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Abstract Decision analysis is aimed at supporting people who make decisions in
order to satisfy their needs and objectives. The method called DEX is a qualitative
multi-criteria decision analysis approach that provides support to decision makers in
evaluating and choosing decision alternatives by using discrete attributes and rule-
based utility functions. In this work, we extend our previous efforts of approximating
complete, monotone DEX utility functions with methods Direct marginals, UTADIS
and Conjoint analysis to incompletely defined utility functions. The experiments are
performed both on functions obtained by solving real world decision making prob-
lems and on artificially created ones. The results show that all three methods provide
accurate approximations of incompletely defined DEX utility functions, when the
evaluation is done only on rules present in these incompletely defined functions.
Among the three methods, the Conjoint analysis method generally has the best perfor-
mance, however it is closely followed by the Direct marginals method. The Conjoint
analysis method also achieves a better performance in approximating fully defined
DEX utility functions by using incompletely defined instances of those functions.
The UTADIS method performs comparatively well with functions having a high per-
centage of missing values.
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1 Introduction

Multi criteria decision analysis (MCDA) (Figueira et al. 2005; Ishizaka and Nemery
2013) is a discipline concerned with solving decision problems that involve multiple,
possibly conflicting, criteria. It provides a number of methods to create preference
models by using information provided by the decision maker. This information can
be given in various forms, by using different representations. Converting represen-
tations from one form to another is often highly desirable, as it can bridge the gap
between different methodological approaches and enrich the capabilities of the indi-
vidual ones.

A typical MCDA model consists of at least two components: a set of decision
alternatives A = {a1, a2, . . . , am} and a set of criteria X = {x1, x2, . . . , xn}. The
alternatives are first assessed on the individual criteria and then evaluated or ranked by
some procedure, taking into account the decision maker’s preferences. This procedure
is often based on preference aggregation (Ouerdane et al. 2010), employing some
type of utility or value functions. The most common form of aggregation in MCDA
is based on the weighted sum model, where the overall value u(a) of the alternative
a ∈ A is determined by the function f so that u(a) = f (x1(a), x2(a), . . . , xn(a)) =∑n

i=1 wi xi (a). Here, wi ∈ R are weights, defined by the decision maker, and xi (a)

are preferences established on individual criteria. There are many other models of
aggregation in MCDA (Figueira et al. 2005; Ehrgott et al. 2010); see, for instance,
Greco et al. (2004) for an axiomatic characterization of general utility functions and
some special cases (associative operator, Sugeno integral and ordered weighted max-
imum), and Yang (2001) for an overview of qualitative and quantitative aggregation
under uncertainty.

This study addresses two types of utility function representations, qualitative and
quantitative, and investigates how to convert the former to the latter. Specifically, we
look at utility functions in the context of an MCDA method DEX. DEX (Bohanec
et al. 2013) is a qualitative MCDA method, which employs discrete attributes and
discrete utility functions. The latter are represented in a rule-based point-by-point
way (see Sect. 2.1). This makes DEX suitable particularly for classifying decision
alternatives into predefined discrete classes, i.e., solving the MCDA problem known
as sorting (Roy 1996).

In this study, we examine and compare three methods of approximating DEX util-
ity functions by piece-wise linear marginal utility functions: the Direct marginals
method, the UTADIS method and the Conjoint analysis method. The Direct mar-
ginals method (Sect. 2.3) establishes marginal utility functions by a projection of a
DEX utility function to individual attributes. UTADIS (Devaud et al. 1980; Siskos
et al. 2005) (Sect. 2.4) is a quantitative method that constructs numerical additive
utility functions from a provided subset of alternatives and assigns this alternatives
to predefined ordered groups. The Conjoint analysis (Agarwal et al. 2015; Green and
Srinivasan 1990) (Sect. 2.5) is a method that constructs numerical additive utility
functions from attribute preference scores or grades described by one or more deci-
sion makers, for a given set of alternatives, by fitting a linear model to approximate
the measured variable.
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All three methods are aimed at providing an approximate quantitative repre-
sentation of a qualitative DEX function. Why is this important? In general, the
motivation for making such approximations is the same as in disaggregation–
aggregation, one of the main MCDA paradigms (Siskos et al. 2005), which has
produced a number of well-knownMCDAmethods, including UTA (Jacquet-Lagreze
and Siskos 1982) and UTADIS (Devaud et al. 1980). The disaggregation-aggregation
approach builds on examples of decisions, provided by the decision maker, and
develops an explicit multi-criteria model that (1) represents and assesses decision
maker’s preferences and (2) is capable of evaluating decision alternatives other
than those originally provided by the decision maker. In the context of DEX, the
approximation of utility functions extends its capabilities and is useful for several
reasons. First, the newly obtained numerical evaluations facilitate an easy rank-
ing and comparison of decision alternatives, especially those that are assigned to
the same qualitative class by DEX. Consequently, the sensitivity of evaluation is
increased. Second, the sheer form of numerical functions may provide additional
information about the properties of underlying DEX functions, which is useful
in verification, representation and justification of DEX models. The extension to
incompletely defined DEX functions, which is addressed in this paper, allows
these methods to be used in real world applications, which are often faced with
incompleteness.

In this study, the three methods are experimentally assessed on a collection of
DEX utility functions that emerged in real world decision making problems, and on
several sets of artificially generated DEX utility functions of different dimensions
with attributes containing different number of preference categories. We focused on
the accuracy of representation of DEX utility functions containing different levels
of missing values. We also study the performance of approximation methods with
respect to the dimensionality of DEX utility function domains.

Previous attempts to approximate DEX utility functions include: a linear approx-
imation method commonly used in DEX to assess criteria importance (Bohanec and
Zupan 2004), an early method for ranking of alternatives and improving the sen-
sitivity of evaluation called QQ (Mileva-Boshkoska and Bohanec 2012; Bohanec
et al. 1992), DEX utility function approximation with copulas (Mileva-Boshkoska
and Bohanec 2012) and by using methods UTA and ACUTA (Mihelčić and Bohanec
2014). Finally, completely defined, monotone DEX utility functions were approx-
imated by using the Direct marginals, Conjoint analysis and UTADIS methods
(Mihelčić and Bohanec 2015).

This paper builds upon our previous work on approximating monotone, complete
DEX utility functions (Mihelčić and Bohanec 2015). It assesses the same three meth-
ods (Direct marginals, Conjoint analysis and UTADIS), but extends the analysis from
artificially generated, completely defined, monotone DEX utility functions to (1)
incompletely defined artificially generated monotone functions and (2) real world
functions, extracted from DEX models that were developed in the past to support
various real-life decision problems.
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2 Methodology

In this section, we describe the DEX method and methods used to approximate DEX
utility functions.

