in a model, we may now use a distribution of values. This requires three changes to the
formal model: (1) attribute scales have to be extended to cope with value distributions,
(2) aggregation functions should in general map to distributions rather than intervals
and (3) the evaluation procedure should propagate distributed values.

Value distributions are general in the sense that they are capable of representing
all previous value types: single crisp values, value intervals and value sets. Required
probabilistic and fuzzy distributions of values are added, though. Previously defined
aggregation functions, which did not include distributions, can thus be used without
change in the new setting.

4.1 Prerequisites

Given an attribute xi and its scale Di , we define a value distribution V as a tuple
(B, r) , where B ⊆ Di and r : B → [0, 1]. For finite B, we use the notation
V = {

vi1\pi1 , vi2\pi2 , . . . , vim\pim
}
, where pi j = r

(
vi j

)
for each j = 1, 2, . . . ,m.

Generally, we do not impose any specific interpretation on pi j ; however, we are inter-
ested in two specific cases:

1. V is a discrete probability distribution: here, pi j s represent probabilities of corre-
sponding elements vi j , and are normalized so that

∑m
j=1 pi j = 1.

2. V is a fuzzy set (Zadeh 1965): pi j s represent fuzzy grades of membership of cor-
responding elements vi j . Moreover, a fuzzy set is said to be normalized when
maxmj=1 pi j = 1.

In this way, we can represent all needed value types using both representations:

• A crisp value v can be represented as a value distribution {v\1}.
• A qualitative interval of values

[
vi j , vik

]
, j ≤ k, which includes all values

vi j , vi j+1 , . . . , vik , is represented as a discrete probability distribution{
vi j \ 1

k− j+1 , vi j+1\ 1
k− j+1 , . . . , vik\ 1

k− j+1

}
or, alternatively, as a fuzzy set{

vi j \1, vi j+1\1, . . . , vik\1
}
.

• The set of values V = {
vi j , vik , . . . , vil

}
, |V | = m is represented as a discrete

probability distribution
{
v\ 1

m | v ∈ V
}
or as a fuzzy set {v\1|v ∈ V }.

For infinite S, we treat an attribute xi as a random variable Xi and consider the
probability distributions of its values. When Xi is a continuous random variable, we
assume the existence of probability density function (Feller 1968) fXi : Di → [0, 1],
with a, b ∈ Di , so that

Pr [a ≤ Xi ≤ b] =
∫ b

a
fXi (t) dt. (31)

When Xi is a discrete random variable, we assume the existence of probability
mass function (Feller 1968) fXi : Di → [0, 1], with t ∈ Di , so that
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fXi (t) = Pr (Xi = t) . (32)

To formally describe the evaluation procedure using value distributions, we need
to transform all value distributions to a common representation. When interpreted as
probability distributions, both discrete and continuous variables can be treated in a
unified way. In order to represent a discrete random variable with a probability density
function, we employ the Dirac delta function (Hewitt and Stromberg 1965):

x �= 0 ⇒ δ (x) = 0,∫ ∞

−∞
δ (x) dx = 1.

(33)

If a discrete random variable takes values vi1 , vi2 , . . . , vik with respective proba-
bilities pi1 , pi2 , . . . , pik , then its associated probability density function is:

f (t) =
k∑
j=1

pi j δ
(
t − vi j

)
. (34)

Suppose there are n independent random variables Xi , i = 1, . . . , n which are
associated with probability density functions fXi (xi ). Let Y = G (X1, X2, . . . , Xn)

be a random variable which is a function of Xi s. Then the density function fY (y) is
(Feller 1968; Hewitt and Stromberg 1965):

fY (y) =
∞∫

−∞

∞∫

−∞
. . .

∞∫

−∞
fX1 (x1) fX2 (x2) . . . fXn (xn)

δ (y − G (x1, x2, . . . , xn)) dx1dx2 . . . dxn .

