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Abstract Incorporation of a decision maker’s preferences into multi-objective evo-
lutionary algorithms has become a relevant trend during the last decade, and several
preference-based evolutionary algorithms have been proposed in the literature. Our
research is focused on improvement of a well-known preference-based evolutionary
algorithm R-NSGA-II by incorporating a local search strategy based on a single agent
stochastic approach. The proposed memetic algorithm has been experimentally evalu-
ated by solving a set of well-known multi-objective optimization benchmark problems.
It has been experimentally shown that incorporation of the local search strategy has
a positive impact to the quality of the algorithm in the sense of the precision and
distribution evenness of approximation.

Keywords Multi-objective optimization · Preference-based evolutionary algorithms ·
Memetic algorithm · Stochastic local search

1 Introduction

Many real-world problems are multi-objective. Due to conflicting objectives usually
there is no solution which would be the best by all objectives. However, a set of solu-
tions optimal in a multi-objective sense exists. Such a set of solutions is called the
Pareto set, and the corresponding set of objective vectors—the Pareto front. Determi-
nation of the Pareto front is the main goal of multi-objective optimization, however
for some problems it is impossible to identify the exact Pareto front due to reasons
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such as continuity of the front, nonexistence of analytical expression or complexity
of the problem being solved. On the other hand in practical situations usually it is
not necessary to find the whole Pareto front, but rather its approximation. Moreover,
the decision maker (DM) commonly is interested in a certain part of the Pareto front
and prefers to analyse that part deeper. Therefore, algorithms for approximation of the
Pareto front are useful to tackle real-world multi-objective optimization problems.

A well-known class of such algorithms are Evolutionary Multi-objective Opti-
mization (EMO) algorithms. The main target of a classic EMO is to find a set of
well-distributed points on objective space that precisely approximate the entire Pareto
front (Deb 2001; Lančinskas et al. 2013; Talbi 2009). The obtained set is presented to
the DM for consideration and selection of the most preferable solutions. Some well-
known EMO algorithms should be mentioned regarding to such a kind of approaches:
PAES (Knowles and Corne 2000), SPEA2 (Zitzler et al. 2001), NSGA-II (Deb et al.
2002), IBEAZ (Zitzler and Künzli 2004), etc. The EMO algorithms have gained their
popularity because they do not require deep knowledge about the problem to solve
and are easy to implement. However, most of the EMO approaches are not suitable to
problems with a big number of objectives (Knowles and Corne 2000). Recently sev-
eral EMO algorithms have been developed that are suitable for solving many objective
problems: MOEA/D (Ray et al. 2013; Zhang and Li 2007) and NSGA-III (Jain and Deb
2014). However, the problem of large computational cost arises here as big amount of
solutions must be found to represent the entire Pareto front. Moreover, a reasonable
number of solutions should be provided for the DM so that he/she could make an
adequate decision avoiding complex analysis of large amount of information. There-
fore, optimization methods based on DM’s preferences must be used in which only
the region of interest of the Pareto front is approximated.

During the last decade incorporation of DM’s preference information into evolution-
ary approaches has become a new trend. So-called preference-based EMO algorithms
are being actively developed that focus on only some parts of the Pareto front. Such
algorithms aim to find an approximation of the Pareto front which elements are scat-
tered regarding to the preference information provided by the DM. The well-known
EMO algorithms of this kind have been proposed: the reference point-based (R-
NSGA-II) (Deb et al. 2006; Siegmund et al. 2012), the light beam approach based
EMO (Deb and Kumar 2007), the weighted hypervolume based EMO (Auger et al.
2009), achievement scalarizing function based EMOs—PIBEA (Thiele et al. 2009) and
interactive EMO-based technique (López-Jaimes and Coello Coello 2014), interactive
MOEA/D (Gong et al. 2011), Preference-based Interactive Evolutionary (PIE) algo-
rithm (Sindhya et al. 2011), the Weighting Achievement Scalarizing Function based
EMO (WASF-GA) (Ruiz et al. 2015). The comprehensive survey is given in Purshouse
et al. (2014).

