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Abstract A key feature of dynamic problems which offer degrees of freedom to the
decision maker is the necessity for a goal-oriented decision making routine which is
employed every time the logic of the system requires a decision. In this paper, we look
at optimization procedureswhich appear as subroutines in dynamic problems and show
how discrete event simulation can be used to assess the quality of algorithms: after
establishing a general link between online optimization and discrete event systems,
we address performance measurement in dynamic settings and derive a corresponding
tool kit. We then analyze several control strategies using the methodologies discussed
previously in two real world examples of discrete event simulation models: a manual
order picking system and a pickup and delivery service.

Keywords Online optimization · Algorithm analysis · Discrete event simulation ·
Order picking · Pickup and delivery

1 Introduction

A large variety of industrial applications on the tactical and operational level are
characterizedby a sequential release of input informationover time and the relatedneed
for sequential decision making throughout the time horizon (Grötschel and Krumke
2001; Stadtler and Kilger 2008). Online optimization deals with sequential decision
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making under incomplete information where each decision must be made on the basis
of a limited overseen amount of future input data (lookahead information). Especially
over the last two decades, incorporating available data about the near future has become
increasingly prominent, driven by electronic data interchange, geographical position
systems or intelligent sensor-actuator systems (Ghiani et al. 2004; Psaraftis 1995;
Stadtler andKilger 2008). In practice, the task of solving online optimization problems
is embedded into a mesh of external processes which are outside the decision maker’s
control. However, how to solve the arising instances of an online optimization problem
is at the decision maker’s disposal, and hence, this activity is a crucial recurring
pattern in industrial applications. For each decision, an online algorithm is called as
a subroutine. It has to determine partial solutions based on the currently available
data such that the overall solution at the end of the time horizon will be as good as
possible. We are interested in distinguishing good control strategies from bad ones
as well as in explaining why algorithms exhibit a certain behavior under a given
degree of information. A standard tool to assess the quality of online algorithms is
competitive analysis (Karlin et al. 1988; Sleator and Tarjan 1985). Informally, an
online algorithm is c-competitive if for every input it fares at most c-times as bad as an
optimal (omniscient) offline algorithm. A formal definition along with the downsides
of this performance measure in real world applications as well as viable alternatives
for practice are given in Sect. 3.1.

In this paper, we consider discrete online optimization problems where decisions
can be traced back to a discrete structure (Grötschel et al. 2001). These prob-
lems occur in different application domains (Borodin and El-Yaniv 1998; Fiat and
Woeginger 1998; Grötschel and Krumke 2001) including production and logistics,
telecommunications, memory management, self-organizing data structures, or finan-
cial engineering. In the application part, we will have a detailed look at two real
world example applications where decisions are required from online optimization
algorithms repetitively. The first application in Sect. 4.1 considers a manual order
picking system in a warehouse where pickers have to retrieve orders from their
storage locations throughout the day. The second application in Sect. 4.2 examines
a pickup and delivery service in an urban road network. For both applications, a
purely analytical approach for determining the quality of different algorithms is out
of scope since a high degree of complexity is inherent to the systems as a conse-
quence of the large amount of unknown data and random events. Mathematically, this
amounts to a large number of dependent random variables in a discrete event system
(Cassandras and Lafortune 2008). Discrete event simulation represents a promising
approach to obtain the values of performance indicators in real world applications
which are impossible to elicit by exact analysis. The rest of the paper is organized
as follows: Sect. 2 lays the methodological foundation for the analysis of online
optimization algorithms by utilizing discrete event simulation. Section 3 summa-
rizes performance measurement methods for algorithm quality from the literature
and addresses a comprehensive approach for displaying overall algorithm quality. In
Sect. 4, we return to the simulation applications and explain algorithm behavior for
different amounts of lookahead. For the results, we also make use of the performance
measurement approaches presented before. The paper closes with some conclusions
in Sect. 5.
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2 Online optimization and discrete event simulation

In order to justify the adoption of discrete event simulation models for the quality
assessment of online optimization algorithms, we discuss analogies between online
optimization and discrete event systems.

Let an event in a dynamic system be a spontaneous occurrence triggered by some
external entity (event generator, nature) or by fulfillment of all conditions of a switch-
ing rule (event generation rule). Because events can be used to submit changes of
the input to the system, we obtain the definition of a discrete event system as an
event-driven system whose state transitions only depend on the occurrence of dis-
crete events over time (Cassandras and Lafortune 2008). In online optimization, the
release of input elements—so-called requests (Grötschel et al. 2001)—occurs at dis-
crete points in time and an online algorithm operates as part of a reactive planning
system. Hence, the solution process in online optimization can be modeled as a dis-
crete event system. Because we associate an objective value to a request sequence
processed by an optimization algorithm, we include a state valuation function for the
objective value of the current state in the formal description of a discrete event system
(Cassandras and Lafortune 2008). Table 1 summarizes analogies between the solution
procedure in online optimization and the behavior of discrete event systems.

As a result of their similarities, both online optimization and discrete event systems
can be tackledwith the same arsenal of analytical methods such as automata orMarkov
chains. However, due to the complexity of real world applications, the computational
burden to apply thesemethodswould be too hard as a result of the exploding state space
size with increasing level of detail. As a consequence, we have to proceed to another
approach which facilitates the determination of quality indicators for the algorithm
candidates.

According to Verein Deutscher Ingenieure (1996), “simulation is the reproduc-
tion of a system along with its dynamic processes in an executable model in order
to retrieve results which are transferable to reality”. Results on system or algo-
rithm performance are derived from first collecting data over a sufficient number
of simulation runs which then serve as the computational basis so as to determine
(point, interval or distributional) estimates for performance measures of interest

Table 1 Analogies between
online optimization and discrete
event systems

Online optimization Discrete event system

Request Event

Request sequence Event sequence

Request arrival Event occurrence

Request arrivals occur at
discrete times

Events occur at discrete times

Algorithm reacts to request
arrivals

System reacts to event
occurrence

Online algorithm State transition function

Objective value State valuation

123



834 F. Dunke, S. Nickel

(Cassandras and Lafortune 2008). Whenever a real world system must be analyzed,
but exact analysis is out of reach due to a high degree of complexity and a large number
of dependent stochastic processes, simulation is an appropriate tool to provide esti-
mates for desired performance measures. Although the approximation character in the
outcomes may be discouraging, there are many advantages: First, simulation may be
the only way to analyze complex systems with multiple dependent random variables
and manifold types of events such as input element releases, machine breakdowns,
occurrence of erroneous data or erroneous operations. Second, sufficiently many sim-
ulation runs allow to obtain statistically sound results. Third, simulation allows to track
manifold quantities of interest as intended by multicriteria optimization. And fourth,
simulation as an abstract model of reality is comparatively risk-free and cheap.