(35)

In general, solving this multiple integral is a difficult problem to tackle analytically,
thus we employ statistical sampling with Monte Carlo method (Caflisch 1998) for
random variables defined with a probability density function: a random variable Xi

is sampled m times, giving a finite discrete probability distribution Vi = {v j\ 1
m |v j ∈

Xi , j = 1, 2, . . . ,m}.
Now, we can consider only value distributions with a finite number of elements for

probabilistic aggregation. Given some aggregation function g, we need to compute
the value distribution W = g(V1, V2, . . . , Vn), where each distribution Vi is obtained
either by sampling or as a result of computation on lower levels of the attribute hier-
archy. Also note that function g is defined only on atomic crisp values; see Eq. (8).
In order to obtain W = {w1\p1, w2\p2, . . . , wk\pk}, where wi ∈ DY , we need to
compute all pi , i = 1, 2, . . . , k:

pi =
∑

(v1\q1,v2\q2,...,vn\qn)∈V1×V2×···×Vn

∏
wi\ri∈g(v1,v2,...,vn)

ri

n∏
j=1

q j . (36)
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This expression produces a probability for value wi in the final value distribu-
tion W . The outer sum runs over the Cartesian product of all basic values in input
value distributions. Given some value combination v1, v2, . . . , vn , the basic function
g (v1, v2, . . . , vn) is computed. The result of computation is generally a value distri-
bution {w1\r1, w2\r2, . . . , wk\rk}. From this distribution, only the probability ri of
wi is considered. This particular combination adds to the outer sum the probability of
the output ri multiplied by the probability of this value combination (

∏n
j=1 q j ). This

procedure follows the intuitive explanation of handling probabilities. Furthermore, Eq
(36) is in line with the constraint imposed in Eq. (10), specifying that the function Fi
should for singleton input value distributions produce the same value as the function
fi .
Fuzzy sets are handled in the same way, except that product and sum operators are

replaced by the standard fuzzy set operators: t-norms (�) as logical conjunction and
the corresponding t-conorms (⊥) as logical disjunction (Bede 2012):

pi = ⊥
(v1\q1,v2\q2,...,vn\qn)∈V1×V2×···×Vn

(0, �
wi\ri∈g(v1,v2,...,vn)

(ri ,� (q1, q2, . . . , qn))).

(37)
The most commonly used t-norms and t-conorms in fuzzy sets are minimum and

maximum, respectively:

� (a, b) = min (a, b) , (38)

⊥ (a, b) = max (a, b) . (39)

By substituting the t-norm and t-conorm, we get an equation for computing pi s for
fuzzy sets:

pi = max
(v1\q1,v2\q2,...,vn\qn)∈V1×V2×···×Vn

(0, min
wi\ri∈g(v1,v2,...,vn)

(ri ,min (q1, q2, . . . , qn))).

(40)
This equation can be interpreted similarly to Eq. (36), where product and sum are

replaced by min and max, respectively.

4.2 Extension formalization

In order to formally extend DEX to handle value distributions, we first need to extend
the scales of attributes. For practical reasons, we wish to keep the definition of value
scale Di of attribute xi ∈ X the same as before. However, we extend the range of
aggregation functions to include value distributions over Di and accommodate the
propagation of value distributions during evaluation. Thus, we define EDi as the
space of all value distributions over Di . When Di is a finite discrete scale Di ={
vi1 , . . . , vimi

}
, then

EDi =
{{

vi1\pi1 , . . . , vim\pimi

}
| pi j ∈ [0, 1] , vi j ∈ Di , j = 1, 2, . . .mi

}
. (41)
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When Di is infinite, then EDi = Xi is a random variable with an associated
probability density or probability mass function fxi as defined in Eq. (31, 32).

Then, we need to extend Eq. (8) so that each aggregation function fi can, in general,
map to extended domain EDi instead of the space of intervals I (Di ):

fi : Di1 × Di2 × · · · × Dik → EDi ,
{
xi1 , xi2 , . . . , xik

} = S (xi ) . (42)

This substitution affects the aggregation procedure carried out at each aggregated
attribute xi . When evaluating the associated aggregation function fi , we should expect
value distributions at inputs. Also, the output result will, in general, be a value dis-
tribution, too. Therefore, using

{
xi1 , xi2 , . . . , xik

} = S (xi ) we have to redefine the
function Fi , defined in Eq (9) to

Fi : EDi1 × EDi2 × · · · × EDik → EDi . (43)

When encountering a finite value distribution of values from some scale, the evalua-
tionmust correctly propagate the corresponding probabilities or membership values to
construct the final evaluation. Even though the scales of attributes have been extended,
the aggregation functions fi stay the same—only the evaluation procedure needs to be
adapted to handle the new extended scales. The adaptation defines how the aggregation
is performed for function Fi , using function fi . In Sect. 4.1, we suggested handling
only finite value distributions since infinite value distributions are sampled.