2.1 DEX method

DEX (Bohanec et al. 2013) is a qualitative MCDA method for the evaluation and
analysis of decision alternatives, and is implemented in the software DEXi (Bohanec
2015). In DEX, all attributes are qualitative and can take values represented by words,
such as “low” or “excellent”. Attributes are generally organised in a hierarchy. The
evaluation of decision alternatives is carried out by utility functions, which are repre-
sented in the form of decision rules.

In the context of this paper, we focus on individual utility functions. All attributes
(function arguments and outcomes) are assumed to be discrete and preferentially
ordered, so that a higher ordinal value represents a better preference. In this setting, a
DEX utility function f is defined over a set of attributes x = (x1, x2, . . . , xn) so that

f : X1 × X2 × · · · × Xn → Y

Here, Xi , i = 1, 2, . . . , n, denote value scales of the corresponding attributes xi ,
and Y is the value scale of the output attribute y. Since values of the output attribute
are discrete, they are also referred to as classes.

In real world DEX models, values are represented verbally. A typical DEX value
scale consists of a small number, usually two to five, of words. For example, it is quite
common to use scales such as {unacceptable, acceptable, good, excellent} for evalua-
tive attributes, or {high, medium, low} for attributes representing costs. In this paper,
however, we will mostly assume that attribute values are represented with ordinal
numbers:

Xi = {1, 2, . . . , ki }, i = 1, 2, . . . , n and Y = {1, 2, . . . , c}

The function f is represented by a set of decision rules

F = {(x, y)| x ∈ X1 × X2 × · · · × Xn, y ∈ Y, y = f (x)}

Each rule (x, y) ∈ F defines the mapping x �→ f (x) in one data point x. Ide-
ally, the set of rules covers the whole domain, so that the function is defined for all
combinations of arguments’ values. In this case, we say that the function is completely
defined (or complete). Since all attributes are preferentially ordered, it is also expected
that DEX functions are monotone: when argument values increase, the function value
increases or remains constant.

In reality, however, these assumptions may not always hold. For practical reasons,
in addition to preferentially increasing scales, the supporting DEXi software allows
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the use of decreasing and unordered scales (Bohanec 2015). Some previous imple-
mentations of DEX (Bohanec et al. 2013) even did not check the ordering, so the
actual ordering of attributes in some real-world functions may be unknown. It is also
possible that a decision maker erroneously or deliberately (against the warning issued
by the software) enters a decision rule that breaches the monotonicity. Consequently,
the functions encountered in practice may not be monotone, or the actual state of
monotonicity is difficult to establish.

Even more common, and somewhat expected, situations occur when the decision
maker provides only a subset of rules. In this case, a utility function is incomplete,
because it is not defined for some x∗ ∈ X1 × X2 × · · · × Xn . In such cases, DEX
attempts to determine the missing rule (x∗, y∗) from other, already defined rules.
Two methods are provided for this purpose. The first one is based on the principle of
dominance (Greco et al. 2001): the lower and upper bounds of y∗ are assessed using
the assumption of monotonicity (Błaszczyński et al. 2009). In short, to maintain the
monotonicity of f, y∗ should be bounded so that

max
(x,y)∈F :x�x∗ y � y∗ � min

(x,y)∈F :x�x∗ y

The second method interpolates the defined rules by a linear function, from which
the missing values y∗ are determined. See Bohanec and Zupan (2004) for a detailed
description.

All these practical considerations are important because they put additional
requirements to methods aimed at approximating real world DEX utility functions. In
general, an approximation method should expect utility functions that exhibit various
degrees of incompleteness and/or violation of monotonicity. Also, it is no longer true
that for each x, f (x) maps to a single value y ∈ Y . Instead, f (x) generally maps to a
subset of categories Yval ⊆ Y , where Yval = Y ∩ [yl , yh] and yl , yh ∈ Y, yl ≤ yh are
determined by dominance.

Example In order to illustrate these concepts, let us use a relatively simple, but non-
trivial DEX utility function of two arguments. It appears in the decision model called
Employ, which is distributed together with the DEXi software package (Bohanec
2015) and is aimed at evaluating candidates applying for a job. The function is called
Educat. It is positioned at the second hierarchical level of the model and aggre-
gates two attributes x1 = Formal (candidate’s formal education) and x2 = For. lang
(candidate’s mastering of foreign languages), into the assessment of y = Educat,
candidate’s suitability for the job from the educational viewpoint. (Please note that
other viewpoints, such as experience, age, and personal characteristics, are addressed
in other parts of the model, but those are not relevant for the purpose of this exam-
ple.) The verbal scales of the attributes are all preferentially ordered and defined as
follows:

X1 = X (Formal) = {prim-sec, high, univ,MSc,PhD}
X2 = X (For. lang) = {no, pas, act}
Y = Y (Educat) = {unacc, acc, good}
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Table 1 Decision rules
defining utility function Educat,
which aggregates candidate’s
Formal education and their
mastering of Foreign languages

The same rules are presented
verbally (left) and with ordinal
values (right)

Rule Formal For. lang Educat x1 x2 y

1 Prim-sec Act Unacc 1 3 1

2 High Pas Unacc 2 2 1

3 High Act Act 2 3 2

4 Univ Pas Acc 3 2 2

5 Univ Act Acc 3 3 2

6 MSc Act Good 4 3 3

7 PhD No Unacc 5 1 1

8 PhD Pas Acc 5 2 2

Table 1 shows eight decision rules that were defined by the decision maker. The
total number of possible decision rules x ∈ X1× X2 in this case equals |X1|×|X2| =
5×3 = 15, so it is clear that this function is incompletely defined and that seven rules
are missing. For instance, there is no information about x∗ = (MSc, pas). In order
to determine bounds for (x∗, y∗) according to the principle of dominance, all defined
rules such that x � x∗ (i.e., rules numbered 2 and 4) are checked first. The maximum
Educat value in these rules is “acc”, which gives the lower bound for y∗. The upper
bound is established by finding the minimum evaluation in rules for which x � x∗
(rules 6 and 8). Again, the bound is “acc” (from rule 8). Therefore, the value of the
missing rule (x∗, y∗) is set to y∗ = acc. With this function, it is actually possible,
using the same procedure, to uniquely determine the values of all missing rules. The
obtained utility function is graphically presented in Fig. 1.

2.2 Approximation of DEX utility functions

All methods assessed in this study are used to approximate some DEX utility function
f with marginal utility functions ui : Xi → R, i = 1, 2, . . . , n. The functions
ui are assumed to take a piece-wise linear form. For the alternative a = x(a) =
(x1(a), x2(a), . . . , xn(a)), the numeric value of ui (xi (a)) is established from f for
each xi (a) ∈ Xi , while its value for xi (a) /∈ Xi is linearly interpolated from the
closest neighboring points of Xi .