The preference-based EMO algorithms have been applied for solving different
real-world optimization problems: R-NSGA-II was used for solving industrial-scale
simulation-based optimization problem (Siegmund et al. 2012) and for deregulated
power system in transmission expansion planning problem (Mohammadpour et al.
2013); PIBEA and PIE were applied for locating a pollution monitoring station in a
two-dimensional decision space (Sindhya et al. 2011; Thiele et al. 2009); interactive
MOEA/D was applied for airfoil design optimization problem (Gong et al. 2011), etc.
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As preference-based algorithms are applied to different practical multi-objective
problems, improvement of efficiency of such algorithms is undisputed. The one of the
most common ways to enhance the EMO algorithm is to incorporate a local search
procedure. Such hybrid algorithms, also called memetic, have gained a big atten-
tion as they converge faster and more precisely approximate the Pareto front (Zavala
et al. 2014). Different strategies of local search have been applied for improvement
of EMO algorithms: the fitness function based on weighted sum of multiple objec-
tives was utilized when selecting solution for generating a new solution by crossover
and mutation operations (Ishibuchi and Murata 1998); a similar idea was investi-
gated in Goel and Deb (2002); local search procedure based on neighbourhood search
was incorporated into the cellular multi-objective genetic algorithm (Murata et al.
2002); a memetic algorithm based on the cross dominant adaptation was proposed
in Caponio and Neri (2009); a hybrid with achievement scalarizing function that can
be solved with any appropriate local search method was presented in Sindhya et al.
(2009); a gradient based sequential quadratic programming method was used in a local
search for optimization of a scalarized objective function (Sindhya et al. 2013); Multi-
Objective Single Agent Stochastic Search (MOSASS) (Lančinskas et al. 2011) was
incorporated into NSGA-II (Lančinskas et al. 2013). More works related to memetic
multi-objective optimization algorithms can be found in EMO survey (Zhou et al.
2011). Hence, hybridization of classic EMO algorithms with local search procedures
was sufficiently deeply investigated, however to our knowledge, the preference-based
EMO has not received great attention yet.

A memetic algorithm that integrates the Directed Search method into the most
widely used preference-based EMO algorithm—R-NSGA-II has been proposed
in Mejía et al. (2014). However, the algorithm involves Jacobian calculation that leads
to specific requirements for a problem being solved or/and to additional computations
for numerical estimation of gradients. In this paper, we propose to enhance R-NSGA-
II by incorporating the heuristic local search technique MOSASS (Lančinskas et al.
2013, 2011) which does not require any gradient information. The proposed R-NSGA-
II with MOSASS improves the quality of approximation of the Pareto front in a limited
number of function evaluations, taking into account DM’s preference information.

The rest of this paper is organized as follows. In Sect. 2 the description of the
multi-objective problem is provided, as well as the preference-based EMO algo-
rithm R-NSGA-II and the local search strategy MOSASS are described. Section 3 is
devoted to proposition of a memetic algorithm derived by incorporating MOSASS into
R-NSGA-II, and to adaptation of the performance metrics for evaluating the
preference-based algorithms. The experimental investigation of the proposed algo-
rithm and the obtained results are discussed in Sect. 4. Finally, conclusions are drawn
in Sect. 5.

2 Background concepts

2.1 Multi-objective optimization problem

Here a formulation of a multi-objective optimization problem is introduced. Let us
have k ≥ 2 conflicting objectives, described by the functions f1(x), f2(x), . . . , fk(x),
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where x = (x1, x2, . . . , xn) is a vector of variables (decision vector), n is the number of
variables. A multi-objective minimization problem is formulated as follows (Miettinen
1999):

minimize f(x) = [ f1(x), f2(x), . . . , fk(x)], (1)

subject to x ∈ S. (2)

where z = f(x) ∈ R
k is objective vector, and S ⊂ R

n is an n-dimensional Euclidean
space, called feasible region, which defines all feasible decision vectors.