We suggest using two types of aggregation: probabilistic aggregation or fuzzy
aggregation. We leave the choice to the user of the model and assume that the type of
aggregation has been defined in advance. We also assume that all value distributions
involved in the aggregation are normalized accordingly—that is,

∑k
i=1 pi = 1 for

probabilistic aggregation andmaxki=1 pi = 1 for fuzzy aggregationwith normalization.
The computation of Fi is performed according to Eq. (36) for probabilistic aggregation
and according to Eq. (40) for fuzzy aggregation. In both cases, the obtained result is
a value distribution which can be interpreted as a probability or fuzzy distribution,
respectively.

For practical reasons, we introduce the final step that simplifies the obtained
value distributions so that they are more readable for the user. The procedure is
called simplify: at input, it takes the full representation of a value distribution
v = {v1\p1, v2\p2, . . . , vn\pn} and produces an equivalent simplified representa-
tion. It detects whether v represents some special distribution, such as a single crisp
value, an interval or a set. Formally, simplifyi (v), applied on the value distribution v

assigned to attribute xi , is a recursive procedure defined as follows:

simplifyi (v) =

⎧
⎪⎪⎨
⎪⎪⎩

simplifyi ({v1, v2, . . . , vn}) |v = {v1\p1, v2\p2, . . . , vn\pn} , p1 = p2 = · · · = pn
simplifyi ([vl , vh] |v = {v1, v2, . . . , vn} , Di ∩ v = [vl , vh]
vl |v = [vl , vh] , vl = vh
v| otherwise

.

(44)
Here, the first case detects that all pi s are equal, and v represents at least a set. The

second case determines whether v is an interval, and the third case checks whether an
interval has the same bounds and thus represents a single value.

123



26 N. Trdin, M. Bohanec

When using value distributions, evaluations cannot always be compared directly.
Using stochastic dominance (Hadar and Rusell 1969) on probabilistic value distribu-
tions is one possibility. Suppose we are given two value distributions V1, V2 ∈ EDi ,
where Di is a preferentially ordered scale. We say that V1 (stochastically) dominates
V2 if and only if:

∀w ∈ Di : Pr [V1 ≥ w] ≥ P [V2 ≥ w] ,

∃w ∈ Di : Pr [V1 ≥ w] > P [V2 ≥ w] .
(45)

Stochastic dominance can bring some insight into the final evaluations; however, it
cannot always generate a total order of alternatives. Thismeans that the best alternative
may not exist for the current model and its input values. In such cases, the DM must
interpret the results, and chose the best alternative among those that are not dominated.

4.3 Didactic example

We continue the didactic example from Sect. 3.2. Hereafter, we shall include value
distributions at alternatives’ input values and leave aggregation functions unchanged.
Probabilistic value distributions are included in alternatives according to the following
rationale. Observations are quantified in Table 14.

• Alternative “Big” does not actually have a fixed utilities bill of 100; rather, the
value is uniformly distributed through the year in the amount from 80 to 120. The
same applies to alternative “Nice”, but the value is distributed between 60 and 80.
However, the utilities costs for apartment “Equipped” are still fixed at 60.

• Recall that we do not know the quality of the neighbourhood of alternative
“Equipped”. For this reason we previously decided to assign the middle value.
Now we are able to specify that the value is actually undetermined or unknown,
assigning an interval of all possible values.

• The equipment of apartments “Big” and “Nice” was previously determined by rule
of thumb, and we felt that specifying a single value was too limited. Instead we
now specify the situation with a distribution.

• Parking for apartment “Equipped” is usually available, but sometimes it is not. On
the other hand, parking may sometimes be available for alternative “Nice”. With
apartment “Big”, there is a dedicated parking space.

• Before, we were not able to decide about the outer appearance of the apartment
“Nice”. Now we know that the appearance is something between ok and good.

Because the model aggregation functions and scales of attributes did not change
from the previous example, we can immediately evaluate the alternatives. As in previ-
ous examples, we will show the evaluation of the first alternative “Big” and present the
evaluations of the other two alternatives. All alternatives’ evaluations are summarized
in Table 15.

First, “Big’s” price is computed using Fprice with argument values of 85,000
and U (80, 120). The values are interpreted as value distributions: 85,000 is
{85,000\1} and U (80, 120) is sampled m times (we choose m = 100), obtain-
ing the value distribution {80.05\0.01, 111.96\0.01, . . ., 90\0.01}. For all 100
combinations of values in buying price ({85.000\1}) distribution and utilities
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distribution ({80.05\0.01, 111.96\0.01, . . ., 90\0.01}), function fprice is evalu-
ated during computation of Fprice. The final produced evaluation for price is
{104,212\0.01, 111,870.4\0.01, . . ., 106,600\0.01}.