On this basis, f is approximated as a weighted sum of the marginal utility func-
tions:

u(x(a)) = u(x1(a), x2(a), . . . , xn(a)) =
n∑

i=1

ωi ui (xi (a))

Here, ωi ∈ R, i = 1, 2, . . . , n, are weights of the corresponding attributes, nor-
malised so that

∑n
i=1 ωi = 1.
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Fig. 1 Graphical representation of completely defined function Educat. The function is discrete and is
defined only in points represented by circles; lines connecting the points serve only for visualization. The
grey-colored points have been determined using the principle of dominance, and all the other points have
been defined by the decision maker

2.3 Direct marginals method

The Direct marginals method (hereafter DM for short) establishes the marginal utility
function ui (v) as an average value of the target attribute y for the alternative (decision
rule) a ∈ F , where xi (a) = v. Let Fi,v ⊆ F denote all decision rules where xi (a) =
v. Then

ui (v) = 1

|Fi,v|
∑

{a∈Fi,v}
y(a), i = 1, 2, . . . , n, v ∈ Xi

In the experiments (Sect. 3), all functions ui were scaled to the [0, 1] interval, there-
fore the importance weights ωi were determined as a percentage of total utility range
covered by the range of a particular attribute. For each v ∈ Xi , we compute ui (v) and
define ω′

i = max(ui (v)) − min(ui (v)). The importance weights are then computed
as:

ωi = ω′
i∑n

j=1 ω′
j
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DM takes advantage of the fact that DEX utility functions are defined on an orthog-
onal and relatively small lattice of input attributes. Usually, for each value v ∈ X ,
there is a number of decision rules Fi,v that provide evidence about ui (v), which can
be thus accurately assessed by averaging. This method is expected to perform well
on completely defined DEX utility functions, what was confirmed in our previous
study (Mihelčić and Bohanec 2015). For incompletely defined functions, the perfor-
mance is expected to deteriorate; this is one of the questions investigated further in
Sects. 3 and 4.

2.4 UTADIS method

The UTADIS method (Devaud et al. 1980; Siskos et al. 2005) is an extension of UTA
(UTilités Additives) method (Jacquet-Lagreze and Siskos 1982). UTADIS (referred
to as UD in figures and tables) enables the decision maker to assign alternatives to
predefined ordered groups. Thus it is very well suited to our problem of approximat-
ing discrete DEX functions, assuming that each DEX decision rule a ∈ F defines
some (hypothetical) decision alternative.

For each attribute xi , let xil and xih represent the most and the least preferred
value of the attribute. Each attribute range [xil , xih ] is divided into ki − 1 subintervals
[xα

i , xα+1
i ], α = 1, 2, . . . , ki −1. UTADIS approximates the marginal utility function

ui as:

ui (xi (a)) = ui (x
J
i ) + xi (a) − x J

i

x J+1
i − x J

i

[ui (x J+1
i ) − ui (x

J
i )], 1 ≤ J ≤ ki − 1

The value J is chosen so that xi (a) ∈ [x J , x J+1].
The alternatives are assigned to groups by using thresholds ti : u(x(a)) ≥ t1 ⇒

a ∈ C1, t2 ≤ u(x(a)) < t1 ⇒ a ∈ C2, . . . , u(x(a)) < tc−1 ⇒ a ∈ Cc, where
u(x(a)) = ∑n

i=1 ui (xi (a)).
UTADIS searches for marginal utility functions by solving the linear programming

problem min E =
∑c

k=1

∑
a j∈Ck

σ(a) j
+ + σ(a) j

−

mk
, where σ+, σ− denote errors

after violation of lower/upper bound of a group Ck , and mk denotes the number of
alternatives assigned to the group Ck .

The constraints of the linear programming problem are:

n∑

i=1

(

ui (x
J
i ) + xi (a) − x J

i

x J+1
i − x J

i

[ui (x J+1
i ) − ui (x

J
i )]

)

− u1 + σ+
j ≥ δ1, ∀a ∈ C1,

n∑

i=1

(

ui (x
J
i ) + xi (a) − x J

i

x J+1
i − x J

i

[ui (x J+1
i ) − ui (x

J
i )]

)

− uk + σ+
j ≥ δ1,

n∑

i=1

(

ui (x
J
i ) + xi (a) − x J

i

x J+1
i − x J

i

[ui (x J+1
i ) − ui (x

J
i )]

)

− uk−1 − σ−
j ≤ −δ2,
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∀a ∈ Ck, (k = 2, 3, . . . , c − 1),
n∑

i=1

(

ui (x
J
i ) + xi (a) − x J

i

x J+1
i − x J

i

[ui (x J+1
i ) − ui (x

J
i )]

)

− uc−1 − σ−
j ≤ −δ2, ∀a ∈ Cc,

n∑

i=1

ki−1∑

j=1

[ui (x j+1
i ) − ui (x

j
i )] = 1,

uk − uk+1 ≥ s, ∀k = 1, 2, . . . , c − 2,

(ui (x
j+1
i ) − ui (x

j
i )) ≥ 0, σ+

j ≥ 0, σ−
j ≥ 0, ∀i = 1, 2, . . . , n,

Here, δ1, δ2 and s are small positive constants such that s > δ1, δ2 ≥ 0. After the
optimal solution is found, a post optimality stage is carried out to access the stability
of obtained solution Devaud et al. (1980).

2.5 Conjoint analysis method

The Conjoint analysis (CA) method (Agarwal et al. 2015; Green and Srinivasan 1990)
is aimed at explaining decision maker’s preferences. It determines the importances of
attributes, their interactions and utility functions for each attribute in a decision mak-
ing problem. In general, it can take into account preferences from many different
decision makers and use them to asses attribute importance and the values of appro-
priate attribute levels. There are several variations of CA. In this work, we used the
one implemented in the R package ’Conjoint’ (Bak 2012).

The input to the method is a DEXi table F . The method creates a linear fit of the
data Y = α + Xβ + ε, where Y ∈ R

n , α ∈ R, X ∈ R
n×p, β ∈ R

p, ε ∼ N (0, σ 2 I ).
The procedure takes as input a matrix X0 = [1 X ] and β0 = [α β]. A linear model
is found by performing a QR decomposition of a matrix X0, (X0 = QR = Q

[
R1
0

]
).

The solution is obtained by solving QτY = Rβ , and the parameters are estimated by
using the least squares method:

minŝ ||Rβ · ŝ − QτY ||22

For the singular input matrices, the least squares method does not provide a unique
solution. In the implementation that we use, a column is discarded from the matrix
if its diagonal element in Rβ is 10−7 times smaller than the largest diagonal value.
Thus, this implementation may produce an undefined value for a subset of coefficients
when approximating some incomplete DEX input functions. When this happens, we
consider that CA did not succeed to approximate the given function.

3 Experimental set up

In this section, we describe the experimental set up and explain the procedures used
to perform our experiments.
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The goal of the experiments was to assess and compare the performance of the
three methods – DM, UTADIS, and CA – on artificially generated, monotone, possi-
bly incomplete DEX utility functions (Sect. 3.1) and on a set of functions that were
constructed in real-world decision problems (Sect. 3.2).