In terms of multi-objective optimization, two decision vectors x and x′ can be
related with each other by dominance relation: the decision vector x can dominate the
decision vector x′ and vice versa, as well as none of the decision vectors dominate
each other.

It is said that the decision vector x dominates the decision vector x′ (denoted by
x � x′) if

(1) the decision vector x is not worse than x′ by all objectives, and
(2) the decision vector x is strictly better than x′ by at least one objective.

If the conditions above are satisfied, then the decision vector x′ is called a dominator
of x′. If none of the decision vectors can be identified as a dominator of the other, then
both decision vectors are assumed to be indifferent (denoted by x ∼ x′). Analogically,
it is said that the objective vector z = (z1, z2, . . . , zk) dominates z′ = (z′1, z′2, . . . , z′k),
if each component of z is not worse than the corresponding component of z′ and there
exists at least one component of z which is strictly better than the corresponding
component of z′.

Decision vectors which have no dominators in the whole search space S are
called non-dominated or Pareto-optimal (optimal in Pareto sense). The set of all
non-dominated decision vectors is called the Pareto set, and the corresponding set
of non-dominated objective vectors is called the Pareto front.

Furthermore, two more objective vectors that describe the ranges of the Pareto
front are usually used—the ideal objective vector and the nadir objective vector.
Lower bounds of the Pareto front constitute the ideal objective vector, its components
are obtained by minimizing each of the objective functions individually in the feasible
region. The upper bounds of the Pareto front are the components of the nadir objective
vector.

2.2 Preference-based EMO algorithms

As it was mentioned in Sect. 1 the classic EMO algorithms aim to approximate the
whole Pareto front and to distribute the obtained non-dominated objective vectors
evenly. On contrary, the objective vectors obtained by preference-based algorithms
are concentrated on a particular region(s) of the Pareto front approximated according
to the preference information expressed by the DM. This information can be expressed
in different ways: using reference direction, reference points, aspiration levels, weights
or other (Miettinen 1999). Wide range of the preference-based EMO algorithms use
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Fig. 1 Non-dominated objective vectors of ZDT1 problem, obtained by: a classic EMO algorithm,
b preference-based EMO algorithm

reference points that consist of desirable aspiration levels for each objective function.
Such a way of expressing preference is easy to implement and incorporate into EMO
approach. Moreover, other types of information (as aspiration levels or reference direc-
tions) can be easily transformed into reference points. The differences between results
obtained by the classic EMO and preference-based EMO algorithms are demonstrated
using the popular test problem ZDT1 in Fig. 1. We see that the points of the Pareto
front approximation are distributed evenly enough on the whole Pareto front in Fig. 1a,
while the points are concentrated on one region in Fig. 1b.

Among the preference-based EMO algorithms R-NSGA-II (Deb et al. 2006; Sieg-
mund et al. 2012) is the most commonly used one. It is an extension of the well-known
classic EMO approach NSGA-II (Deb et al. 2002), where the crowding distance is
changed to the Euclidean distance from the reference point which expresses the DM’s
preference. The general idea of R-NSGA-II is that the parents with smaller Euclidean
distances to the reference point are preferred. R-NSGA-II can be described as follows:

1. A random initial population consisting of decision vectors is randomly generated
in the feasible region.

2. A new offspring population is created by applying genetic operators (crossover
and mutation) to the individuals of the parent population. The crossover is related
to the recombination of two selected parent individuals by taking some values
of elements from the first parent, while the remaining values are taken from the
second one. The selected individuals are recombined with a predefined probability;
if recombination is not performed, then better of the parents is used to represent an
offspring. The derived offspring is mutated by adding a small random change to
the values of some variables. Each variable is mutated with a predefined (usually
small) probability; all variables usually have equal probabilities to be mutated.

3. The parent and offspring populations are combined into one joint population.
4. The new population is sorted into different non-domination levels (so-called fronts)

by a non-dominated sorting procedure.
5. Each front of the joint population is clustered, and representatives of clusters are

identified.
6. The obtained joint population is reduced to the size of the parent population by

leaving the representatives of the clusters starting from the best non-domination
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level. If not all representatives can be selected to the next generation, then ones
with the smaller Euclidean distance to the reference point are preserved.