The values of proximity and location stay the same as before because there were
no changes in their sub-trees.

The interior value of apartment “Big” is calculated using function Finterior. Values
supplied as arguments to the function are (80, no, no, 3) with the probability 0.9 and
(80, some, no, 3) with the probability 0.1. In both cases, an intermediate value 0 is
produced, which creates the value bad by function NQinterior. Even though apartment
“Big” has some equipment, it does not improve the evaluation of interior. The final
value distribution {bad\1} is simplified to bad.

The value for exterior stays the same as in Sect. 3.2. Even though layout’s inputs
are now value distributions, a crisp value of bad is obtained. The apartment may come
with some equipment, but the value of interior did not change, which in turn means
that the value for layout will not change, either.

The final evaluation for apartment “Big” is acquired with function Fapartment. The
values supplied to the function are {104,212\0.01, 111,870.4\0.01, . . ., 106,600\
0.01}, bad and bad. For each combination of values, fapartment is computed. Note,
probability for each value combination is 0.01. Because the only possible values for
location and layout are bad, function price + 20,000 from space Φ

(
xapartment

)
is

always used. The first value from the distribution gives 124,212, which results in
value bad by NQapartment. This is done for all values inside the value distribution of
price. NQapartment always produces bad, which in turn, after simplification, produces
the final evaluation of bad.

The final evaluations now provide an additional insight regarding the alternatives.
Even though the utilities costs will be variable for alternative “Big”, and there is some
equipment in the apartment, the final evaluation is still bad. On the other hand, we can
now better compare apartments “Equipped” and “Nice”. With only numeric values,
wewere not able to distinguish between the apartments in terms of the final evaluation.
Now we can see that apartment “Equipped” is mostly good (with probability 0.67),
but there is the probability of 0.33 that the evaluation is a bit worse, giving the evalu-
ation ok. For the apartment “Nice”, the evaluation is strongly good (probability 0.96)
with a small chance (probability 0.04) that the apartment is even very good. Overall,
apartment “Nice” is better than “Equipped”.

Furthermore, we can check if apartment “Nice” stochastically dominates apartment
“Equipped”. For that, we check for each value v ∈ Dapartment, that the probability of
the value v or better in the evaluation of “Nice” (VNice) is greater or equal than the
probability of the value v or better in the evaluation of “Equipped” (VEquipped):

1 = Pr [VNice ≥ v-bad] ≥ P
[
VEquipped ≥ v-bad

] = 1,

1 = Pr [VNice ≥ bad] ≥ P
[
VEquipped ≥ bad

] = 1,

1 = Pr [VNice ≥ ok] ≥ P
[
VEquipped ≥ ok

] = 1,

1 = Pr [VNice ≥ good] ≥ P
[
VEquipped ≥ good

] = 0.67,

0.04 = Pr [VNice ≥ v-good] ≥ P
[
VEquipped ≥ v-good

] = 0.

(46)
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Additionally, for the apartment “Nice” to stochastically dominate apartment
“Equipped”, we need to find a value v′ ∈ Dapartment, for which the probability of
producing value at least v′ in VNice is strictly greater than probability of producing v′
in VEquipped. There are two such values: good and v-good:

1 = Pr [VNice ≥ good] > P
[
VEquipped ≥ good

] = 0.67,

0.04 = Pr [VNice ≥ v-good] > P
[
VEquipped ≥ v-good

] = 0.
(47)

Therefore, “Nice” stochastically dominates “Equipped”, and can be considered a
better choice. In the same way, it can be shown that both “Nice” and “Equipped”
dominate “Big”.

5 Relational models

The data encountered in everyday life are frequently of a relational nature in the sense
that one entity is composed of several similar sub-entities—similar to the extent that
they can be evaluated by the same criteria. For example, when evaluating a company,
a DM may want to evaluate all departments of that company. Here the company’s
departments are the similar sub-entities, and there is a “one-to-many” relationship
between the company and departments. All departments can be evaluated in a similar
way, by the same model. The problem, however, is that an arbitrary number of sub-
evaluations are acquired in this way, which need to be combined in the evaluation of
the main alternative (company).