Simulation and optimization can be linked in two hierarchical ways (März andKrug
2011): First, a superordinate optimization procedure may aim at determining optimal
parameter values for elements of the system, and hence use a subordinate simulation
model just to check the quality of a proposed parameter value. Thus, the simulation
evaluates the quality of the solution provided by the optimization and returns the
quality value to the optimization method where a new parameter proposal may be
generated. This hierarchical relation is used to tune the parameters of some machine
or production process on a tactical or strategic planning level. Second, a superordinate
simulationmodelmay call a subordinate optimizationmethod iteratively whenever the
functional logic of the simulation requires a decision. Clearly, the need for a decision
is mainly provoked by new input data. This hierarchical relation is used to emulate the
operational behavior of algorithm candidates on real world data in order to come to a
conclusion about their quality. To obtain the desired quantities of interest, we generate
a sufficient number of sample paths of the state trajectory of the dynamic system by
running a sufficient number of independent simulation replications (Cassandras and
Lafortune 2008).

At this point, observe the difference between a discrete event system and a discrete
event simulation. With a discrete event system we can model online optimization
problems. A discrete event simulation finally feeds a discrete event system with input
in the form of events over time and advances through its functional logic. Typically,
these events comprise classical request arrivals from online optimization, but also all
other random events that one would like to model. There are numerous simulation
tools available such as Anylogic or Plant Simulation allowing to conduct simulation
studies along with graphical output.

Real world systems are inherently complex and contain optimization problems
exhibiting an online character. Thus, discrete event simulation is the approximation
method of choice as justified by the relationship between online optimization and
discrete event systems. Hence, discrete event simulation combined with methods from
online optimization represents a powerful tool for systems analysis as it allows to
evaluate algorithm performance and identify themost promising algorithm candidates.
Disadvantageously, it ismuchmore difficult to gain structural insights onwhy a system
behaves theway it does fromsimulation experiments than fromexact analysismethods.
After the simulation model is finished, it is often just used as a black box to evaluate
sample state trajectories of the system. For this reason, we also conducted research on
exact approaches in a number of elementary problem settings (Dunke 2014); the core
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reasons for observed effects can be found in this type of analysis and, as will be seen
later, these results can conditionally be transferred to more complex settings.

3 Performance measurement in online optimization

We first give a systematic overview of important performance measures found in
the literature and then present a more comprehensive approach devised in the first
author’s thesis Dunke (2014). Formally, the input data corresponds to a sequence
(σ1, σ2, . . .) ∈ � of input elements σi with i ∈ N where � is the set of all possible
input sequences. We denote an optimal offline algorithm which knows σ in advance
by Opt; the cost of an algorithm Alg on input sequence σ is denoted by Alg[σ ]. The
discussion is restricted to minimization problems.

3.1 Literature review

The presentation in this section is subdivided into reviews of deterministic worst-case
measures, probabilistic worst-case measures, average-case measures, and distribu-
tional approaches.

3.1.1 Deterministic worst-case measures

Competitive analysis (Karlin et al. 1988; Sleator and Tarjan 1985) has become the
standard for measuring online algorithm performance. Alg is called c-competitive
if there is a constant a such that Alg[σ ] ≤ c · Opt[σ ] + a for all σ ∈ �. The
competitive ratio cr of Alg is the greatest lower bound over all c such that Alg is
c-competitive. The competitive ratio states how much Alg deviates from Opt due to
missing information in the worst case. The measure might fail in several aspects with
respect to practice: First, results are overly pessimistic because worst-case instances
are decisive. Second, performance is reduced to a single number making it impossi-
ble to discriminate between algorithms with equivalent worst-case behavior. Third,
competing with an omniscient offline algorithm may be irrelevant in practice. Fourth,
competitive analysis cannot be applied that easily to many real world problems due to
the complicated nature of those problems and related algorithms.

Several modifications of the competitive ratio were introduced to overcome these
weaknesses: Under resource augmentation (Csirik andWoeginger 2002; Kalyanasun-
daram and Pruhs 2000), the online algorithm is given an extra amount of resources for
processing the input sequence. In the fair adversary concept (Blomet al. 2000;Krumke
et al. 2002), the offline adversary is restricted to behave in a reasonable way given the
request prefix or configuration seen so far. Loose competitiveness has been introduced
inYoung (1994) becauseworst-case instances are often tailored to problem parameters
and also because it is arguable whether low cost inputs should be considered due to
setup and overhead. Therefore, inputs leading to small costs are excluded.Cooperative
analysis (Dorrigiv and Lopez-Ortiz 2007; Dorrigiv and López-Ortiz 2008) reduces the
impact of badly behaving input sequences since these are assumed to be isolated in
the input space. Therefore, a “badness” is introduced for each instance and the perfor-
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mance guarantee is sought against the badness instead of Opt. The accommodating
function (Boyar et al. 2002, 2003) is defined for problems with a limited resource
which comes in a default amount, but may be varied. The idea then is to evaluate
the performance of an algorithm based on those instances where a given amount of
the resource is good enough for Opt to fully grant all input elements. Comparative
analysis (Koutsoupias and Papadimitriou 2000) relates the best objective value of a
class of algorithm candidates to that of another class of algorithm candidates which
are weaker than Opt, but stronger than those in the first class. The max/max ratio
(Ben-David and Borodin 1994) compares the (amortized) behavior of algorithms on
their respective worst-case instances of a given length. The relative worst-order ratio
(Boyar and Favrholdt 2007) combines the ideas of considering the behavior on input
sequence permutations and selecting the worst-case sequence for either algorithm.

3.1.2 Probabilistic worst-case measures

Probabilistic worst-case analysis is based on some randomization mechanism. In con-
trast to average-case analysis, randomness is not used to impose probabilities for input
sequences, but to blur worst-case instances. Smoothed competitive analysis (Becchetti
et al. 2006) originates fromsmoothed (complexity) analysis (SpielmanandTeng2004).
The basic idea is to show that the worst-case character of worst-case inputs vanishes
under small (smoothing) perturbations. This has been transferred to algorithm analysis
by slightly perturbing instances according to some probability distribution and ana-
lyzing the expected competitive ratio on the perturbed sequences. The random-order
ratio (Kenyon 1996) considers the neighborhood of an input sequence as the set of all
its permutations; input instances with length tending to infinity and all permutations
of an input sequence are considered equally likely.