7. If the termination condition is not satisfied, then the reduced population is used as
a parent population in the next generation (go to Step 2).

It should be noted that the clustering performed in Step 5 is required in order to
control the diversity of the obtained solutions. The clustering parameter value δ(0 <

δ � 1) (Deb et al. 2006) defines the size of clusters and in such a way controls the
extent of the population.

2.3 MOSASS

The local search strategy Multi-Objective Single Agent Stochastic Search (MOSASS)
(Lančinskas et al. 2011, 2013) has been developed by modifying a random search
strategy for single-objective optimization, called Single Agent Stochastic Search
(SASS) (Solis and Wets 1981), in order to make it suitable for multi-objective opti-
mization.

The MOSASS iterative algorithm begins with an initial decision vector x =
(x1, x2, . . . , xn), which is assumed to be locally optimized, and an empty archive
A for storing non-dominated decision vectors which are expected to be found during
runtime of the algorithm. A new decision vector x′ is generated by changing values
of some variables of x. Each variable xi (i = 1, 2, . . . , n) is modified with probabil-
ity 1/n by adding a random value ξi generated following Gaussian distribution. In
general, the new decision vector can be expressed mathematically as

x′ ← x + ξ, (3)

where ξ = (ξ1, ξ2, . . . , ξn) and

ξi ←
{
N (bi , σ ), if ri ≤ 1/n,

0, if ri > 1/n.
(4)

Here N (bi , σ ) is a random number generated following Gaussian distribution with
the bias bi and the standard deviation σ , ri is a random number uniformly generated
within interval [0, 1]. Such a probabilistic approach for generation of a new decision
vector leads to the change of a single variable in average; see Lančinskas et al. (2013)
for details.

The generated decision vector x′ is compared with its precursor x in the sense
of dominance relation. If the new decision vector dominates its precursor, then x is
changed to the newly generated one. If x′ is indifferent with x, then x′ is compared
with all non-dominated decision vectors found so far and stored in the archive A. If x′
is non-dominated in A, then the archive is supplemented by x′. If x′ is used either to
change x or to supplement the archive, all decision vectors in A dominated by x′ are
removed in order to keep the archive of non-dominated decision vectors only.
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If the newly generated decision vector is either dominated by its precursor or a
decision vector from A, then x′ is rejected and an opposite decision vector

x′′ ← x − ξ (5)

is investigated following the same strategy.
If the decision vector x is updated or the archive A is supplemented by x′, then

the iteration is assumed to be successful and the biases of Gaussian perturbation are
updated:

bi ← 0.2bi + 0.4ξi , i = 1, 2, . . . , n. (6)

If the decision vector x is updated or the archive A is supplemented by x′′, then iteration
is assumed to be successful and the biases of Gaussian perturbation are updated by

bi ← bi − 0.4ξi , i = 1, 2, . . . , n. (7)

If both x′ and x′′ are rejected, then the iteration is assumed to be failed and the biases
of Gaussian perturbation are updated by

bi ← 0.5bi , i = 1, 2, . . . , n. (8)

The standard deviation σ of the Gaussian perturbation is dynamically adjusted with
respect to the repetitive successful and failed iterations. If the number scnt of repetitive
successful iterations reaches the predefined number Scnt, then the standard deviation is
increased twice. Analogically, if the number fcnt of repetitive failed iterations reaches
the predefined number Fcnt, then the standard deviation is reduced by a half. If the
standard deviation becomes smaller than the predefined value σmin , then σ is set to
σmin .

The iterative process is continued while a stopping criterion is not satisfied, which
is usually based on the maximum number of functions evaluations. The algorithm
returns a set A ∪ {x} of non-dominated decision vectors found during the runtime of
the algorithm. The detailed MOSASS algorithm is given in Algorithm 1.