Currently, relational models are not supported in DEX. Adding them would be a
substantial improvement, which would facilitate addressing a much larger group of
decision problems. Introducing relational models, however, requires extensions that
affect the representation of decision alternatives and introduces new components, such
as relational attributes and relational aggregation functions. The purpose of this section
is to extend the existing DEX method for the support of relational models.

Relational data are frequently modelled in relational databases. Several disciplines
of machine learning explicitly consider the development of relational models—for
example, inductive logic programming (Lavrač and Džeroski 1994). Relational data
are also studied in quantitative multi-criteria decision making methods, but rarely
in an explicit way. There, it rarely causes difficulties because it naturally involves
common operators based on summation and averagingwhile at the same time handling
numeric values. Such operators are useless in qualitative settings and require special
approaches.

We propose to extend DEX to handle situations where one alternative is composed
of several sub-alternatives (see examples in (Bohanec et al. 2014; Trdin and Bohanec
2012, 2013, 2014a, b)). For this purpose, we propose to modify the modelling process
by developing two models: one (M) for the evaluation of the main alternative and
another (RM) for the evaluation of relational sub-alternatives. To evaluate a single
main alternative, each sub-alternative is first evaluated by RM . Then, all evaluations
are aggregated, providing an input value to M . The evaluations in both M and RM
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are carried out in the same way as described previously; the only differences occur at
the point where the two models are connected with each other.

Relational models were already employed with DEX in two real-world use cases, in
which they proved very useful for defining a decisionmodel and evaluating alternatives
on relational data: the reputational risk assessment of banks (Bohanec et al. 2014) and
the appraisal of energy production technologies in Slovenia (Bohanec et al. 2016;
Kontić et al. 2014).

5.1 Extension formalization

To formalize this extension, we need to introduce three new entities and one type of
aggregation function. The three newentities are: (1) relational alternative, (2) relational
model and (3) relational aggregated attribute. The new aggregation function is called
relational aggregation function and is used only by the relational aggregated attributes.

Given some alternative a ∈ A, the term relational alternatives denotes all entities
ra ∈ RA that are in a many-to-one relation with a. For instance, a ∈ A may be
a company and ra ∈ RA one of its departments, assuming a one-to-many relation
department : A → RA. Since RM , as any other model, contains input attributes, it
also holds that

ra ∈ inputSpaceRM. (48)

The purpose of the relational model RM is to evaluate relational alternatives RA.
RM is modelled in the same way as any other DEX model; the only difference is
in its purpose in the evaluation procedure: it evaluates relational alternatives RA and
provides inputs to the main model M , which evaluates alternatives A.

A relational aggregated attribute r x is a special type of attribute that provides a
connection point between the main model M and the relational model RM . r x’s scale
is formalized in the same way as for other attributes. The relational attribute r x is
connected to its counterpart output attribute ox from RM ; r x serves as an input to M .
In other words, r x is a connecting point between M and RM : it receives output from
RM (through attribute ox) and provides input to M .

As there is a one-to-many relation between A and RA, the aggregation at r x should
aggregate all output values coming from RM , that correspond to one alternative
(V1, V2, . . . , Vn) , Vi ∈ EDox , into a single input value V ∈ EDrx of M . Here, n
is the number of relational alternatives ra ∈ RA evaluated by RM that are part of a
single alternative a ∈ A evaluated by M .

Consequently, the aggregation function fr x is special in the sense that it aggre-
gates an arbitrary number of values coming from ox rather than single values from
descendant attributes. Formally:

V = fr x (V1, V2, . . . , Vn) , (49)

fr x : (EDox )
n → EDrx . (50)

In general, fr x is any aggregation function defined for an arbitrary number of
arguments—for example, min, max , sum, average, mean or count . The value of
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apartment
v-bad, bad, ok, good, v-good

price
buying price

u�li�es

loca�on
bad, ok, good

neighbourhood
bad, ok, great

proximity
far, manag., near

work

shops

layout
bad, ok, good

interior
bad, ok, good

size size

equipment
no, some, yes

equipment
no, some, yes

balcony
no, yes
#rooms

exterior
bad, ok, good

parking
no, yes

appearance
bad, ok, good

Fig. 6 Model for evaluating an apartment with support for numeric values and relational models. The
nodes with round corners are aggregated attributes and nodes with pointed corners are input attributes. The
triangle at the far right represents the relational model for evaluation of rooms

the function is computed with the corresponding function Frx as per Eq. (43). The
function is constrained to the types of ox’s and r x’s scales. For instance, sum cannot
be applied to qualitative values.