3.1.3 Average-case measures

In average-case analysis, stochasticity refers to probabilities for input sequences.
Competitiveness has been transferred to stochastic settings (Coffman et al. 1980;
Scharbrodt et al. 2006). Let D be a probability distribution over all input sequences,
then Alg is called c-competitive under D if there is a constant a such that
ED(Alg[σ ]) ≤ c ·ED(Opt[σ ]) + a. The expected competitive ratio of Alg under D
is cDr = inf{c ≥ 1 |Alg is c-competitive under D}. In the same way, the expectation
can be taken instance-wise over all ratios: The expected performance ratio of Alg

under D is c′D
r = inf

{
c ≥ 1 |ED

(
Alg[σ ]
Opt[σ ]

)
≤ c

}
. The diffuse adversary model (Kout-

soupias and Papadimitriou 2000) decreases adversary power by restricting instances
to a class of distributions � whereof a worst distribution D ∈ � is selected. In the
statistical adversary model Raghavan (1991), inputs have to be generated according to
given statistical assumptions. In paging with locality of reference, the Markov model
of Karlin and Phillips (2000) extends access graphs with edge probabilities such that
input sequences are generated by a Markov chain. Franaszek and Wagner (1974) con-
sidered the expected number of page faults per unit time in a distributional model
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of paging where pages are generated according to an arbitrary distribution one after
another.

3.1.4 Distributional measures

The main advantage of distributional performance analysis is that an algorithm is
judged by distributional information instead of a single indicator. Relative interval
analysis (Dorrigiv et al. 2009) only considers the extreme values of a distribution for
two algorithms. The relative interval of an algorithm pair corresponds to its asymptotic
range of costs per input element. Stochastic dominance (Müller and Stoyan 2002)
establishes an order relation between distributions of randomvariables. By interpreting
the objective value as a random variable, this concept has been transferred to online
optimization (Hiller 2009). Let F

Alg
: R → [0, 1] be the cumulative distribution

function of the objective value of Alg. Then Alg1 dominates Alg2 stochastically if
and only if F

Alg2
(v) ≥ F

Alg1
(v) for all v ∈ R.Bijective analysis ( Angelopoulos et al.

2007) is a special case of stochastic dominance where input sequences are uniformly
distributed.

3.2 Comprehensive performance measurement

First observe that none of the previous approaches other than competitive analysis has
earned broad acceptance, probably because of their involved definitionswhich impedes
their general applicability.Wediscuss the performancemeasurement approach devised
in the first author’s thesis (Dunke 2014) which summarizes the global behavior of an
algorithm over all instances and also takes into account local (instancewise) quality.
The approach admits an image of algorithm quality that is free of any risk preference.
In the following, f is a function returning the objective value for any pair (σ, s(σ ))

consisting of an input sequence σ and the solution s(σ ) that is produced by algorithm
Alg upon processing σ .

Definition 3.1 (Objective value) Let σ ∈ � be an input sequence, letAlg be an algo-
rithm choosing solution s

Alg
(σ ) on σ , and let f be a real-valued function evaluating

the pair (σ, s
Alg

(σ )). Then v
Alg

(σ ) := f (σ, s
Alg

(σ )) is called the objective value of
Alg with respect to σ .

Sinceonline optimizationgenerally assumes that noprobabilities for instanceoccur-
rences are given, the maximum entropy distribution emulates the state of a complete
lack of information best (Jaynes 1957; Jaynes 1957). The uniform distribution over
� is the maximum entropy distribution with support �. For finite �, this leads to
counting results saying how many input sequences out of all of them yield a cer-
tain objective value (Hiller 2009). The counting distribution function subsumes this
frequency information:

Definition 3.2 (Counting distribution function of objective value) Let σ ∈ � be an
input sequence, let Alg be an algorithm, and let v

Alg
(σ ) be the objective value of

Alg on σ . If � is a discrete set, then the function F
Alg

: R → [0, 1] with
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F
Alg

(v) :=
∑

σ∈�
1(−∞,v](vAlg(σ ))

|�|
is called the counting distribution function of the objective value ofAlg over�, where
the indicator function 1(−∞,v](vAlg(σ )) is 1 if v

Alg
(σ ) ∈ (−∞, v] and 0 otherwise.

The following definitions account for the relative performance of two algorithms
to each other when both are restricted to operate on the same problem instance:

Definition 3.3 (Performance ratio) Let σ ∈ � be an input sequence, let Alg1, Alg2
be two algorithms choosing solutions s

Alg1
(σ ), s

Alg2
(σ ) on σ , respectively, and let

f be a real-valued function evaluating the pair (σ, s
Alg

(σ )). Then r
Alg1,Alg2

(σ ) :=
f (σ,s

Alg1
(σ ))

f (σ,s
Alg2

(σ ))
is called the performance ratio of Alg1 relative to Alg2 with respect to

σ .

The maximum r
Alg1,Alg2

(σ ) over all σ ∈ � coincides with the competitive ratio
for an online optimization problem, if Alg1 is an online algorithm and Alg2 equals
Opt.

Definition 3.4 (Counting distribution function of performance ratio) Let σ ∈ � be
an input sequence, let Alg be an algorithm, and let r

Alg1,Alg2
(σ ) be the performance

ratio ofAlg1 relative toAlg2 on σ . If� is a discrete set, then the function F
Alg1,Alg2

:
R → [0, 1] with

F
Alg1,Alg2

(r) :=
∑

σ∈�
1(−∞,r ](rAlg1,Alg2(σ ))

|�|
is called the counting distribution function of the performance ratio of Alg1 rel-
ative to Alg2 over �, where the indicator function 1(−∞,r ](rAlg1,Alg2(σ )) is 1 if
r
Alg1,Alg2

(σ ) ∈ (−∞, r ] and 0 otherwise.

The numerical example in Fig. 1 (a) tells us that Alg1 attains an objective value
of at most 10 on 50% of all input sequences. For Alg2, only 22% of the inputs lead
to an objective value of at most 10. In part (b), we see that the largest part of all
input sequences leads to a performance ratio larger than 1. Moreover, 50% of all input
sequences lead to a ratio smaller than 1.2 and the other 50% have a ratio of at least
1.2.

Distribution functions offer both a global view on algorithm quality over all
instances and a local view on algorithm quality relative to some reference algorithm
on the same instance. Distribution-based analysis also yields information about ranges
and variability. Presenting a decision maker with the counting distribution functions
eliminates the burden of defining trade-offs between worst case, best case and average
case: The decision maker is equipped with all information except for the direct map-
ping of objective values and performance ratios to input instances; we cannot think of
a more comprehensive method.

In case of a high number of algorithm alternatives, we recommend a two-staged
process of empirical performance assessment: In the first stage, an average-case analy-
sis allows us to find the most promising algorithm candidates in terms of expected
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Fig. 1 Exemplary illustration of counting distribution functions of a objective value v of Alg1 and Alg2,
and of b performance ratio r of Alg1 relative to Alg2

algorithm behavior and to filter out those algorithms which shall be investigated fur-
ther. In the second stage, distributional analysis leads to a fine-grained assessment
of each candidate’s risk profile with respect to attainable objective values and perfor-
mance ratios. To support the statistical validity of the sampled results, one has to ensure
that a sufficient number of input sequences are considered. Therefore, it is advisable
to choose the sample size large enough to ensure a confidence interval (to a given con-
fidence level) of reasonable width for the mean objective value and performance ratio
(Cassandras and Lafortune 2008). With this sample size, the distributional analysis is
likely to display a proper image of the variability in an algorithm’s outcome. How-
ever, it is undisputed that isolated worst-case instances cannot by detected by such an
empirical approach.