All experiments were performed in the R programming language by using the
’MCDA’ (Meyer and Bigare 2015), the ’Conjoint’ (Bak 2012) and the ’pROC’ (Robin
et al. 2011) R packages. In addition, we implemented the DM method, the RMSE
measure, a monotone function generator that generates all monotone functions in
some space with given dimensions, a random monotone function generator that gen-
erates a defined number of random monotone functions from a space with given
dimensions, the procedure for introducing missing values and a procedure for deter-
mining the ordering of attributes in incompletely defined functions. The ordering
procedure is used to determine whether a given attribute is preferentially ordered
or not, and if so, in which direction, increasing or decreasing. This information is
needed by UTADIS in order to properly set up the optimization constraints.

3.1 Approximating artificial DEX utility functions

For the experiments involving artificial utility functions, we generated all monotone
functions for domains with dimensions 3 × 3 → 4, 3 × 4 → 3, 4 × 4 → 3 and
5 × 6 → 7 (the notation 3 × 3 → 4 denotes the set of all monotone utility functions
having two three-valued arguments that map to 4 values). For larger domains, the
evaluation was performed on several randomly generated function sets of different
sizes: 3 × 4 × 3 × 5 → 6, 4 × 5 × 5 → 6, 5 × 6 → 7, 6 × 7 → 7, 8 × 7 → 7 con-
taining 1000 monotone functions, and 3 × 5 × 3 × 4 → 4 containing 100 monotone
functions. For each set of functions, we assessed the performance of methods for com-
pletely defined functions and functions containing 10, 20% and 50% missing values.
On these sets, the quality of approximations was evaluated only on the defined points
of the incompletely defined functions. To introduce missing values, a predefined pro-
portion of decision rules was randomly removed from each DEX table. We used a
random sample containing 1000 functions of dimensions 4 × 4 → 3, 3 × 4 → 4,
5 × 6 → 7 and 6× 7 → 7 to asses the methods’ ability to approximate a completely
defined utility function from the partially defined function.

3.2 Approximating real world DEX utility functions

A similar procedure was also applied on real world DEX utility functions. For this
purpose, we created a dataset of 6362 utility functions, extracted from an archive of
582 DEX models. These models were developed in the past in various circumstances,
from large-scale international projects to students’ assignments (see Bohanec et al.
(2013) for an overview of DEX applications). All these models are “real” in the sense
that they were developed by real people with specific decision problems in mind. The
functions are of very different sizes, from 2 → 2 (one argument only) to 3× 3× 3×
3× 3× 3× 3 → 5 (seven arguments) and 2× 2× 2× 3× 2× 2× 2× 3 → 5 (eight
arguments). In average, they have 2.5 arguments and map to 3.7 classes. The average
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and median of domain size are 39.3 and 16, respectively. All possible rules were
developed in 79.13% of functions, but, due to the use of methods for determining
missing rules’ values, as much as 92.57% of functions are complete. 93.25% of
functions are monotone. Among the 6362 functions, 3062 functions are unique in the
sense that they differ from all other unique functions in at least one decision rule.
Experiments were performed only on unique functions, but the results were weighted
with the frequency of their occurrence in the original dataset.

3.3 Experimental procedure and evaluation measures

The experimental procedure consists of approximating DEX utility functions by using
the three methods, and computing evaluation scores for each method’s resulting
approximated utility function.

Two measures were used for the evaluation: the Area Under the Curve (AUC)
(Fawcett 2006) and the Root Mean Squared Error (RMSE) (Hyndman and Koehler
2006). To compute the AUC measure, we scaled the utility scores for the target
attributes computed by the methods to the [0, 1] interval. These scores were used
along with the corresponding target values to compute AUC. For the RMSE measure,
all the utility scores were scaled to the [yl , yh] interval and the RMSE was computed
from the difference between the approximate values obtained by the methods and
the real target class value. Finally, the average and the standard deviation of AUC
and RMSE were computed for sets of functions with given dimensions, to asses and
compare methods’ performance on whole function sets.

We only report performance for the subset of functions for which all methods
returned a valid solution, however we provide the information on the number of suc-
cesses for each method.

The quality of approximation of real world DEX utility functions, which generally
contain missing values, were evaluated only on defined points of functions, since the
completely defined functions were unknown. With the artificially created utility func-
tions, we begun with completely defined functions and then removed decision rules
to introduce incompleteness. Thus, the completely defined functions were known,
which allowed a dual evaluation: on all or only defined points of each incomplete
function. The defined points of a function were determined by the rules entered by
the user or uniquely determined by the dominance relation.

The experiments to asses approximation accuracy on all points of fully defined
function were performed as follows:

– Generate 50 random sample copies of a given function, reduced so as to contain
k% of missing values.

– Approximate each incomplete function with all three methods.
– For each incomplete function, assess the approximation accuracy on a completely
defined rule set and take the average value as a final score.

– Compute the average and standard deviation of the measures across all generated
functions.
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Fig. 2 Approximation of a fully defined Educat function produced by a UTADIS: AUC = 1, RMSE =
0.580 on a fully defined function. ω1 = ω2 = 0.5 and b DM and CA: AUC = 1, RMSE = 0.600 on a fully
defined function. ω1 = 0.45, ω2 = 0.55

The repeated sample generation was performed to obtain stable results, which appear
to be very sensitive to the subset of decision rules that are removed from the original
function definition.

4 Results

In this section, we analyse the results of approximation of various DEX utility func-
tions.

4.1 Results on Educat function

First, let us illustrate the performance of methods on the single function Educat, as
defined in Table 1 and Fig. 1. On a completely defined function, UTADIS created
two equally-weighted marginal utility functions shown in Fig. 2a, with AUC = 1
and RMSE = 0.58. Both DM and CA constructed exactly the same marginal utility
functions, shown in Fig. 2b, with AUC = 1 and RMSE = 0.60. The weights ω1 and
ω2, associated with the marginal functions, are 0.45 and 0.55, respectively.
Overall, the methods performed equally in terms of AUC, however, in terms of
RMSE, UTADIS performed slightly better. Nevertheless, it seems that DM and CA
better captured the decision maker’s preferences regarding the Formal education of
the candidate. Notice that Fig. 1 shows exactly the same function values for the
Formal education levels of MSc and PhD, indicating decision maker’s indifference
between these two levels. This indifference was properly captured by DM and CA
(Fig. 2b), but not by UTADIS (Fig. 2a), where the utility of value Formal=5 (PhD)
was largely overestimated.