Given this formalization, an arbitrary number of relational models is supported in
some model M . Moreover, an arbitrary number of relational models can be nested
inside each other. Therefore, decision problems with nested relational alternatives can
be solved as well.

5.2 Didactic example

To show the relational models in practice, we will once again extend the previously
developed model, taking into account that each apartment consists of multiple rooms.
Each room has some features worth evaluating, such as size and equipment. Thus, in
addition to the main model for apartments, we introduce a relational model for the
evaluation of rooms. The relational model contains two attributes: (1) size, a numeric
attribute giving the absolute size of the room and (2) equip., a qualitative attribute
giving the amount and quality of equipment in the room.

Due to the nature of this design, three relational aggregated attributes are
introduced—more precisely, exchanged for their current counterparts—in the apart-
ment model: (1) size’s value is computed by summing the values of size attribute
from the room relational model, (2) equipment transforms the room equipment values
with uniform weighting and (3) #rooms counts the number of rooms by counting the
number of size’s values that come from the relational model.

Figure 6 shows the new structure of themodel. The apartment model structure is the
same as in Fig. 5. However, the relational room model now appears on the right-hand
side and is connected to the model through the relational attributes.
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To complete the model, we need to define the relational aggregation functions
for size, equipment and #rooms. According to the model idea described above, the
functions are defined as follows:

fsize (v1, v2, . . . , vn) =
n∑

i=1

vi ,

fequipment (v1, v2, . . . , vn) =
n∑

i=1

1

n
vi , (51)

f#rooms (v1, v2, . . . , vn) = count (v1, v2, . . . , vn) = n.

To use the new model, we have to define input values for rooms; see Table 16.
The evaluation procedure is almost the same as before. The values for the price,

proximity and location are computed in the same way as before. However, some inputs
to the sub-tree layout are now obtained from the relational model and may differ
from previous calculations. The main difference is in the aggregation that involves
functions fsize, fequipment and f#rooms. The aggregation function fsize first evaluates
the size of three rooms of the “Big” apartment, which give values of {40, 25, 15}.
Function fsize produces their sum—80. Similarly, the value for equipment is computed.
The evaluation of rooms gives {no, {no\0.9, some\0.1}, no}. The function fequipment
weighs each value with 1/3, and the final distribution of {no\0.97, some\0.03} is
produced. This distribution cannot be simplified. The computation of #rooms follows
the same principle as the computation for size, except that f#rooms counts the number
rather than the sum of values and gives 3. These values now enter the calculations as
ordinary inputs of the apartment model, giving the results as shown in Table 17.

The final evaluation of alternative “Big” did not change due to the relational aggre-
gation functions computing the same values as before. The same holds for the “Nice”
apartment. However, the new evaluation of “Equipped” is different. Previously, the
value of equipmentwas yes. Now, as we explicitly considered two rooms, one of which
is small and incompletely equipped, the aggregation of the rooms gives the value dis-
tribution {yes\0.95, some\0.05}. Thus, the value some is additionally propagated
through the aggregation and, even though it has a very small probability of 0.05,
it affects the final outcome, which becomes {bad\0.0017, ok\0.33, good\0.665}
instead of {ok\0.33, good\0.67}.

6 Discussion

We introduced three extensions to the DEX method: numeric attributes, value dis-
tributions, and relational alternatives and models. All extensions were motivated by
needs identified when applying DEX in complex real decision modelling tasks. They
substantially increase the range of decision problems that can be addressed, but they
also require a number of changes and additions to the method. In order to introduce
numeric attributes, it was necessary to add a class of numeric value scales,which in turn
increased the number of primitive function types from one to five. The introduction of
value distributions required a generalization of value scales to extended scales and an
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extension of the evaluation algorithm to use existing aggregation functions on value
distributions. The new ability to represent and evaluate relational alternatives required
the introduction of relational models, relational attributes and relational aggregation
functions. All the extensions are compatible with each other so that they can be used
simultaneously.

