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Abstract Data envelopment analysis (DEA) is a non-parametric technique to assess
the performance of a set of homogeneous decision making units (DMUs) with com-
mon crisp inputs and outputs. Regarding the problems that are modelled out of the
real world, the data cannot constantly be precise and sometimes they are vague or
fluctuating. So in the modelling of such data, one of the best approaches is using the
fuzzy numbers. Substituting the fuzzy numbers for the crisp numbers in DEA, the
traditional DEA problem transforms into a fuzzy data envelopment analysis (FDEA)
problem. Different methods have been suggested to compute the efficiency of DMUs
in FDEA models so far but the most of them have limitations such as complexity in
calculation, non-contribution of decision maker in decision making process, utiliz-
able for a specific model of FDEA and using specific group of fuzzy numbers. In the
present paper, to overcome the mentioned limitations, a new approach is proposed. In
this approach, the generalized FDEA problem is transformed into a parametric pro-
gramming, in which, parameter selection depends on the decision maker’s ideas. Two
numerical examples are used to illustrate the approach and to compare it with some
other approaches.
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1 Introduction

Data envelopment analysis (DEA) is a non-parametric technique for evaluating the
relative efficiency of homogeneous decision making units (DMUs) on the basis of
multiple inputs and multiple outputs. DEA, first introduced by Charnes et al. (1978),
is in fact the generalization of Farrell’s (1957) single-input single-output ratio. The
advantage of the DEA approach over other approaches is the possibility of examining
the complex and often unknown relations amongmultiple inputs and multiple outputs.
The huge number of published papers and books in DEA field and the extensive
applications of it demonstrate the superiority of this approach.

The prerequisite of using traditional DEA approaches is to measure the inputs and
outputs precisely. In practice, however, the data occasionally are imprecise or vague.
In order to address this problem, we can use fuzzy numbers to model such data and in
this case, we have a fuzzy data envelopment analysis (FDEA) problem. By introducing
the fuzzy logic into DEA, it has been used more extensively. For instance, FDEA has
been applied in preprinting and packaging (Triantis and Girod 1998), in information
technology industry (Kuo and Wang 2007), in determining fuzzy efficiency scores of
machinery companies (Kao and Liu 2005), in investment programs (Zhou et al. 2008),
and banks (Hatami et al. 2009; Puri and Yadav 2013), in ranking libraries (Kao and Liu
2000), and in addressing NATO enlargement problem (Hatami-Marbini et al. 2013).

The aforementioned examples demonstrate the extensive usage of FDEA. They
also emphasize the importance and necessity of working more and more on this field
and eventually presenting more efficient approaches. From the first study by Sengupta
(1992), great amount of papers have been published in FDEA. Emrouznejad et al.
(2014) have presented a taxonomy and review of the published papers in the field of
FDEA up to 2013. They have classified the FDEA papers in seven different categories:

A. The tolerance approach
B. The α-level based approach
C. The fuzzy ranking approach
D. The possibility approach
E. The fuzzy arithmetic approach
F. The fuzzy random/type-2 fuzzy set approach
G. Other developments in FDEA.

Among them, the most popular approach is the α-level based approach. This is evi-
dent by the number of α-level based papers published in the fuzzy DEA literature
(Emrouznejad et al. 2014). In this approach, the fuzzy DEA model is solved by para-
metric programming using α-cuts (Lertworasirikul et al. 2003b).

However, most of the FDEA methods have limitations such as: utilizable for a spe-
cificmodel of FDEA, using specific group of fuzzy numbers, complexity in calculation
and non-contribution of decision maker in decision making process.

To overcome the mentioned limitations, the present paper proposes a new method
for solving FDEA problems. This method transforms the generalized FDEA problem
into a parametric programming problem by using a transformation function. This
function was first proposed by Shureshjani and Darehmiraki (2013). It was defined
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and used to rank fuzzy numbers. The approach is explained through two examples and
is compared with some other approaches.

The present paper is organized as follows: the fuzzy numbers ranking method
introduced by Shureshjani and Darehmiraki (2013) is briefly explained in the second
section. In the third section, the generalized DEA model is introduced in the crisp and
fuzzy environments and the details of our proposed approach in FDEA are mentioned.
In the fourth section, two examples will be given to illustrate the new approach and the
results will be compared with some other approaches. The materials will be concluded
in the last section.