4 Applications

We return to the two applications outlined in Sect. 1. Due to the high complexity
incurred by many dependent random variables and multiple optimization goals, we
use simulation to analyze algorithm performance. The goal of the study is to answer
the question “How much can the solution quality be improved by providing infor-
mation at an earlier point in time by which type of algorithm candidates?”. This
question is motivated by recent advances in information and communications tech-
nology, such as electronic data interchange or geographical position systems, which
allow to access information earlier. Accordingly, we define lookahead as a mecha-
nism which makes information known earlier by D time units (lookahead duration)
compared to the no-lookahead case. In Dunke (2014) it is shown that in the classical
traveling salesman problem (TSP) large tour length reductions can be achieved by
lookahead through improved resequencing possibilities and avoiding detours. We will
resort to this result to explain algorithm behavior in the simulation models. Simu-
lation models were developed in AnyLogic 6.9.0; algorithms were implemented in
the Java environment of AnyLogic and MIP formulations were solved using IBM
ILOG CPLEX 12.5 with a time limit of 120 seconds. Experiments were performed
on a machine with AMD Phenom II X6 1100T 3.31 GHz processor and 16 GB RAM
under Microsoft Windows 7 (64-bit). Detailed result data (including average results,
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Picker with picked orders

Storage location with
order to be picked

Storage locations

Aisle rear entry

Aisle front entry

Administration area

Fig. 2 Animation of the simulation model for an order picking system

distributional results, and 95% confidence intervals) is available online at http://dol.
ior.kit.edu/english/downloads.php.

4.1 Manual order picking in warehouses

In a manual order picking system (see Fig. 2), pickers move through the aisles of a
warehouse to retrieve items packed in boxes as demanded by the orders from external
customers. When a picker has collected all boxes assigned to him, he returns to a
depot to unload the boxes and wait for the next assignment of boxes to be picked.
Typically, customer orders arrive throughout the day and the objective is to make
the pickers collect all boxes of the customer orders in a way that meets the decision
maker’s goal system best. The following quality indicators for the routes are used to
judge the quality of the responsible algorithm: Makespan, total distance covered by
all pickers, picker utilization, box throughput. Observe that a realistic order picking
system is also subject to several further stochastic events such as blocking effects, or
individual picker behavior.

The layout consists of ten aisles, each with 20 storage locations, arranged in a
lower and an upper block. The depot and break location are positioned in the lower
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left corner. The aisle length amounts to 30m, the horizontal (vertical) aisle distance
is 8 (2.5)m (cf. Fig. 2). On average, pickers move at a speed of 1m per second in
order to fulfill the orders according to the pick lists that are given to them at the
depot. Aisle traversal is subject to blocking effects (Huber 2011), e.g., because of
security or space considerations: Only one picker is allowed inside an aisle at a time.
Five pickers have to serve n = 625 orders over a work day of 600min plus poten-
tial overtime. An order may consist of up to three boxes and the picker capacity
amounts to ten boxes. Orders have to be brought to the depot where they are fur-
ther processed for distribution. Order arrival and data are random, i.e., release time,
number of boxes, pick time, drop time and box locations are realizations of random
variables that are unknown to the algorithms which have to determine pick lists and
routes. In addition, we have the following random influences: Picker velocity profile,
picker break start and end times, picker no-show occurrence, and if applicable, picker
no-show start and end times. After execution of a simulation replication, we obtain
the makespan, the total distance covered by all pickers, the picker utilization and
the box throughput as quality indicators for computed pick lists and routes. Looka-
head appears as time lookahead of duration D ∈ {0, 60, 120, . . . , 600}min, i.e., time
windows of the next Dminutes are seen at each time. Once an order arrives, it is
ready to be picked, i.e., orders can be picked earlier through lookahead. We draw
50 independent simulation replications. The selected parameter setting may represent
the warehousing operations of a producer which produces homogeneous goods in a
medium volume.

Algorithms. An algorithm is required to determine the pick lists and routes for all
pickers available at that time (see, e.g., the survey in Henn et al. (2012)). Sequential
methods cope with the complexity of the problem by decoupling the problems: A
batching algorithm assigns orders to pickers; a routing algorithm determines picker
traversal paths through the aisles including aisle entry and exit points. Simultaneous
methods solve the batching and routing problem at the same time. However, when
many customer orders are known, e.g., due to large lookahead, problem instances
become too huge to be solved by a simultaneous method.

Batching Algorithms

• PriorityBatching (Prio, Henn et al. (2012)): Sort orders according to a cri-
terion, e.g., non-increasingly according to their number of boxes. Assign orders
successively to batches in a first fit manner.

• SeedBatching (Seed, Henn et al. (2012)): Batches are built sequentially: Initial-
ize each batch with a seed order, e.g., by selecting an order with the largest number
of boxes; fill the batch with additional orders according to an order congruency
rule, e.g., select an order with the smallest number of additional aisles.

• SavingsBatching (Svgs, Henn et al. (2012)): Batches are built simultaneously:
Initialize the batch building process with each order forming a separate batch. In
the improvement phase, combine orders of two batches into one batch if the total
distance is reduced according to the routing algorithm applied until no further
improvement is possible.
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• LocalSearchBatching (Ls, Henn et al. (2012)): Let the neighborhood of a batch
set be given by all batch sets which are obtained by a swap or shift move: A swap
move exchanges one selected order per batch between two batches; a shift move
transfers a selected order from one batch to another. A perturbation of a batch
set consists of transferring a random number of orders from one batch to another
if the receiving batch remains feasible. Execute the following two steps until the
total distance of all batches cannot be reduced in either step: Search within the
neighborhood of the current batch set for a batch set with smaller total distance.
Perturb the current batch set for a fixed number of times to find a batch set with
smaller total distance.

• TabuSearchBatching (Ts, Henn et al. (2012)): Let the neighborhood of a batch
set be defined as in LocalSearchBatching, but with the modification that those
swap and shift moves, along with their inverse moves, that have been carried out
within a prescribed number of previous iterations are excluded from the neighbor-
hood. Let a perturbation of a batch set be defined as in LocalSearchBatching.
Execute the following two steps until the total distance of all batches cannot be
reduced in the second step: For a fixed number of times, select within the neigh-
borhood of the current batch set the batch set with smallest total distance as the
new current batch set. Perturb the current batch set for a fixed number of times to
find a batch set with smaller total distance.