3 Memetic preference-based EMO algorithm

The original R-NSGA-II algorithm aims to provide the points concentrated on the
Pareto front region considering the DM’s preferences. When solving real-world multi-
objective optimization problems, the results should be provided to DM for his/her
analysis in appropriate amount of time, therefore the number of function evaluations
must be limited. In such a case, the widely-used R-NSGA-II algorithm is faced with
difficulties when obtaining in the well-distributed points that approximate a part of
the Pareto front.

The local search strategy MOSASS uses a single decision vector x to generate a
new decision vector, therefore it is likely that newly generated non-dominated decision
vector will be in the neighborhood of x. Examples of the Pareto front approximations
obtained by 400 function evaluations of MOSASS are presented in Fig. 2. One can
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Algorithm 1 MOSASS
1: procedure MOSASS(x, EL )
2: Set the boundary values for the standard deviation: σmin = 1 × 10−5, σmax = 0.5;
3: Set the initial value of the standard deviation: σ ← 0.5 × (σmin + σmax );
4: bi ← 0, i = 1, 2, . . . , n;
5: scnt ← 0; f cnt ← 0;
6: Scnt = 5; Fcnt = 3;
7: eL ← 0;
8: while eL < EL do
9: Generate a new decision vector x′ following equation (3);
10: Evaluate objective vector of x′ and increase by one the value eL ;
11: if x′ � x then
12: x ← x′;
13: scnt ← scnt + 1; f cnt ← 0;
14: bi ← 0.2bi + 0.4ξi , i = 1, 2, . . . , n;
15: else
16: if x′ ∼ x and x′ is non-dominated in A then
17: Remove from A all x such that x′ � x;
18: Supplement A by x′;
19: scnt ← scnt + 1; f cnt ← 0;
20: bi ← 0.2bi + 0.4ξi , i = 1, 2, . . . , n;
21: else
22: Generate a new decision vector x′′ following equation (5);
23: Evaluate objective vector of x′′ and increase by one the value eL ;
24: if x′′ � x then
25: x ← x′′;
26: scnt ← scnt + 1; f cnt ← 0;
27: bi ← bi − 0.4ξi , i = 1, 2, . . . , n;
28: else
29: if x′′ ∼ x and x′′ is non-dominated in A then
30: Remove from A all x such that x′′ � x;
31: Supplement A by x′′;
32: scnt ← scnt + 1; f cnt ← 0;
33: bi ← bi − 0.4ξi , i = 1, 2, . . . , n;
34: else
35: f cnt ← f cnt + 1; scnt ← 0;
36: bi ← 0.5bi , i = 1, 2, . . . , n;
37: end if
38: end if
39: end if
40: end if

41: σ ←

⎧⎪⎨
⎪⎩

2σ, if scnt ≥ Scnt,

0.5σ, if f cnt ≥ Fcnt,

σ, otherwise.
42: end while
43: return set of non-dominated decision vectors A ∪ {x}.
44: end procedure

see, non-dominated decision vectors determined by the algorithm are concentrated
around the initial decision vectors x, denoted by the squares.

Such a generation of non-dominated vectors in the neighbourhood of an initial
decision vector meets the concept of preference-based approaches. Moreover, the latter
process is much quicker comparing to the genetic operators used in EMO. Therefore,
it is reasonable to incorporate the local search strategy MOSASS into the preference-
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Fig. 2 Approximations of the Pareto fronts of different test problems obtained by MOSASS

based R-NSGA-II algorithm to improve the quality of approximation of the Pareto
front in the limited number of function evaluations. In next subsection, we will describe
the proposed memetic algorithm which we call R-NSGA-II with MOSASS.