2 The ranking fuzzy numbers approach
(Shureshjani and Darehmiraki 2013)

In the next section, we will use a transformation function that is first proposed by
Shureshjani and Darehmiraki (2013). They applied it to rank fuzzy numbers. Their
method is briefly explained in this section.

Dealing with fuzzy numbers, we often need an appropriate ranking method in order
to compare these numbers with each other and rank them. Different ranking methods,
with specific advantages and limitations, have been presented so far. A new and logical
approach in this field is the one presented by Shureshjani andDarehmiraki (2013). This
approach has the following advantages that distinguishes it from other approaches in
this field:

A. The fuzzy numbers can be shown by the arbitrary membership functions.
B. The fuzzy numbers can be normal or abnormal.
C. The fuzzy numbers can be intersected.
D. The fuzzy numbers ranking depends on the decision maker’s (DM) ideas and on

the basis of α-cuts.
E. The approach is easily computable.

We will also introduce the approach in the following paragraphs:

Definition 2.1 A fuzzy number Ã in parametric form is an ordered pair (A (r) , Ā (r))
of functions A (r) and Ā (r), 0 ≤ r ≤ ω, which satisfy the following requirements:

1. A (r) is a bounded monotonic increasing left continuous function over [0, ω],
2. Ā (r) is a bounded monotonic decreasing left continuous function over [0, ω],
3. A (r) ≤ Ā (r) , 0 ≤ r ≤ ω.

ω is an arbitrary constant such that 0 < ω ≤ 1.
If, we setω = 1 in the abovementioned definition, then Ã is a normal fuzzy number.

A crisp (non-fuzzy) number K is simply represented by A (r) = Ā (r) = K , 0 ≤ r ≤
1.

Definition 2.2 If Ã is an arbitrary fuzzy number then the α-cut of Ã is defined as
[ Ã]α = [A(α), Ā(α)], 0 ≤ α ≤ ω.

Here Ãω represents a fuzzy number in which ‘ω’ is the maximum membership
value that a fuzzy number takes on.
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892 A. A. Foroughi, R. A. Shureshjani

Fig. 1 Ãω = (
A (r) , Ā (r)

)

Let Ãω = (A(r), Ā(r)), 0 ≤ r ≤ ω be a fuzzy number. The following transforma-
tion function Qα( Ãω) is assigned to Ãω which is calculated as follows:

Qα

(
Ãω

)
=

∫ ω

α

(
A (r) + Ā (r)

)
dr, 0 ≤ α ≤ ω

and, it is supposed that if α ≥ ω, then Qα( Ãω) = 0.
This function will be used as a basis for comparing fuzzy numbers.
It has been graphically shown in Fig. 1 that the quantity of Qα( Ã) is the summation

of the cross-hatched area and the dotted area from α to ω. Hence, in identifying the
quantity of Qα( Ã), only those elements of the fuzzy number Ã are computed which
have the membership quantities that are equal with or higher than α. The selection
of the quantity of α depends on the decision maker’s ideas. If the quantity of α is
chosen close to 1, that is, while comparing the fuzzy numbers, the elements with high
membership quantities are only of importance and the decision maker looks for a low
risk decision. In contrary, if the decision maker chooses the quantity of α close to
zero, it means that the elements with low membership quantities are important as well
and the decision maker compares the fuzzy numbers with high risk. Therefore, if the
decision maker chooses a quantity for α close to 1, then the decision made is called
“high level decision” and if α is given a quantity close to zero, then the decision made
is called “low level decision”.

Definition 2.3 If Ãω and B̃ω′ are two arbitrary fuzzy numbers and ω,ω′ ∈ (0, 1],
then we have:

Ãω � B̃ω′ ↔ ∀α ∈ [0, 1] , Qα

(
Ãω

)
≤ Qα

(
B̃ω′

)

Ãω = B̃ω′ ↔ ∀α ∈ [0, 1] , Qα

(
Ãω

)
= Qα

(
B̃ω′

)

Ãω � B̃ω′ ↔ ∀α ∈ [0, 1] , Qα

(
Ãω

)
≥ Qα

(
B̃ω′

)