The last three batching algorithms (Svgs,Ls,Ts) already take into account potential
routes and the resulting sum of route lengths (total distance) as determined by the
applied routing method. However, since in the course of algorithm execution the
routing algorithm is applied only as a subroutine for evaluating the quality of a given
batch, the phases of batch building and batch routing still run successively.

Routing Algorithms

• ReturnRouting (Ret, Henn et al. (2012)): Lower aisles with boxes are visited
first from left to right; upper aisles with boxes are visited afterwards from right to
left. Each aisle except for the last lower aisle with a box is entered and exited at
its front entry; the last lower aisle with a box is traversed entirely.

• S- ShapedRouting (S, Henn et al. (2012)): First, the two leftmost aisles with
boxes of both blocks are traversed upwards entirely. Second, upper aisles with
boxes are visited from left to right where each aisle except for the rightmost
is traversed entirely in the direction opposite to that of the previous aisle; the
rightmost aisle is traversed entirely if it is entered at its rear entry, otherwise it
is entered and exited at its front entry. Third, lower aisles with boxes are visited
from right to left where each aisle except for the rightmost aisle and the last lower
aisle is traversed entirely in the direction opposite to that of the previous aisle; the
rightmost aisle is traversed downwards entirely, the last lower aisle is traversed
entirely if it is entered at its rear entry, otherwise it is entered and exited at its front
entry.

• LargestGapRouting (Gap, Henn et al. (2012)): The largest gap of an aisle is
its largest segment that contains no box, i.e., either the segment between two
adjacent boxes, between front entry and lowermost box, or between rear entry and
uppermost box. The largest gap of an aisle separates two parts of the aisle from
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each other: The lower (upper) part starts at the front (rear) entry and finishes at the
lowermost (uppermost) point of the largest gap. First, lower parts of lower aisles
with boxes are visited from left to right. Second, upper parts of lower aisles with
boxes are visited from right to left. Third, lower parts of upper aisles with boxes
are visited from left to right. Fourth, upper parts of upper aisles with boxes are
visited from right to left. The rightmost aisle of each block is traversed entirely; in
all other aisles, lower (upper) parts are entered and exited at the front (rear) entry.

• OptimalRouting (Opt, Lawler et al. (1985), Miller et al. (1960)): Solve a mixed
integer programming (MIP) formulation of the order routing problem (which
amounts to a TSP instance). Visit the boxes in the order suggested by the obtained
solution.

Simultaneous Batching and Routing Algorithm

• Optimal,Optimal (Opt/Opt, Dunke (2014)): Solve an MIP formulation of the
order batching and routing problem. Assign orders to pickers and apply for each
picker’s boxes the visiting order as suggested by the obtained solution.

Average Results. All combinations of batching and routing algorithms as well as the
simultaneous algorithm were tested. We note that rule-based routings (Ret, S, Gap)
are accepted in practice because of their simplicity, whilst optimal routes as calculated
by Opt or the simultaneous approach may be shapeless. We restrict attention to the
total travel distance in kilometers and the box throughput in boxes per hour. Figure 3
shows that a substantial reduction in the total distance covered by all pickers is achieved
by lookahead. For lookahead durations D ≥ 300, optimization potential is satiated
because of picker capacities and the sufficient number of known orders to produce
“good” pick lists and routes. The effect is explained by the same change of processing
restrictions as experienced in the TSP (cf. Dunke (2014)): Since a box may be picked
up as soon as it becomes known, increasing the lookahead duration leads to increased
probabilities for spatially proximate boxes.

Batching by Prio suffers poor overall performance and is eliminated from further
consideration; Svgs is also rejected as it consistently loses to all remaining batching
policies.Seed,Ls andTs exhibit comparable behavior.We draw amore precise picture
based on the selected routing strategy: Ret fails due to its naive approach. Concerning
routing policy Opt, all three batching algorithms are considered equal. Under Gap
routing and small lookahead, Ls has a slight advantage over the two other batching
rules, whereas in the case of medium to large lookahead Ts excels Ls and Seed.
Under routing policy S, all algorithms exhibit the same quality; however, performance
is degraded as compared toOpt’s routing for small lookahead. Simultaneous batching
and routing by Opt/Opt is impracticable to obtain solutions quickly: Whenever more
than ten orders, i.e., up to 30 boxes, were open, we had to forfeit almost always the
exact reoptimization to apply Seed/Gap as a computationally tractable substitute.
Thus, Opt/Opt and Seed/Gap coincide for D ≥ 180.

Based on the total distance objective only, we come to the interim conclusion
that Ts, Ls and Seed lead to the most promising batchings along with either S or
Opt as recommendable routing policies. Exact reoptimization is computationally too
hard. Before we proceed to the box throughput, we note that travel distance and box
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Fig. 3 Average total distances for different lookahead durations and n = 625 in the order picking system

throughput are not competing goals. Thus,wedonot expect throughput to be negatively
affected by distance minimization.

The box throughput attained by the pickers is consistent with the previously found
ranking of batching and routing algorithms based on the total distance (cf. Fig. 4).
However, while differences in throughput as accomplished by the algorithms are vir-
tually non-existent for small lookahead durations, batching algorithms Ts, Ls and
Seed unfold their potential and consistently outperform all other batching policies as
well as exact reoptimization for larger lookaheads. Routings by S and Opt clearly
outperform the other routing strategies.

Distributional results Since routing policy Opt intrinsically leads to the shortest
route for a given batch, we restrict the discussion to this routing strategy. Because
batching algorithm Ts has been identified as one of the top candidates, we select
Ts/Opt600 as the reference for performance ratios relative to the “best” offline algo-
rithm. We also restrict ourselves to batching algorithm candidates Ts, Ls and Seed

which emerged superior from the average-case analysis. Figure 5 confirms the positive
effect of lookahead on the total distance. Concerning batching algorithm candidates
Ts, Ls and Seed, a perfect ordering of the empirical counting distribution func-
tions is observed for successive lookahead durations up to D = 240. Hence, we
have an exclusively beneficial lookahead effect for these information regimes. For
D ≥ 300, empirical counting distribution functions intransparently cross each other
countless times so that no exclusive benefit can be concluded for these lookahead
durations; the marginal benefit of an additional time unit of lookahead is approxi-
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Fig. 5 Empirical counting distribution functions of distance for n = 625 in the order picking system

mately zero. Each plot has large steepness in a characteristic interval of total distance
values and nearly no steepness elsewhere indicating that each algorithm (combined
with lookahead duration) corresponds to a specific range of total distances. However,
for larger lookahead durations there are instances where additional lookahead leads
to an objective value degradation; since the marginal benefit of lookahead in this part
is negligible, this effect is considered unimportant. The empirical counting distrib-
ution functions of the performance ratio for the total distance relative to Ts,Opt600
in Fig. 6 show that experimental competitive ratios are not larger than 1.33 for Ts,
Ls and Seed. Compared with the “unrestricted” TSP (cf. Dunke (2014)), distance
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Fig. 6 Empirical counting distribution functions of performance ratio of distance relative to Ts/Opt600
for n = 625 in the order picking system

savings are still significant albeit their magnitude is reduced due to picker capacities.
The gap between the plots of successive lookahead levels admits the same conclu-
sions as drawn from the total distance distributions. For lookahead D ≥ 300, ratios
are centered around 1, i.e., (slight) deterioration despite additional lookahead is seen
regularly.