The methods’ performance changes when decision rules are removed and the func-
tion definition becomes incomplete. Fig. 3a–c show the constructed marginal utility
functions of the three methods, respectively, with 53% of decision rules missing. The
attribute importance for DM is 0.67 and 0.33, and for CA 0.57 and 0.43. In this case,
UTADIS’ results remain exactly the same, while the results of the other two methods
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Fig. 3 Approximation of the Educat function containing 53% missing values produced by a UTADIS:
AUC = 1, RMSE = 0.660 on the incomplete function and AUC = 1, RMSE = 0.580 on the complete one.
ω1 = ω2 = 0.5, b DM: AUC = 0.986, RMSE = 0.306 on the incomplete function and AUC = 0.829,
RMSE = 0.604 on the complete one. ω1 = 0.67, ω2 = 0.33 and c CA: AUC = 1, RMSE = 0.177 on the
incomplete function and AUC = 0.983, RMSE = 0.636 on the complete one. ω1 = 0.57, ω2 = 0.43

deteriorate considerably. In Fig. 3b, c, the indifference between MSc and PhD is no
longer properly identified and, furthermore, the marginal utility functions of Formal
are not monotone any more, breaching the principle of dominance.

In summary, this illustrative example indicates a similar performance of the meth-
ods on a completely defined function, and a better, more stable, performance of
UTADIS on an incompletely defined function.

4.2 Results on artificial DEX functions

The results in Tables 2, 3 and 4 show that the methods produce highly accurate
approximations on completely defined functions. The average AUC is generally high,
in most cases is close to 1, and falls bellow 0.9 only in very large domains, which are
rarely encountered in practice. The average RMSE also indicates good performance;
in small domains with 3 or 4 classes, it is around or below 0.5. It gradually increases
with the number of classes, and typically exceeds 1 only in very large domains. The
approximations are also fairly accurate on incomplete functions when assessed with
respect to the defined points of the function. In some cases, especially for CA, the
performance even improves when evaluated on functions with 50% missing values.
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Table 2 Comparison results for DM, CA and UTADIS on various generated DEX monotone utility func-
tions

Meth. Space dimension Num. Avg. AUC Avg. RMSE Succ. (%) mv. (%)

DM 3 × 3 → 4 980 0.996 ± 0.015 0.528 ± 0.239 99.2 0

3 × 3 → 4 980 0.988 ± 0.029 0.544 ± 0.230 98.5 10

3 × 3 → 4 980 0.987 ± 0.032 0.539 ± 0.227 97.6 20

3 × 3 → 4 980 0.979 ± 0.044 0.517 ± 0.255 79.7 50

3 × 4 → 3 490 0.998 ± 0.011 0.404 ± 0.162 99.4 0

3 × 4 → 3 490 0.995 ± 0.018 0.406 ± 0.146 99.2 10

3 × 4 → 3 490 0.992 ± 0.023 0.400 ± 0.145 98.8 20

3 × 4 → 3 490 0.989 ± 0.032 0.364 ± 0.171 68.6 50

4 × 4 → 3 1764 0.995 ± 0.013 0.416 ± 0.135 99.8 0

4 × 4 → 3 1764 0.992 ± 0.019 0.412 ± 0.124 99.7 10

4 × 4 → 3 1764 0.988 ± 0.026 0.416 ± 0.128 99.6 20

4 × 4 → 3 1764 0.987 ± 0.031 0.382 ± 0.146 96 50

5 × 6 → 7 1000 0.983 ± 0.020 0.970 ± 0.356 100 0

5 × 6 → 7 1000 0.982 ± 0.020 0.975 ± 0.369 100 10

5 × 6 → 7 1000 0.983 ± 0.019 0.990 ± 0.356 100 20

5 × 6 → 7 1000 0.982 ± 0.020 0.984 ± 0.339 99.8 50

CA 3 × 3 → 4 980 0.997 ± 0.012 0.528 ± 0.239 99.2 0

3 × 3 → 4 980 0.998 ± 0.029 0.501 ± 0.253 99.5 10

3 × 3 → 4 980 0.999 ± 0.007 0.441 ± 0.272 97.6 20

3 × 3 → 4 980 1.0 ± 0.0 0.225 ± 0.320 75.2 50

3 × 4 → 3 490 0.998 ± 0.011 0.404 ± 0.162 99.4 0

3 × 4 → 3 490 0.998 ± 0.011 0.389 ± 0.167 99.2 10

3 × 4 → 3 490 0.999 ± 0.007 0.364 ± 0.176 98.8 20

3 × 4 → 3 490 1.0 ± 0.0 0.163 ± 0.240 62.2 50

4 × 4 → 3 1764 0.995 ± 0.013 0.416 ± 0.135 99.8 0

4 × 4 → 3 1764 0.997 ± 0.011 0.393 ± 0.142 99.7 10

4 × 4 → 3 1764 0.997 ± 0.013 0.385 ± 0.154 99.6 20

4 × 4 → 3 1764 1.0 ± 0.003 0.215 ± 0.215 91.2 50

5 × 6 → 7 1000 0.983 ± 0.020 0.970 ± 0.356 100 0

5 × 6 → 7 1000 0.982 ± 0.020 0.958 ± 0.369 100 10

5 × 6 → 7 1000 0.984 ± 0.019 0.931 ± 0.374 100 20

5 × 6 → 7 1000 0.992 ± 0.017 0.730 ± 0.426 98.7 50

UD 3 × 3 → 4 980 0.970 ± 0.063 0.721 ± 0.293 99.2 0

3 × 3 → 4 980 0.965 ± 0.075 0.748 ± 0.312 98.5 10

3 × 3 → 4 980 0.968 ± 0.074 0.761 ± 0.321 97.6 20

3 × 3 → 4 980 0.965 ± 0.089 0.791 ± 0.386 79.7 50

3 × 4 → 3 490 0.976 ± 0.064 0.567 ± 0.215 99.4 0

3 × 4 → 3 490 0.972 ± 0.067 0.576 ± 0.220 99.2 10

3 × 4 → 3 490 0.970 ± 0.080 0.576 ± 0.229 98.8 20
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Table 2 continued

Meth. Space dimension Num. Avg. AUC Avg. RMSE Succ. (%) mv. (%)

3 × 4 → 3 490 0.965 ± 0.086 0.619 ± 0.265 68.6 50

4 × 4 → 3 1764 0.972 ± 0.069 0.567 ± 0.212 99.8 0

4 × 4 → 3 1764 0.971 ± 0.069 0.579 ± 0.223 99.7 10

4 × 4 → 3 1764 0.968 ± 0.074 0.592 ± 0.224 99.6 20

4 × 4 → 3 1764 0.958 ± 0.105 0.646 ± 0.272 96 50

5 × 6 → 7 1000 0.934 ± 0.065 1.579 ± 0.712 100 0

5 × 6 → 7 1000 0.931 ± 0.068 1.554 ± 0.694 100 10

5 × 6 → 7 1000 0.937 ± 0.067 1.586 ± 0.716 100 20

5 × 6 → 7 1000 0.936 ± 0.086 1.702 ± 0.832 99.6 50

For each method, space dimensions and amount of missing values (mv.), the columns show the number of
utility functions (num.), average AUC and RMSE with standard deviation, and the percentage of success-
fully approximated functions (succ.). All the results are computed on the defined points of the functions

Table 3 Comparison results for DM, CA and UTADIS on various generated DEX monotone utility func-
tions