Considering the previous applications of DEX and the solutions found in some
other MCDA methods, the extensions are not entirely new but are for the first time
systematically brought together and formalized. Previously, DEX was combined with
numeric attributes and relational models in the modelling and assessment of bank
reputational risk (Bohanec et al. 2014), qualitative relational models were introduced
in the assessment of public administration e-portals (Leben et al. 2006) and qualita-
tive probabilistic distributions were used in ecological domains (Bohanec et al. 2009;
Bohanec 2008; Bohanec and Žnidaršič 2008; Žnidaršič et al. 2008). All three exten-
sions were for the first time used together in the evaluation of sustainable electrical
energy production in Slovenia (Bohanec et al. 2016; Kontić et al. 2014). These appli-
cations were typically formulated and implemented in an ad-hoc manner and tailored
to a particular application. However, they clearly indicated the need for extending the
method.

The proposed extensions provide new means for representing a DM’s knowledge
and preferences and facilitate solving a wider variety of decision problems. Specif-
ically, the introduction of numeric attributes allows for a more natural treatment of
numeric quantities; instead of being limited only to qualitative attributes, the DM
can choose between the qualitative and quantitative representations, as illustrated in
Sect. 3.2. Numeric attributes also solve a common problem in DEX: mapping from
numeric measurements to qualitative input values. To date, this had to be done implic-
itly and manually by the DM, whereas the extended method facilitates this mapping
with ease. The introduction of numeric attributes opens DEX for the inclusion of other
approaches of quantitative MCDA, such as pairwise preference and weights elicita-
tion of AHP (Saaty 2008; Saaty and Vargas 2012) and using marginal utility functions
of MAUT (Multi-attribute utility theory) (Wang and Zionts 2008). Another possible
approach to build aggregation functions, especially in case of numeric values, is the
ordinal regression (Jacquet-Lagrèze and Siskos 1982, 2001; Mihelčić and Bohanec
2016). An approach to multiple criteria sorting based on robust ordinal regression
(Kadziński et al. 2014) seems particularly suitable. DEX requires a direct acquisition
of utility functions; outrankingMCDAmethods that acquireDM’s preferences through
comparison of alternatives, such as ELECTRE (Roy 1991) and PROMETHEE (Brans
and Vincke 1985), are less suitable for this purpose.

The second extension, value distributions, introduces capabilities that are well
known and proven in contexts such as expert systems, fuzzy control systems and
uncertainty and risk analysis. They allow an explicit formulation of “soft” (imprecise,
uncertain and evenmissing) knowledge and data. Specifically,we introduced two types
of value distributions: probabilistic, which are suitable for representing uncertainty,
and fuzzy to represent vague concepts and values. The former resembles the use of
probabilities in MAUT (Wang and Zionts 2008), whereas the latter is in line with
the trend of extending MCDA methods with fuzzy sets (Baracskai and Dörfler 2003;
Kahraman 2008; Omero et al. 2005).
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The third extension addresses decision problems in which alternatives are com-
posed of similar sub-components. In quantitative MCDM, such problems are rarely
mentioned because they can be easily handled by common aggregation functions, such
as the average. In the qualitative world of DEX, there are no such obvious functions –
thus the need for the extension. The key contribution of relational models is allowing
the DM to granulate the decision problem to a finer level, explicitly considering parts
of the whole.

The extensions increase the complexity of model development. Previously in DEX,
therewas just one conceptualway to define an attribute or an aggregation function; now
there is plenty fromwhich theDMcan choose. Even though this increases theflexibility
of themodelling, it also requires themastering of newly available tools. Particularly, the
elicitation of attributes and aggregation functions becomes more difficult. In addition
to dealing with new types of numeric attributes, the DM should control the interplay
between qualitative and numeric attributes, for which there are now five different
primitive forms instead of just one (see Sect. 3). Regarding aggregation functions,
the complexity is increased by a new class of numerical functions, which have to
be formulated by the DM in accordance with his or her preferences. Regarding the
evaluation of alternatives, DEX was previously limited to only qualitative values and
their sets. The extendedDEXadditionally produces awide variety of other value types:
integers, real numbers and fuzzy or probabilistic value distributions; this increases the
complexity of the evaluation results and requires more efforts for their interpretation.
In summary, the increased complexity of themodels and computed valuesmay degrade
the comprehensibility of themethod and results for theDM.Consequently, at this stage
the extended DEX seems a more useful tool for a skilled decision analyst than for an
ordinary DM.

We are aware that retrieving knowledge from the DM, especially with methods of
such complexity, is a difficult problem. In this paper, we were not concerned with
the difficulties of knowledge acquisition; our primary goal was to open up the DEX
method tomake it more suitable for addressing a wide range of real decision problems.
Wewere interested in giving theDM the ability to specify his/her preference as flexibly
as possible. We are aware that more research and practice is needed to fully assess the
strengths and weaknesses of the extended method and to identify potential difficulties
associated with preference elicitation. In further research, we will attempt to find
a suitable balance between the flexibility, simplicity and comprehensibility of the
method, which may even require narrowing down its broadness.