Figures 7 and 8 illustrate the distributional results for the box throughput. Because
of maximization, it is desirable to have more mass on larger values. Obviously, looka-
head allows pickers to achieve a higher throughput as compared to the online case
where generation of full pick lists is impeded and waiting times are more probable.
We observe a qualitative difference compared to the total distance case: Variability
increases considerably for increasing lookahead durations; likewise, the variability of
performance ratios relative to Ts/Opt600 decreases considerably for increasing looka-
head durations (the curves are less steep): In the pure online case, orders arrive over
the entire time horizon and the throughput is heavily affected by the arrival process,
particularly by the last orders; under full lookahead the throughput is a sole conse-
quence of the picker efficiency in copingwith the input sequence revealed at the outset.
Hence, throughput is inherently throttled and regulated in the online case leading to
more invariant behavior compared to the case where the system evolves freely. For
total distance there is no such effect because the distance walked by the pickers is inde-
pendent of time considerations. In contrast, throughput is measured in boxes per unit
time such that the time needed for serving all boxes heavily influences this objective.

Applying the distributional analysis, we were able to delimit the total distance into
a range with a width of approximately 8 kilometers irrespective of the lookahead
duration. The variability of the total distance is unaffected by the lookahead level. In
contrast to that the variability of the throughput increases significantly with additional
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Fig. 7 Empirical counting distribution functions of throughput for n = 625 in the order picking system
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Fig. 8 Empirical counting distribution functions of performance ratio of throughput relative to Ts/Opt600
for n = 625 in the order picking system

lookahead as explained above. Nonetheless, the main mass of observed throughput
values under full lookahead is far higher than those observed in the case of no looka-
head.

We conclude this section by pointing out that in manual order picking systems
where boxes can be picked up once they are known, massive improvements in all
goals could be observed as a result of an enlarged planning basis. Since the objectives
are not conflicting, all goals can be improved and no trade-offs between themhave to be
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Fig. 9 Animation of the simulation model for a pickup and delivery service

taken into account. Fromamanagerial point of view,we recommend to install technical
devices which allow for the retrieval of lookahead information and to check whether
operating strategies currently implemented in the warehouse conform to potential
warehouse efficiency as extracted by simulation under batching policies Ts, Ls and
Seed combined with routing policies S and Opt.

4.2 Pickup and delivery service in an urban road network

In a pickup and delivery service (see Fig. 9), customers specify transportation orders
between individual origins and destinations in a road network. In addition, customers
provide preferred time windows for their pickup and delivery time. Transportation
orders are served by a fleet of vehicles and each vehicle has to start and end its routes
at an individual depot. Typically, transportation orders arrive throughout the day and
the objective is to make the vehicles pick up and deliver all transportation orders in a
way that meets the decision maker’s goal system best. This problem setting naturally
adheres to time-related objectives such as the mean and maximum tardiness over all
pickup and delivery orders. Additionally, quality indicators such as themakespan, total
distance covered by all vehicles, vehicle utilization, or order throughput are relevant.
We observe that in the pickup and delivery service, the decisionmaker faces conflicting
objectives: A prescribed service level with respect to keeping the time windows can
conflict with requiring short routes which would result from spatial considerations
only. In addition, there are a number of side effects such as traffic jams, varying
vehicle speeds, or individual driver behavior.
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The network represents the region of the city of Karlsruhe in Germany and con-
sists of 269 central points and 449 major roads between them (cf. Fig. 9). The
network diameter is 28.5 kilometers; each road is prescribed a maximum speed
limit. Vehicles are subject to the current traffic scene, i.e., traffic jams represent addi-
tional random events. Three vehicles have to serve n = 50 customer orders arriving
over a work day of 600min plus potential overtime. An order may consist of up to
two units to be transported and the vehicle capacity amounts to five units. Order
arrival and data are random, i.e., release time, number of units to be transported,
pickup time, delivery time, pickup time window, delivery time window, pickup loca-
tion and delivery location of an order are realizations of random variables that are
unknown to the algorithms which have to determine the routes of the vehicles. In
addition, we have the following random influences: Driver break start and end times,
driver no-show occurrence, and if applicable, driver no-show start and end times.
After execution of a simulation replication, we obtain the makespan, the total dis-
tance covered by all vehicles, the mean and maximum tardiness over all pickup and
delivery orders, the vehicle utilization and the order throughput as quality indica-
tors for computed vehicle routings. Lookahead appears as time lookahead of duration
D ∈ {0, 60, 120, . . . , 600}min. Once a transportation request arrives, it has to wait
until its timewindow starts before the order can be picked up or delivered, respectively.
We draw 100 independent simulation replications. The selected parameter setting may
represent the situation of a small home health care provider in a medium-sized urban
region.

Algorithms. An algorithm is required to determine the routes for all vehicles avail-
able at that time so as to fulfill the known and yet unfulfilled transportation orders. In
contrast to the order picking system, temporal restrictions have to be regarded, earliest
start times for pickups and deliveries are not forwarded through lookahead but retained
due to the time windows specified by the customers, and assignment decisions may
be revoked. Because of time, not only spatial proximity of locations but also temporal
proximity of time windows matters; each pickup has to be seen in logical conjunction
with the corresponding delivery operation. Therefore, the variety of solution methods
is more limited than for problems without time windows and there is no a-priori sub-
division into batching and routing strategies. Some algorithms resort to a performance
measure for the quality of a route.We evaluate route quality by aggregating total travel
distance, average tardiness andmaximum tardiness into an auxiliary objective function
in the form of a linear combination (scalarization). Despite extensive numerical tests,
there was no coefficient setting which consistently outperformed another one over all
three goals. In the end,weweighted the average tardiness (inminutes)with a coefficient
of 5,maximum tardiness (inminutes)with a coefficient of 1, and total travel distance (in
km) with a coefficient of 0.01. In our opinion, this reflects best what a decision maker
could perceive as a fair trade-off between the different goals. Except for the tabu search
heuristic and the exact reoptimization approach, all of the following algorithms are
modified versions of the algorithms provided by Kallrath (Kallrath 2005) for vehicle
routing on hospital campuses. The neighborhood structure in the tabu search algorithm
is taken from the setting of dial-a-ride problems discussed by Cordeau and Laporte
(Cordeau and Laporte 2003).
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• SequencingReassignmentHeuristic (Srh, part 2 of Kallrath (2005)):
1. Assignment of orders to vehicles: Sort unassigned orders by non-decreasing

earliest pickup times and assign orders within a time slice of prescribed length
(e.g., 100min) to vehicles by a modified first fit rule which ensures that orders
with close earliest pickup time (e.g., less than 25min) are not assigned to the
same vehicle. Assign previously unassigned orders by the (unmodified) first
fit rule.