Meth. Space dimension Num. Avg. AUC Avg. RMSE Succ. (%) mv. (%)

DM 6 × 7 → 7 1000 0.979 ± 0.019 0.974 ± 0.339 100 0

6 × 7 → 7 1000 0.979 ± 0.020 0.990 ± 0.335 100 10

6 × 7 → 7 1000 0.978 ± 0.021 1.010 ± 0.316 100 20

6 × 7 → 7 1000 0.979 ± 0.022 0.989 ± 0.338 100 50

8 × 7 → 7 1000 0.975 ± 0.022 1.001 ± 0.318 100 0

8 × 7 → 7 1000 0.977 ± 0.022 0.986 ± 0.315 100 10

8 × 7 → 7 1000 0.975 ± 0.022 0.994 ± 0.321 100 20

8 × 7 → 7 1000 0.975 ± 0.022 0.980 ± 0.308 99.9 50

4 × 5 × 5 → 6 1000 0.944 ± 0.026 1.056 ± 0.248 100 0

4 × 5 × 5 → 6 1000 0.945 ± 0.026 1.037 ± 0.247 100 10

4 × 5 × 5 → 6 1000 0.945 ± 0.026 1.033 ± 0.239 100 20

4 × 5 × 5 → 6 1000 0.945 ± 0.027 1.039 ± 0.247 100 50

3 × 4 × 3 × 5 → 6 1000 0.923 ± 0.026 1.150 ± 0.220 100 0

3 × 4 × 3 × 5 → 6 1000 0.922 ± 0.027 1.146 ± 0.216 100 10

3 × 4 × 3 × 5 → 6 1000 0.921 ± 0.026 1.149 ± 0.226 100 20

3 × 4 × 3 × 5 → 6 1000 0.920 ± 0.027 1.161 ± 0.220 100 50

6 × 7 → 7 1000 0.979 ± 0.019 0.974 ± 0.339 100 0

6 × 7 → 7 1000 0.980 ± 0.020 0.972 ± 0.341 100 10

6 × 7 → 7 1000 0.978 ± 0.022 0.966 ± 0.341 100 20

6 × 7 → 7 1000 0.987 ± 0.019 0.787 ± 0.404 99.7 50
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Table 3 continued

Meth. Space dimension Num. Avg. AUC Avg. RMSE Succ. (%) mv. (%)

CA 8 × 7 → 7 1000 0.975 ± 0.022 1.001 ± 0.318 100 0

8 × 7 → 7 1000 0.976 ± 0.021 0.982 ± 0.332 100 10

8 × 7 → 7 1000 0.975 ± 0.022 0.967 ± 0.335 100 20

8 × 7 → 7 1000 0.983 ± 0.020 0.821 ± 0.361 99.8 50

4 × 5 × 5 → 6 1000 0.944 ± 0.026 1.056 ± 0.248 100 0

4 × 5 × 5 → 6 1000 0.946 ± 0.026 1.033 ± 0.252 100 10

4 × 5 × 5 → 6 1000 0.946 ± 0.026 1.022 ± 0.248 100 20

4 × 5 × 5 → 6 1000 0.953 ± 0.027 0.982 ± 0.271 100 50

3 × 4 × 3 × 5 → 6 1000 0.923 ± 0.026 1.150 ± 0.220 100 0

3 × 4 × 3 × 5 → 6 1000 0.923 ± 0.026 1.141 ± 0.218 100 10

3 × 4 × 3 × 5 → 6 1000 0.923 ± 0.026 1.139 ± 0.232 100 20

3 × 4 × 3 × 5 → 6 1000 0.925 ± 0.028 1.115 ± 0.239 100 50

UD 6 × 7 → 7 1000 0.926 ± 0.063 1.549 ± 0.642 100 0

6 × 7 → 7 1000 0.926 ± 0.068 1.563 ± 0.644 100 10

6 × 7 → 7 1000 0.930 ± 0.065 1.587 ± 0.685 100 20

6 × 7 → 7 1000 0.927 ± 0.085 1.687 ± 0.805 99.8 50

8 × 7 → 7 1000 0.922 ± 0.060 1.517 ± 0.600 100 0

8 × 7 → 7 1000 0.912 ± 0.067 1.573 ± 0.658 100 10

8 × 7 → 7 1000 0.920 ± 0.067 1.552 ± 0.661 100 20

8 × 7 → 7 1000 0.924 ± 0.079 1.622 ± 0.742 99.8 50

4 × 5 × 5 → 6 1000 0.893 ± 0.055 1.311 ± 0.393 100 0

4 × 5 × 5 → 6 1000 0.893 ± 0.057 1.301 ± 0.409 100 10

4 × 5 × 5 → 6 1000 0.893 ± 0.058 1.301 ± 0.400 100 20

4 × 5 × 5 → 6 1000 0.894 ± 0.065 1.356 ± 0.429 100 50

3 × 4 × 3 × 5 → 6 1000 0.886 ± 0.047 1.289 ± 0.315 100 0

3 × 4 × 3 × 5 → 6 1000 0.883 ± 0.048 1.284 ± 0.292 100 10

3 × 4 × 3 × 5 → 6 1000 0.880 ± 0.049 1.299 ± 0.315 100 20

3 × 4 × 3 × 5 → 6 1000 0.878 ± 0.050 1.330 ± 0.323 100 50

For each method, space dimensions and amount of missing values (mv.), the columns show the number of
utility functions (num.), average AUC and RMSE with standard deviation, and the percentage of success-
fully approximated functions (succ.). All the results are computed on the defined points of the functions

In general, CA has the best performance, but is closely followed by DM. UTADIS is
outperformed according to AUC and RMSE on all sets of functions.

However, it is more informative to assess how good are these approximations
with respect to the completely defined functions. The results are presented in full
in Table 5, and are partly visualized in Figs. 4a, b, 5a, b. Figure 4a, b show AUC
and RMSE, respectively, for some selected dimensions and incompleteness levels 0
and 50%. At 0%, DM and CA perform exactly the same, while the average perfor-
mance of UTADIS is somewhat worse (lower AUC and higher RMSE). At the 50%

123



Approximating incompletely defined utility functions. . . 643

Table 4 Comparison results for DM, CA and UTADIS on various generated DEX monotone utility func-
tions

Meth. Space dimension Num. Avg. AUC Avg. RMSE Succ. (%) mv. (%)