Definition 2.4 If we compare two arbitrary fuzzy numbers including Ãω and B̃ω′ at
decision levels higher than “α” and α, ω, ω′ ∈ (0, 1], then we have:
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Fig. 2 A triangular fuzzy number

Fig. 3 A trapezoidal fuzzy number

Ãω �α B̃ω′ ↔ Qα

(
Ãω

)
≤ Qα

(
B̃ω′

)

Ãω =α B̃ω′ ↔ Qα

(
Ãω

)
= Qα

(
B̃ω′

)

Ãω �α B̃ω′ ↔ Qα

(
Ãω

)
≥ Qα

(
B̃ω′

)

where Ãω �α B̃ω′ , i.e., at decision levels higher than α, B̃ω′ is greater than or equal
to Ãω.

Two well-known kinds of fuzzy numbers are the triangular fuzzy numbers
and the trapezoidal fuzzy numbers. In Figs. 2 and 3, Ãω = (

A (r) , Ā (r)
) =(

x0 − δ + δ
ω
r, x0 + β − β

ω
r
)
and B̃ω =(

B (r) , B̄ (r)
)=

(
x0−δ+ δ

ω
r, y0 + β − β

ω
r
)

are triangular and trapezoidal fuzzy numbers, respectively, and by computing the
quantity of Qα , we have:

QTri
α

(
Ãω

)
=

∫ ω

α

{A (r) + Ā (r)}dr = 2x0 (ω − α) + (β − δ)

2ω
(ω − α)2

QTra
α

(
B̃ω

)
=

∫ ω

α

{B (r) + B̄ (r)}dr = (x0 + y0) (ω − α) + (β − δ)

2ω
(ω − α)2
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It has been obviously observed that if the triangular fuzzy numbers and trapezoidal
fuzzy numbers are symmetric (δ = β), then the above mentioned formulas will be
simpler. Besides, for the crisp numbers like K , we have:

Qα (K ) = 2K (1 − α)

3 The generalized FDEA model and the proposed approach

Lots of various models have been presented in DEA. The most popular and useful
models in DEA are the CCR model (Charnes et al. 1978), the BCC model (Banker
et al. 1984), the FG model (Färe and Grosskopf 1985) and the ST model (Seiford and
Thrall 1990). In thesemodels, the DMU is allowed to evaluate its efficiency in themost
favorable way. The significant difference between above models are: the CCR model
is constant returns to scale, the BCC model is variable returns to scale, the FG model
is non-increasing returns to scale, and the STmodel is non-decreasing returns to scale.

We consider the following generalized DEA model (GDEA) (Yu et al. 1996a, b;
Hadi-Vencheh et al. 2008).

Generalized DEA model (GDEA)

Multiplier form

Z = max
∑s

r=1
ur yro − δ1u0

s.t.
∑m

i=1
vi xio = 1

∑s

r=1
ur yr j −

∑m

i=1
vi xi j − δ1u0 ≤ 0,∀ j

δ1δ2 (−1)δ3 u0 ≥ 0, vi , ur ≥ 0,∀i, r

Envelopment form
Z = min θ

s.t. θxio − ∑n
j=1 λ j xi j ≥ 0,∀i

∑n

j=1
λ j yr j ≥ yro,∀r
λ ∈ �

where

� =
⎧
⎨

⎩
λ|λ = (λ1, . . . , λn) , δ1

⎛

⎝
n∑

j=1

λ j + δ2 (−1)δ3 v

⎞

⎠

= δ1, v ≥ 0, λ j ≥ 0, j = 1, . . . , n

⎫
⎬

⎭

and δ1, δ2, δ3 are binary parameters and we can see that

(i) If δ1 = 0 then the GDEA model is reduced to CCR model.
(ii) If δ1 = 1 and δ2 = 0 then the GDEA model is reduced to BCC model.
(iii) If δ1 = δ2 = 1 and δ3 = 0 then the GDEA model is reduced to FG model.
(iv) If δ1 = δ2 = δ3 = 1 then the GDEA model is reduced to ST model.