In practice, a method such as DEX requires the support of computer software
for both the development of models and evaluation of alternatives. While the basic
DEX method is already implemented in the software DEXi, the extended method
has not been fully implemented yet. To date, we have developed a java software
library that supports all the proposed extensions, but it cannot be used interactively
by the DM. Instead, a model is created and used through program code. The library
was used to model water flows in agriculture (Kuzmanovski et al. 2015) and was
incorporated into a web service to evaluate user-supplied alternatives through a web
browser (Kuzmanovski et al. 2015). In the future, we aim to implement an interactive
computer program that will fully support the extended DEX method in a way that the
similar to the way the current program DEXi supports DEX.
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7 Conclusion

Themain contribution of this paper is an extensionof the already establishedqualitative
multi-criteria modelling method DEX. Based on identified practical needs in complex
decision situations, we proposed three extensions: including numeric attributes, eval-
uating alternatives with probabilistic and fuzzy value distributions and supporting the
evaluation of relational alternatives. In order to support these concepts, a number of
formal and algorithmic components were added, specifically: numeric scale types,
extended value domains, probabilistic and fuzzy value distributions, numeric aggre-
gation functions, five primitive function types and relational attributes, aggregation
functions, models and alternatives. All these concepts greatly increase the flexibility
and representational richness of the method, enlarge the class of decision problems
that can be addressed and improve the decision process by providing additional meth-
ods and tools to the decision maker. On the other hand, the extensions increase the
complexity of the method and developed models themselves, which may have neg-
ative effects on the efficiency and comprehensibility of the modelling. Due to this
complexity, the extended DEX method is currently aimed at skilled decision analysts
rather than ordinary decision makers.
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qualitative multi-attribute modeling. Informatica 37:49–54

Bohanec M, Trdin N (2014) Qualitative multi-attribute decision method DEX: theory and practice. In: 20th
conference of the international federation of operational research societies, Barcelona Spain. p 239
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Bohanec M, Žnidaršič M (2008) Supporting decisions about the introduction of genetically modified crops.
In: Zaraté P, Belaud JP, Camilleri G, Ravat F (eds) Collaborative decision making: perspectives and
challenges. Frontiers in artificial intelligence and applications, vol 176. IOS Press, Amsterdam, pp
404–415

Boose JH, Bradshaw JM, Koszarek JL, Shema DB (1993) Knowledge acquisition techniques for group
decision support. Knowl Acquis 5:405–448

Bouyssou D, Marchant T, Pirlot M, Tsoukiàs A, Vincke P (2006) Evaluation and decision models with
multiple criteria. Springer, New York

Brans JP, Vincke P (1985) A preference ranking organisation method: the PROMETHEE method for
MCDM. Manag Sci 31:647–656

Caflisch RE (1998) Monte Carlo and quasi-Monte Carlo methods. Acta Numer 7:1–49
ClemenRT, Reilly T (2001)Making hard decisionswith decisiontools. Duxbury/Thomson Learning, Pacific

Grove
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Dembczyński K, Greco S, Słowiński R (2009) Rough set approach to multiple criteria classification with

imprecise evaluations and assignments. Eur J Oper Res 198:626–636
Durbach IN, Stewart TJ (2012) Modeling uncertainty in multi-criteria decision analysis. Eur J Oper Res

223:1–14
Feller W (1968) An Introduction to probability theory and its applications, vol 1, 3rd edn. Wiley, New York
Figueira J, Greco S, Ehrogott M (2005)Multiple criteria decision analysis: state of the art surveys. Springer,

New York
French S (1986) Decision theory: an introduction to the mathematics of rationality. Halsted Press, New

York
Gomes LFAM, Moshkovich HM, Torres A (2010) Marketing decisions in small business: how verbal

decision analysis can help. Int J Manag Decis Mak 11:19–36
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Kadziński M, Greco S, Słowiński R (2014) Robust ordinal regression for dominance-based rough set

approach to multiple criteria sorting. Inf Sci 283:211–228
Kahraman C (2008) Fuzzy multi-criteria decision making. In: Pardalos PM, Du D-Z (eds) Springer opti-

mization and its applications, vol 16. Springer, New York
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