DM 3 × 4 × 5 × 3 × 4 → 4 100 0.926 ± 0.018 0.819 ± 0.090 100 0

3 × 4 × 5 × 3 × 4 → 4 100 0.926 ± 0.022 0.819 ± 0.111 100 10

3 × 4 × 5 × 3 × 4 → 4 100 0.927 ± 0.016 0.814 ± 0.104 100 20

3 × 4 × 5 × 3 × 4 → 4 100 0.927 ± 0.018 0.811 ± 0.124 100 50

CA 3 × 4 × 5 × 3 × 4 → 4 100 0.926 ± 0.018 0.819 ± 0.090 100 0

3 × 4 × 5 × 3 × 4 → 4 100 0.926 ± 0.023 0.818 ± 0.112 100 10

3 × 4 × 5 × 3 × 4 → 4 100 0.928 ± 0.017 0.809 ± 0.107 100 20

3 × 4 × 5 × 3 × 4 → 4 100 0.928 ± 0.019 0.796 ± 0.126 100 50

UD 3 × 4 × 5 × 3 × 4 → 4 100 0.914 ± 0.030 0.873 ± 0.152 100 0

3 × 4 × 5 × 3 × 4 → 4 100 0.907 ± 0.038 0.870 ± 0.149 100 10

3 × 4 × 5 × 3 × 4 → 4 100 0.913 ± 0.030 0.844 ± 0.114 100 20

3 × 4 × 5 × 3 × 4 → 4 100 0.906 ± 0.037 0.854 ± 0.139 100 50

For each method, space dimensions and amount of missing values (mv.), the columns show the number of
utility functions (num.), average AUC and RMSE with standard deviation, and the percentage of success-
fully approximated functions (succ.). All the results are computed on the defined points of the functions

incompleteness level, the performance of DM is impaired the most, while the other
two methods perform consistently, but only moderately worse.

Overall, the results indicate a consistent decrease of approximation accuracy with
the introduction of missing values for all methods. CA has the best accuracy on this
set, and DM is second best when functions contain 10 or 20% missing values. How-
ever, it is outperformed by UTADIS on functions that contain 50% missing values
with respect to AUC.

Figure 5a, b display comparative distributions of AUC and RMSE, respectively,
for a sample containing 1000 randomly generated 5 × 6 → 7 functions. For each
generated function, 50 random rule samplings were performed and RMSE, AUCmea-
sures were averaged on the corresponding incompletely defined functions. The results
indicate a greater variability of the results of UTADIS than DM and CA. There is a
number of outlier functions present for each method on which these methods achieve
much lower accuracy than on the majority of other functions of the same dimensions.

Based on these findings, an interesting future work direction would be to under-
stand if there exists a fixed set of functions that are hard to approximate for all
presented methods, or is there a distinct set of “hard” functions for each method.
In the latter case, it might help to use a combined approach to improve the accuracy
and gain confidence in the approximations.

4.3 Results on real world DEX functions

The approximations on real world DEX functions were evaluated only on the defined
points of functions because completely defined functions were generally unknown.
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(a)

(b)

Fig. 4 Graphical representation of AUC and RMSE from Table 5 for some selected dimensions and
incompleteness levels 0 and 50%. At 0%, DM and CA perform exactly the same

The results of approximations for all methods are presented in Table 6. They indicate
that the methods successfully approximated about 76% of available real world func-
tions. The reason for such a high number of unsuccessful executions is that we wanted
to make a fair comparisons of all three methods. Since UTADIS requires information
about optimization direction for each attribute, we eliminated all DEX utility func-
tions for which this direction could not had been accurately determined from available
function definitions. This eliminated 719 out of 3062 (23.5%) unique functions. From
the remaining 2343 functions, DM and UTADIS methods successfully approximated
all functions and CA successfully approximated 99.19% of functions.

All the methods produced very accurate approximations when evaluated on the
defined points of the functions, but as explained in Sect. 3.2, as much as 92.57% of
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Fig. 5 Distribution of the average aAUC and b RMSE for functions containing 0% (left) and 50% (right)
missing values. a Distribution of average AUC obtained by DM, CA and UTADIS. The performance is
measured on a sample of 1000 randomly generated functions of dimensions 5 × 6 → 7. Each function
contains 0% (left) and 50% (right) missing values. b Distribution of average RMSE obtained by DM,
CA and UTADIS. The performance is measured on a sample of 1000 randomly generated functions of
dimensions 5 × 6 → 7. Each function contains 0% (left) and 50% (right) missing values

functions were complete, so this was somewhat expected from the results achieved on
artificial functions. Among the three methods, CA appears the best by a small margin;
in the cases when it fails to produce a result, it can be safely replaced by DM.

5 Conclusion and future work

In this work we used three different quantitative MCDA methods to approximate
utility functions of a qualitative MCDA method DEX. The methods produce visual
representations in the form of continuous, piecewise linear marginal utility functions,
which help in analysing and understanding the given DEX utility functions (orig-
inally represented as tables of decision rules). From obtained marginal functions,
the users can see, for each attribute, the preference direction between different cate-
gories, importance levels of each category, and get the information about the overall
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Table 5 Comparison results for DM, CA and UTADIS method on various generated DEX monotone
utility functions

Meth. Space dimension Num. Avg. AUC Avg. RMSE Succ. (%) mv. (%)