2. Route construction: Create a route for each vehicle by successively inserting
its assigned orders (pickup and delivery location) in a best possible way in
terms of a minimum objective value increase.

3. Route improvement by resequencing: Remove in each vehicle’s route an order
with maximum positive tardiness, if any, and reinsert it in a best possible way
in terms of a maximum objective value decrease until no further improvement
is possible.

4. Route improvement by reassignment: Remove an orderwithmaximumpositive
tardiness in each vehicle’s route, if any, and reinsert it in another vehicle’s route
in a best possible way in terms of a maximum total objective value decrease
until no further improvement is possible. In order to choose the vehicle which
receives the order, check all vehicles and select one that leads to smallest total
objective value.

5. Route improvement by resequencing: Repeat step 3.

• 2Opt (2Opt, Croes (1958)): Obtain initial routes for each available vehicle by
applying Srh. Apply to each vehicle’s route the well-known 2Opt algorithm.

• SimulatedAnnealing (Sa, Kirkpatrick et al. (1983)): A swap move in a route
consists of exchanging the positions of two locations if a feasible sequence of
pickup and delivery locations is obtained; a shift move in a route consists of
shifting a number of successive locations to another position in the route if a
feasible sequence of pickup and delivery locations is obtained. Obtain initial routes
for each available vehicle by applying Srh. Apply to each vehicle’s route the well-
known SimulatedAnnealing scheme.

• TabuSearch (Ts, Cordeau and Laporte (2003)): Let the neighborhood of a route
set consist of all route sets which emanate from removing the pickup and deliv-
ery locations of an order from a first route and inserting them at best possible
points of a second route in terms of a minimum objective value increase. In Ts,
the auxiliary objective for route quality is modified by adding a penalty propor-
tional to the number of times that the move resulting in the neighboring route
set has been applied previously. A route is tabu if it results from reinserting
an order which has been removed from it no longer than a prescribed maxi-
mum number of iterations ago. Obtain initial routes for each available vehicle
by applying Srh and set the current route set to this solution. Repeatedly set the
current route set to a route set with minimum total objective value among all
route sets in the neighborhood of the current route set such that each of the routes
is non-tabu until no further improvement is made over a prescribed number of
iterations.
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Fig. 10 Average total distances for different lookahead durations and n = 50 in the pickup and delivery
service

• Optimal (Opt, Toth and Vigo (2002)): Solve an MIP formulation of the snapshot
pickup anddelivery problem.Assign orders to vehicles and route themas suggested
by the solution.

Average results We restrict attention to three selected performance criteria which
already illustrate the trade-offs between competing goals: Total travel distance in
kilometers, average tardiness of pickup and delivery operations in minutes, and order
throughput in orders per hour. Figure 10 shows the average total distance covered
by all vehicles for different lookahead durations. Apart from Opt, all algorithms
acquire reductions through additional lookahead. However, because of time windows,
improvement appears neither as drastic nor as reliable as in previous settings that
were based on the TSP with allowed immediate service of requests (cf. Sect. 4.1
and Dunke (2014)). We attribute the major degree of unpredictability concerning the
travel distance to the algorithms’ rationale which also attempts to minimize average
and maximum tardiness by means of the auxiliary objective function resulting from
the linear combination of the three goals as discussed above. Moreover, the total
distance deterioration of Opt for increasing lookahead is provoked by exact solutions
of snapshot problems. Unfortunately, these exact snapshot solutions are unrobust with
respect to the incorporation of new requests and may lead to additional detours.

Algorithms Srh, 2Opt and Sa are found to fare best for the total distance criterion;
they exhibit identical behavior which means that edge exchanging moves as well as
swap and shift moves on the route set determined by Srh are ineffective. Hence, 2Opt
and Sa which focus on intra-route improvement (Kallrath 2005) offer no additional
benefit. This is explained by the already elaborate route construction of Srh based
on a best insertion policy and the difficulty of preserving feasibility upon route modi-
fications due to time windows and precedence restrictions of pickups and deliveries.
Although Ts also begins with routes initially determined by Srh, the possibility of
order reassignments from one route to another leads to structurally different routes that
are obviously worse for the total distance criterion. Yet, for other objective functions
we see that inter-route improvements (Kallrath 2005) of Ts are profitable. Concerning
exact reoptimization by Opt, lookahead leads to unstable routings as figured out for
the TSP (Dunke 2014): Partial solutions that are advantageous for a snapshot situation
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Fig. 11 Average tardinesses for different lookahead durations and n = 50 in the pickup and delivery
service

may turn out disastrous when the situation changes as new transportation orders pop
up.

The picture changes drastically when the average tardiness over all pickups and
deliveries is considered: Fig. 11 suggests algorithmsTs andOpt as themost promising
candidates to keep tardiness lowwhich is in sharp contrast to the superiority of theSrh-
based algorithmswith respect to the total distance criterion.We recall that route quality
is assessed by an auxiliary objective which linearly combines total distance, mean
tardiness and maximum tardiness. Hence, algorithms shift their focus on whatever
optimization goal can be addressed best by their rationale. In this sense, Ts fares
best on tardiness-related objectives by trading an increase in the total distance for a
decrease in the average (and maximum) tardiness.

No algorithm is found to benefit from lookahead with respect to tardiness-related
goals. Quite to the contrary, even sophisticated algorithms like Ts and Opt struggle
with the instability of “locally” good solutions whose advantages are likely to be relin-
quished in the remainder of the request sequence. Instead, ad-hoc planning without
too much future information is advisable because deviations between previously cal-
culated routes and actual travel routes are likely to occur anyway. Since even in the
pure online setting there are always enough unfulfilled orders to induce high vehicle
utilization, it suffices to consider the transportation orders known in this case. The
approximately parallel behavior of Ts and Opt is due to our stipulation to use Ts as a
substitute for Opt in case of more than ten orders so as to guarantee reasonable com-
putational effort. By reinspecting the average distance in Fig. 10, we also recognize
the approximately parallel behavior of Ts and Opt for D ≥ 180. Hence, we draw
the same conclusion as in order picking: When the lookahead duration exceeds 3h,
subproblems become too large to be solved by Opt within 120s.