Regarding the fact that the data are not always precise or deterministic in the real
world, using the conventional DEA models can cause some problems. In order
to overcome these problems, the crisp inputs and outputs can be replaced by the
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fuzzy numbers. In this case, the GDEA model is converted into the following
form:

Generalized Fuzzy DEA model (GFDEA)

Multiplier form

Z = max
∑s

r=1
ur ỹro − δ1u0

s.t.
∑m

i=1
vi x̃io = 1

∑s

r=1
ur ỹr j −

∑m

i=1
vi x̃i j − δ1u0 ≤ 0,∀ j

δ1δ2 (−1)δ3 u0 ≥ 0, vi , ur ≥ 0,∀i, r

Envelopment form

Z = min θ

s.t. θ x̃io −
∑n

j=1
λ j x̃i j ≥ 0,∀i

∑n

j=1
λ j ỹr j ≥ ỹro,∀r
λ ∈ �

where

� =
⎧
⎨

⎩
λ|λ = (λ1, . . . , λn) , δ1

⎛

⎝
n∑

j=1

λ j + δ2 (−1)δ3 v

⎞

⎠

= δ1, v ≥ 0, λ j ≥ 0, j = 1, . . . , n

⎫
⎬

⎭

δ1, δ2, δ3 are binary parameters and
(
x̃i j : i = 1, . . . ,m

)
and

(
ỹr j : r = 1, . . . , s

)

are fuzzy input and fuzzy output vectors of DMUj, j = 1, . . . , n, respectively.
Different methods have been presented to solve the FDEAmodels, which in fact are

a fuzzy linear programming. Herein, we use the Qα function proposed by Shureshjani
and Darehmiraki (2013) and present a new approach to solve the FDEA models.

As can be seen from Sect. 2, the Qα transformation function is dependent on α-
cuts, considers both left and right parts of the fuzzy numbers, and is sensitive to any
change in the left and right part of fuzzy numbers. So, it is a good representative of
the fuzzy inputs and outputs in fuzzy DEA models. By substituting the fuzzy inputs
and outputs with their assigned Qα functions, the generalized fuzzy DEA model
is transformed into the following parametric programming which is dependent on
α-cuts.

Transformed GFDEA model

Multiplier form

Z =max
∑s

r=1
ur Qα (ỹro)−δ1u0

s.t.
∑m

i=1
vi Qα (x̃io)=1

∑s

r=1
ur Qα

(
ỹr j

)−
∑m

i=1
vi Qα

(
x̃i j

)−δ1u0≤0,

δ1δ2 (−1)δ3 u0 ≥ 0, vi , ur ≥0,

Envelopment form

Z =min θ

s.t. θQα (x̃io)−
∑n

j=1
λ j Qα

(
x̃i j

)≥0

∑n

j=1
λ j Qα

(
ỹr j

)≥Qα(ỹro)

λ∈�
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where

� =
⎧
⎨

⎩
λ|λ = (λ1, . . . , λn) , δ1

⎛

⎝
n∑

j=1

λ j + δ2 (−1)δ3 v

⎞

⎠

= δ1, v ≥ 0, λ j ≥ 0, j = 1, . . . , n

⎫
⎬

⎭

Herein, α relies on the decision maker’s opinions. If α is considered close to 1,
then the achieved result will be a result which is obtained from a risk-averse decision
making and if the decision maker adopts an amount close to zero for α, then the result
is a risk-prone result.

By proper selection of δ1, δ2, δ3 in GFDEA model, we define:

Definition 3.1 DMUo is FCCR-efficient↔ ∀α ∈ [0, 1) , DMUo is efficient in trans-
formed FCCR model.

Definition 3.2 DMUo is FCCR α-efficient ↔ ∃α ∈ [0, 1) , DMUo is efficient in
transformed FCCR model.

Similarity, we have above definitions for fuzzy BCC, FG and ST models.
For conventional BCC model, Cooper et al. (2007) proved that if DMUo has a

minimum input value for any input item, or a maximum output value for any output
item then DMUo is BCC-efficient.

The following two theorems generalize the above mentioned theorem to provide a
tool to check the accuracy of the obtained results from our proposed method for the
fuzzy BCC model.

Theorem 3.1 By substituting the fuzzy inputs and outputs with the Qα function, if for
all α,α ∈ [0, 1), DMUo has a minimum input value for any input item or a maximum
output value for any output item then DMUo is FBCC-efficient.