DM 4 × 4 → 3 1000 0.996 ± 0.013 0.521 ± 0.249 100 0

4 × 4 → 3 1000 0.983 ± 0.017 0.577 ± 0.205 100 10

4 × 4 → 3 1000 0.969 ± 0.022 0.620 ± 0.189 100 20

4 × 4 → 3 1000 0.842 ± 0.047 1.108 ± 0.141 100 50

3 × 4 → 4 1000 0.996 ± 0.013 0.393 ± 0.172 100 0

3 × 4 → 4 1000 0.982 ± 0.018 0.435 ± 0.127 100 10

3 × 4 → 4 1000 0.971 ± 0.022 0.457 ± 0.116 100 20

3 × 4 → 4 1000 0.868 ± 0.045 0.650 ± 0.084 100 50

5 × 6 → 7 1000 0.983 ± 0.020 0.970 ± 0.356 100 0

5 × 6 → 7 1000 0.965 ± 0.018 1.032 ± 0.326 100 10

5 × 6 → 7 1000 0.952 ± 0.020 1.086 ± 0.297 100 20

5 × 6 → 7 1000 0.885 ± 0.029 1.506 ± 0.249 100 50

6 × 7 → 7 1000 0.979 ± 0.019 0.974 ± 0.339 100 0

6 × 7 → 7 1000 0.964 ± 0.018 1.034 ± 0.302 100 10

6 × 7 → 7 1000 0.950 ± 0.021 1.082 ± 0.289 100 20

6 × 7 → 7 1000 0.892 ± 0.028 1.380 ± 0.232 100 50

CA 4 × 4 → 3 1000 0.996 ± 0.013 0.521 ± 0.249 100 0

4 × 4 → 3 1000 0.991 ± 0.013 0.552 ± 0.260 100 10

4 × 4 → 3 1000 0.983 ± 0.016 0.572 ± 0.276 100 20

4 × 4 → 3 1000 0.927 ± 0.037 0.690 ± 0.324 100 50

3 × 4 → 4 1000 0.996 ± 0.013 0.393 ± 0.172 100 0

3 × 4 → 4 1000 0.989 ± 0.014 0.420 ± 0.181 100 10

3 × 4 → 4 1000 0.982 ± 0.017 0.434 ± 0.187 100 20

3 × 4 → 4 1000 0.925 ± 0.036 0.514 ± 0.219 100 50

5 × 6 → 7 1000 0.983 ± 0.020 0.970 ± 0.356 100 0

5 × 6 → 7 1000 0.978 ± 0.018 1.005 ± 0.375 100 10

5 × 6 → 7 1000 0.973 ± 0.018 1.031 ± 0.379 100 20

5 × 6 → 7 1000 0.941 ± 0.026 1.228 ± 0.437 100 50

6 × 7 → 7 1000 0.979 ± 0.019 0.974 ± 0.339 100 0

6 × 7 → 7 1000 0.975 ± 0.018 1.018 ± 0.338 100 10

6 × 7 → 7 1000 0.969 ± 0.021 1.044 ± 0.351 100 20

6 × 7 → 7 1000 0.942 ± 0.026 1.193 ± 0.391 100 50

UD 4 × 4 → 3 1000 0.966 ± 0.068 0.904 ± 0.409 100 0

4 × 4 → 3 1000 0.953 ± 0.063 0.931 ± 0.403 100 10

4 × 4 → 3 1000 0.942 ± 0.058 0.939 ± 0.387 100 20

4 × 4 → 3 1000 0.908 ± 0.047 1.035 ± 0.316 100 50

3 × 4 → 4 1000 0.975 ± 0.063 0.676 ± 0.295 100 0

3 × 4 → 4 1000 0.959 ± 0.058 0.690 ± 0.288 100 10

3 × 4 → 4 1000 0.949 ± 0.058 0.711 ± 0.284 100 20
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Table 5 continued

Meth. Space dimension Num. Avg. AUC Avg. RMSE Succ. (%) mv. (%)

3 × 4 → 4 1000 0.902 ± 0.058 0.776 ± 0.254 100 50

5 × 6 → 7 1000 0.934 ± 0.065 1.579 ± 0.712 100 0

5 × 6 → 7 1000 0.933 ± 0.052 1.579 ± 0.649 100 10

5 × 6 → 7 1000 0.925 ± 0.050 1.632 ± 0.618 100 20

5 × 6 → 7 1000 0.899 ± 0.044 1.791 ± 0.616 100 50

6 × 7 → 7 1000 0.926 ± 0.063 1.549 ± 0.642 100 0

6 × 7 → 7 1000 0.924 ± 0.057 1.588 ± 0.638 100 10

6 × 7 → 7 1000 0.915 ± 0.057 1.624 ± 0.610 100 20

6 × 7 → 7 1000 0.896 ± 0.046 1.771 ± 0.615 100 50

For each method, space dimensions and amount of missing values (mv.), the columns show the number of
utility functions (num.), average AUC and RMSE with standard deviation, and the percentage of success-
fully approximated functions (succ.). All the results are computed on completely defined functions

Table 6 Comparison results for DM, CA and UTADIS on real world DEX utility functions

Meth. Avg. AUC Avg. RMSE Succ. (%) Succ. unique (%)

DM 0.992 ± 0.023 1.557 ± 0.338 83.4 76.5

CA 0.996 ± 0.011 1.539 ± 0.352 82.6 75.9

UD 0.959 ± 0.110 1.717 ± 0.350 83.4 76.5

For each method, the columns show the average AUC and RMSE with standard deviation, the percentage
of successfully approximated functions (succ.) and the percentage of successfully approximated unique
functions (succ. unique). All the results are computed on the defined points of the functions

attribute importance in a given decision making problem. Furthermore, the weighted
sum of marginal functions provides a quantitative evaluation model, which facilitates
a numerical evaluation of alternatives and in this way extends the basic DEX’s evalu-
ation, which is qualitative and assigns the alternatives into discrete predefined classes.

The results presented in this paper show that the proposed methods can success-
fully approximate a high percentage of DEX utility functions. The accuracy varies
between methods. Generally, the Conjoint analysis obtains the highest accuracy with
respect to both AUC and RMSE measures. The Direct marginals method has a sim-
ilar performance as the Conjoint analysis method on completely defined functions,
but is more sensitive to incompleteness. This impact is particularly strong when the
proportion of undefined value points crosses the 50% threshold. At that level, the
UTADIS method achieves a better accuracy than the Conjoint analysis method with
respect to the AUC measure. All methods show a decline in accuracy with decreasing
completeness.

The Conjoint analysis method successfully approximates a smaller percentage
of functions because the current implementation returns missing values for coef-
ficients that can not be uniquely determined. This happens when the method is
applied on singular, numerically unstable, matrices. The Direct marginals method
is very simple, as it constructs marginal utility functions directly from decision
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rules, avoiding optimization and other extensive processing. Unfortunately, it pays
the price at incomplete functions. The UTADIS method has a somewhat lower accu-
racy though it depends on the way in which linear programming problem is solved
and the constraints are imposed. The drawback of UTADIS is that it requires the
optimization direction for each attribute, which is difficult to assess particularly
from non-monotone and/or highly incomplete decision rules. Anyway, we consider
UTADIS to be a very good choice from the UTA family of methods for the addressed
problem because it arranges alternatives into a set of ordered categories.

The example of the Educat function demonstrates a high accuracy of approxima-
tion of the Direct marginals and the Conjoint analysis methods on completely defined
functions, however it also indicates that the user should be very careful when rea-
soning about the completely defined function by using only incompletely defined
function with a high percentage of missing values. In this case, the Conjoint analysis
and the Direct marginals method produced non-monotone marginal utility functions,
which clearly breached the principle of dominance. The UTADIS method was more
robust on that example, although it overestimated the utility of Formal=PhD.

We conclude that all the assessed methods are “fit for purpose” and can be used
to approximate DEX utility functions. Among the methods, the Conjoint analysis
method seems the most appropriate due to its good performance on complete DEX
functions and moderate degradation of performance on incomplete ones. The Direct
marginals method could be preferred for simplicity. UTADIS can be used to provide a
second solution for comparison, since it outperforms the other two methods on some,
especially incompletely defined, functions.

In the future work, we intend to carry out a more thorough analysis of the effects of
increasing the number of categories and dimensions to the approximation accuracy.
Further, we wish to investigate if the outliers in the AUC and RMSE distributions
are caused by a fixed set of functions which are hard to approximate for all methods,
or if each method has a distinct set that would allow improving the approximation
accuracy by combining different methods. This is especially interesting for functions
that contain a high percentage of missing values for which we observe distortions in
the produced utility functions. The next interesting future work direction would be to
guide the decision maker so as to define decision rules that would improve the defini-
tion of functions and increase the approximation accuracy. Last but not least, it would
be interesting to assess the approach of Robust Ordinal Regression (Kadziński et al.
2014), which, instead of creating a single set of marginal utility functions, produces
all sets compatible with the defined decision rules.
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