From the first two objectives, we come to the interim conclusion that the dilemma
of multicriteria optimization is preserved even under large lookahead and that it is not
trivial to design algorithms compliant with all objectives in a system of conflicting
goals. Since creating short distance routes may only come along with large violations
in the timewindow constraints, the decisionmaker has to be aware of his own trade-off
relations for different goals in order to reach a final decision on algorithm quality.
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Fig. 12 Average throughput for different lookahead durations and n = 50 in the pickup and delivery
service

The average throughput of transportation orders as achieved by the different algo-
rithms is shown in Fig. 12. Looking at the scale of the diagram, we find that differences
between the algorithms are only of minor magnitude. This observation is explained by
the hard restriction on the earliest possible start time of pickup and delivery operations
at the lower bound of corresponding time window intervals that any algorithm has to
respect.

We come to the overall conclusion that in the problem setting under consideration
with time windows and multiple types of unpredictable events, there is no essential
benefit from lookahead in terms of major improvements in the overall route plan.
Immediate planning upon arrival of transportation orders that does not account for
too much future information proves to be a sufficient methodology to determine fea-
sible routes of fair quality. The decision maker is left over with the task of choosing
the algorithm candidate most consonant with his individual preferences: If goals are
equally important, Opt leads to balanced results concerning several objectives; if
travel distance (tardiness and maximum tardiness) minimization is considered the
most important goal, Srh and Opt (Ts and Opt) are the most promising candidates.

Distributional Results. In Figure 13, the empirical counting distribution functions of
the total distance lie close to each other for different lookahead durations and there are
countless intersections of the plots contradicting an exclusively positive benefit from
lookahead. Instances with deteriorated total distance value are encountered every now
and then, even if more lookahead was given. Nevertheless, the slight positive influence
of lookahead can clearly be seen by the relative position of the plots of successive
lookahead levels.

Performance ratios of the total distance incurred by the online algorithms under
lookahead relative to Ts,Opt600 in Fig. 14 appear centered around the value of 1. This
means that—albeit their informational state is worse—online algorithms under looka-
head lead to shorter routes on a considerable proportion of instances as compared to
the routes determined under complete information. The plots of the empirical counting
distribution functions exhibit numerous intersection points with each other, yet allow
to establish an approximate order by their relative positions to each other for differ-
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Fig. 13 Empirical counting distribution functions of distance for n = 50 in the pickup and delivery service
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Fig. 14 Empirical counting distribution functions of performance ratio of distance relative to Ts,Opt600
for n = 50 in the pickup and delivery service

ent lookahead durations. A significant fraction of input instances has experimental
competitive ratio smaller than 1.

Concerning the distributional results with respect to the tardiness over all pickups
and deliveries, Figures 15 and 16 are affirmative to the ineffectiveness of additional
lookahead time: Plots of all different lookahead durations intersect with each other in a
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Fig. 15 Empirical counting distribution functions of tardiness for n = 50 in the pickup and delivery service
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Fig. 16 Empirical counting distribution functions of performance ratio of tardiness relative to Ts,Opt600
for n = 50 in the pickup and delivery service

disordered fashionmany times such that no order relation between any of the empirical
counting distribution functions from different information regimes is recognizable.

As a result from the distributional analysis we find that the non-dominance of high
lookahead durations over low lookahead durations is also found on single instances,
i.e., we have an indefinite behavior of algorithms with respect to the lookahead sup-
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plied. Moreover, we see that total distance values typically range between 1400 and
2200km. Objective values throughout this range occur with significant frequency such
that there is no characteristic total distance obtained by any algorithm. Concerning the
observed tardinesses, we have a similar picture of variability.

We conclude this section by pointing out that hard constraints and competing objec-
tives make it considerably harder for algorithms to elicit any improvement out of
additional information. In particular, the straight-forward extensions of pure online
algorithms to the lookahead case are of no use. From a managerial point of view,
we recommend not to blindly install technical devices for the retrieval of lookahead
information and not to hope for improvement without having an algorithm which reli-
ably exploits lookahead in the face of competing objectives. Instead, it is advisable to
spend research effort on the development of algorithms that align their rationale with
lookahead and multiple goals.

4.3 Lessons learned

The simulation studies revealed that the first step towards efficient logistics opera-
tions consists of selecting the right algorithm which matches the decision maker’s
preferences best. Simulation is a suitable method to elicit the information (e.g., key
performance indicators or counting distributions of algorithm performance for mul-
tiple goals) needed by managers of real world systems to successfully deploy their
applications. A one-to-one transfer of statements about the lookahead effect from ele-
mentary problems (cf. alsoDunke (2014)) to complex dynamic settings is not possible.
Nevertheless, due to being embedded into the logic of the dynamic system, the elemen-
tary problems (e.g., the TSP) still deliver explanations for effects in realistic settings.
For instance, the large difference in the impact of lookahead in the two applications
is mainly due to the permission right for immediate processing that was invoked in
the order picking system but not in the pickup and delivery service. In general, prac-
tical features may counteract the effects from the elementary problems. As a result,
to a large extent a problem’s constraint set already implies in advance the optimiza-
tion potential exploitable by algorithms. Algorithms based on exact reoptimization
showed no additional benefit compared to heuristic methods. In particular, reasonable
computing times are almost surely exceeded for large lookahead durations due to the
size of MIP models.

5 Conclusion

This paper focused on the relation between dynamic systems, especially discrete event
systems, and algorithmic solution methods for decision making tasks embedded in
these systems. Since, especially in the design of real world applications, compre-
hensive performance measurement of control strategies is needed, the first part was
concernedwith themethodological basis of optimizationwithin dynamic systems.Due
to the analogies between online optimization and discrete event systems, we recog-
nized that it is possible to model online decision making as algorithmic subroutines
of discrete event systems. However, because of the enormous number of dependen-
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cies, we learned that realistic systems require an analysis by means of discrete event
simulation instead of exact methods. Hence, simulation models represent a suitable
framework for analyzing quantities of interest, in particular in the form of average
and distributional analysis methods. Moreover, the usage of discrete event simulation
models is now justifiedmethodologically.Wefinallymade practical use of themethods
derived for the simulation-based analysis of online algorithms in real world systems:
The compelling question of how much can be achieved through lookahead in terms
of solution quality was answered in two exemplary applications using discrete event
simulation and subsequent adoption of the performance measurement approaches. We
recommend future research on a systematic and standardized way to include optimiza-
tion into simulation environments; generic approaches have a high potential to help
the optimization and simulation community to speak the same language as well as to
gain a deeper and more profound general knowledge of why systems behave the way
they do under given decision routines. Further, we found that real world applications
typically feature multiple, oftentimes conflicting goals. Clearly, the task of designing
algorithms which are able to operate in favor of more than one objective at the same
time is not trivial and requires more sophisticated approaches.
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