Proof Choosing an arbitrary α, α ∈ [0, 1) , the transformed FBCCmodel is converted
to a traditional BCC model. Now, if DMUo has a minimum input value for any input
item or a maximum output value for any output item, then DMUo is efficient (Cooper
et al. 2007, p. 93). As α was arbitrary, so according to the Definition 3.2, DMUo is
FBCC-efficient. 	

Theorem 3.2 By substituting the fuzzy inputs and outputs with the Qα function, if for
one α,α ∈ [0, 1), DMUo has a minimum input value for any input item or a maximum
output value for any output item then DMUo is FBCC α-efficient.

Proof The proof of this theorem is the same as the former. 	

Although a variety of techniques are available to solve fuzzy DEA models, each
method has its own limitations. Some of the techniques are only developed for using
triangular or trapezoidal fuzzy inputs and outputs; however they either do not work
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for general forms of fuzzy inputs and outputs with arbitrary membership functions or
need to solve a nonlinear programing with complex calculations. For example, Guo
and Tanaka (2001) method is applicable only for symmetric triangular fuzzy numbers.
Moreover, proposed models by Lertworasirikul et al. (2003a, b), Wen and Li (2009)
and Hatami-Marbini et al. (2013) are nonlinear programs which can be converted to
linear programs only for trapezoidal fuzzy numbers.

However, in real-world problems, numerous fuzzy inputs and outputs with arbi-
trary membership functions are involved. So, simple yet effective methods need to be
developed to solve these problems.

As mentioned earlier, in our proposed method fuzzy inputs and outputs have arbi-
trary membership functions (not necessarily triangular or trapezoidal form). In this
method after determining the amount of alpha, which depends on the decision maker’s
opinion, a simple linear programneeds to be solved to compute the efficiencyofDMUs.
So, it is easily possible to obtain the efficiencymeasures ofDMUs for different amounts
of alpha and plot their efficiency functions.

In addition to normal fuzzy numbers, non-normal ones are also defined in fuzzy
logic (Cheng 1998; Wang et al. 2006; Shureshjani and Darehmiraki 2013; Hatami-
Marbini et al. 2013). Almost all available methods for solving fuzzy DEA models
are applicable just for normal fuzzy numbers but according to the structure of Qα

transformation function, our proposed method is applicable for both normal and non-
normal fuzzy numbers.

4 Numerical examples

In this section, two numerical examples are provided to illustrate the proposed
approach in fuzzy DEA. First, we will explain the proposed approach through a simple
numerical example, with a fuzzy input and a fuzzy output. Then, in another example,
we will compare the obtained results of our approach with the results of some other
approaches in this field.

Example 1 Consider 3 DMUs with a fuzzy input and a fuzzy output. All the data are
normal and triangular except B̃ (Table 1).

B̃ = (
B (r) , B̄ (r)

) =
(
2 − √

1 − r2, 2 + 2
√
1 − r2

)
, 0 ≤ r ≤ 1 is a general fuzzy

number (Fig. 4).
By using the Qα function for fuzzy numbers in Table 1, we will have Table 2.

Table 1 Three DMUs with a
fuzzy input and a fuzzy output

DMUs Input Output

1 (1,2,5) (2,3,4)

2 B̃ (1,3,5)

3 (5,8,11) (3,4,6)
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Table 2 Transformation functions of fuzzy numbers

DMUs Input Output

1 4 (1 − α) + (1 − α)2 6 (1 − α)

2 4 + π
4 −

(
4α + α

2

√
1 − α2 + 1

2 sin−1 α
)

6 (1 − α)

3 16 (1 − α) 8 (1 − α) + 0.5 (1 − α)2

Table 3 FCCR efficiency
scores

DMUs α = 0.1 0.3 0.5 0.7 0.9

1 0.971 0.999 1 1 1

2 1 1 0.975 0.957 0.954

3 0.419 0.408 0.386 0.365 0.343

Table 4 FBCC efficiency
scores

DMUs α = 0.1 0.3 0.5 0.7 0.9

1 0.971 0.999 1 1 1

2 1 1 0.975 0.957 0.954

3 1 1 1 1 1

Table 5 FFG efficiency scores
DMUs α = 0.1 0.3 0.5 0.7 0.9

1 0.971 0.999 1 1 1

2 1 1 0.975 0.957 0.954

3 1 1 1 1 1

By computing the fuzzy efficiency of DMUs in four models of transformed
GFDEA, for different decision levels made by decision maker, for example
α = 0.1, 0.3, 0.5, 0.7, 0.9, we will have: Tables 3, 4, 5 and 6

As it was shown in Fig. 4, the inputs of first and second DMUs are two intersected
fuzzy numbers. From their Qα function, different rankings are achieved for them in
different amounts of α. For example, if α = 0.1, Ã � B̃ and when α = 0.7, Ã ≺ B̃.
As it is shown in the FCCR efficiency results (Table 3), DMUs 1 and 2 are FCCR
α-efficient but they are not FCCR-efficient (Definitions 3.1 and 3.2).

Also, by using Qα function, the output data of the first and second DMUs are
equal. From Table 2 we can see that for all amounts of α, DMU3 has the biggest
output among all DMUs, so according to the Theorem 3.1 DMU3 should be FBCC-
efficient. Inputs of DMUs 1 and 2 are two intersected fuzzy numbers and from Table 2
we can see that for α ≤ 0.3 DMU2 has the smallest input among all DMUs. So, from
Theorem 3.2 for α ≤ 0.3 DMU2 should be FBCC α-efficient. Similarly we can see
that for α ≥ 0.5 DMU1 should be FBCC α-efficient. Table 4 shows that the obtained
results are coincident with Theorems 3.1 and 3.2.

The obtained results for FFG and FST models are shown in Tables 5 and 6.
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Table 6 FST efficiency scores
DMUs α = 0.1 0.3 0.5 0.7 0.9

1 0.971 0.999 1 1 1

2 1 1 0.975 0.957 0.954

3 0.419 0.408 0.386 0.365 0.343

Fig. 4 The inputs of DMUs 1 and 2 (two intersected fuzzy numbers)

The efficiency diagram of DMUs for FCCR, FBCC, FFG, and FST models are
presented in Figs. 5, 6, 7, and 8.

Example 2 In this example, we use the numerical example proposed by Guo and
Tanaka (2001)which is also usedbySaati et al. (2002), Lertworasirikul et al. (2003a, b),
Wen and Li (2009), and Hatami-Marbini et al. (2013).

Consider five DMUs with two fuzzy inputs and two fuzzy outputs presented in
Table 7.

All the applied fuzzy numbers in inputs and outputs are normal fuzzy numbers
which are triangular and symmetric.

According to many approaches in ranking fuzzy numbers, for example, Cheng
(1998), Yao and Wu (2000), Detyniecki and Yager (2001), Chu and Tsao (2002),
Wang and Lee (2008), Abbasbandy and Hajjari (2009), Chen and Sanguansat (2011),
and Shureshjani and Darehmiraki (2013), when two normal triangular fuzzy numbers
Ã and B̃ have the samemodes and symmetric spreads, Ã is equal to B̃ and is equal with
the crisp number which is in the mode of Ã and B̃. So, using the presented approach,
when we use the data of Table 7 in the GFDEA model, the efficiency quantities don’t
change for different amounts of α, α ∈ [0, 1).

For FCCRmodel, regarding the achieved results from approaches compared in this
example (Table 8), it can be seen that:
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Fig. 5 FCCR efficiency
diagram
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Fig. 6 FBCC efficiency
diagram
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Fig. 7 FFG efficiency diagram

0.8

1

0 . 1 0 . 3 0 . 5 0 . 7 0 . 9

FF
G

 E
FF

IC
IE

N
C

Y
 

SC
O

R
E

ALPHA LEVELS

DMU1 DMU2 DMU3

Fig. 8 FST efficiency diagram

0
0.2
0.4
0.6
0.8
1

0 . 1 0 . 3 0 . 5 0 . 7 0 . 9FS
T 

EF
FI

C
IE

N
C

Y
 

SC
O

R
E

ALPHA LEVELS

DMU1 DMU2 DMU3

123



Solving generalized fuzzy data envelopment analysis model… 901

Table 7 The numerical example of Guo and Tanaka (2001)

DMU Input 1 Input 2 Output 1 Output 2

A (3.5,4,4.5) (1.9,2.1,2.3) (2.4,2.6,2.8) (3.8,4.1,4.4)

B (2.9,2.9,2.9) (1.4,1.5,1.6) (2.2,2.2,2.2) (3.3,3.5,3.7)

C (4.4,4.9,5.4) (2.2,2.6,3) (2.7,3.2,3.7) (4.3,5.1,5.9)

D (3.4,4.1,4.8) (2.2,2.3,2.4) (2.5,2.9,3.3) (5.5,5.7,5.9)

E (5.9,6.5,7.1) (3.6,4.1,4.6) (4.4,5.1,5.8) (6.5,7.4,8.3)

DMU A is always inefficient, in Guo and Tanaka (2001), Wen and Li (2009), and
the proposed approach in this paper. Also, in Saati et al. (2002) DMU A is always
inefficient except for α = 0 but in Lertworasirikul et al. (2003a) different α leads to
different results.

For DMUB, all the approaches agree on its efficiency except forWen and Li (2009)
at credibility level 0.1 (Table 9).

For DMU C, different approaches leads to different results, of which some are in
contrary to the others. But, in the proposed approach, DMU C is always inefficient.

For DMU D, all the approaches agree on its efficiency.
DMU E is also efficient in all the approaches except for Guo and Tanaka (2001).
As mentioned above, in this example, the efficiency results obtained from our

proposed approach in FCCR model are coincident with the efficiency results of most
of the other approaches.

Lertworasirikul et al. (2003b) and Hatami-Marbini et al. (2013) have presented
new models in order to compute the efficiency in FBCC model. For this example,
their results are shown in Table 10, besides, their results have been compared with our
presented approach.

According to the Theorem 1, it can be seen that DMUB has a minimum input value
for any input item and DMU E has a maximum output value for any output item in
the transformed FBCC model. So, the DMUs B and E are efficient. This result has
been achieved in all three presented approaches. In addition to this, DMU D is also
efficient in all the three approaches. According to the proposed approach, DMUs A
and C are always inefficient but in the other approaches, the results of efficiency in
different amounts of α are various.

5 Conclusion

As the data are sometimes imprecise or vague in real world, using the fuzzy numbers to
show the inputs and outputs in DEA facilitates the computation of practical problems
in DEA field. After modeling the problem in FDEA, next step is finding a proper
approach to solve it. In the present paper, a new parametricmethod is proposed to solve
the FDEA problems and specifically applied for a generalized FDEAmodel including
FCCR, FBCC, FFG and FST models. Some important characteristics of this approach
are, the possibility of using fuzzy numbers with arbitrary membership functions in
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Table 9 Efficiency results for different credibility levels (Wen and Li 2009)

Credibility level DMU1 DMU2 DMU3 DMU4 DMU5

0.5 Inefficiency Efficiency Inefficiency Efficiency Efficiency

0.4 Inefficiency Efficiency Inefficiency Efficiency Efficiency

0.3 Inefficiency Efficiency Inefficiency Efficiency Efficiency

0.2 Inefficiency Efficiency Inefficiency Efficiency Efficiency

0.1 Inefficiency Inefficiency Efficiency Efficiency Efficiency

Table 10 Evaluating results with different α in FBCC model

α Methods DMU A DMU B DMU C DMU D DMU E

0 Lertworasirikul et al. (2003b) 1.299 1.247 1.699 1.692 ∞
Hatami-Marbini et al. (2013) 1 1 1 1 1

Proposed approach 0.889 1 0.935 1 1

0.5 Lertworasirikul et al. (2003b) 1.062 1.119 1.243 1.300 ∞
Hatami-Marbini et al. (2013) 1 1 1 1 1

Proposed approach 0.889 1 0.935 1 1

0.75 Lertworasirikul et al. (2003b) 0.969 1.059 1.074 1.142 ∞
Hatami-Marbini et al. (2013) 0.982 1 1 1 1

Proposed approach 0.889 1 0.935 1 1

1 Lertworasirikul et al. (2003b) 0.889 1.000 0.935 1.000 1.000

Hatami-Marbini et al. (2013) 0.918 1 0.96 1 1

Proposed approach (near 1) 0.889 1 0.935 1 1

inputs and outputs, contribution of decision maker in the process of decision making,
and simplicity of calculation.

The presented approach in this paper can be easily generalized to other FDEA
models.
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