3.1 The proposed R-NSGA-II with MOSASS algorithm

The memetic R-NSGA-II with MOSASS algorithm begins with initial parent popu-
lation P0 consisting of N decision vectors (see Algorithm 2). A value of clustering
parameter δ (0 < δ � 1) and the number of function evaluations EL dedicated for the
local search are also predefined. The algorithm runs while the termination criterion is
not satisfied (for example the number of generations or the number of function evalua-
tions is not reached). After sorting the population into different non-domination levels
(fronts) and calculating rank for each individual an offspring population is created
using local search procedure MOSASS or using standard genetic operators (recom-
bination and mutation). MOSASS procedure is activated if condition for the local
search is satisfied, i.e. after every predefined number of function evaluations EG (see
Row 6 of Algorithm 2). Individual x with the best rank of the population Pt is passed
to MOSASS procedure (see Algorithm 1) and local search runs till the number of
function evaluations reaches the value EL . The result of MOSASS procedure is the
offspring population Qt .
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Algorithm 2 R-NSGA-II with MOSASS
1: procedure R- NSGA- II- MOSASS(P0, N , δ, EL )
2: Generation counter t ← 0;
3: while the termination criterion is not satisfied do
4: Sort the parent population Pt into different non-domination levels (fronts);
5: Calculate rank for each individual;
6: if condition for the local search activation is satisfied then
7: Set x to the individual from Pt with the best rank;
8: Perform the local search: Qt ← MOSASS (x, EL );
9: else
10: Create an offspring population Qt using recombination and mutation;
11: end if
12: Combine the parents and offspring into the joint population: Rt = Pt ∪ Qt ;
13: Sort Rt into fronts F̄i , i = 1, 2, . . . , p by non-dominated sorting;
14: Pt+1 ← ∅;
15: while |Pt+1| < N do
16: Cluster each front F̄i , i = 1, . . . , p, and identify representatives R̄ti of clusters;
17: i ← 1;
18: while i < p and |Pt+1| + |R̄ti | ≤ N do
19: Supplement Pt+1 by representatives R̄ti ;
20: Remove representatives R̄ti form the front F̄i ;
21: i ← i + 1;
22: end while
23: if i < p then
24: Supplement Pt+1 by (N − |Pt+1|) representatives of the front F̄i
25: with the smallest rank;
26: end if
27: end while
28: t ← t + 1;
29: end while
30: return Pt .
31: end procedure

After the joint population is created and sorted, a new population is started to
be formed (see Row 14 of Algorithm 2). Each front F̄i of the joint population is
clustered in such a way: the individuals which difference of the Euclidean distance to
the reference point is less than δ are assigned to one cluster, where R̄t (R̄t ⊂ Rt ) is
a set of representatives of each cluster, R̄ti (R̄ti ∈ R̄t ) are representatives in front F̄i .
The representatives of each cluster are added to the new population (see Row 19). If
all representatives in the front cannot be added to the population, only representatives
with the smallest rank are selected (see Rows 24–25). In the case when there are not
enough representatives from all the fronts to form the population of size N , clustering
is performed again after removing the individuals already added to a new population.
The result of the algorithm is the population Pt , which consists of decision vectors,
and their corresponding objective vectors approximate the Pareto front.

3.2 Performance metrics for preference-based EMO

The EMO algorithms are usually measured on two aspects: the accuracy (how close
the obtained approximation is to the Pareto front), and the evenness of distribution of
the points in approximation.
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The following performance metrics are commonly used to evaluate the performance
of the EMO algorithms:

• Generational Distance measures the accuracy of the approximation of the Pareto
front. The generational distance for an obtained set of points P̃ in objective space
is calculated by the formula (Deb 2001):

GD = 1

|P̃|
|P̃|∑
j=1

min
l=1,...,|P∗|

( k∑
i=1

||P̃ji − P∗
li ||

)
, (9)

Here we sum the Euclidean distances between the j th objective vector of P̃ and the
nearest objective vector of the Pareto front P∗. It is aimed to find approximating
points as close as possible to the Pareto front, therefore lower value of Generational
Distance means better quality of the approximation.

• Spread metric measures the distribution of the points in approximation. For a set
P̃ obtained by a classic EMO algorithm Spread is calculated by the formula (Deb
2001):

SP =
∑k

i=1 d
e
i + ∑|P̃|

j=1 |d j − d̂|∑k
i=1 d

e
i + |P̃|d̂ , (10)

where

d j = min
l=1,...,|P̃|, l = j

||P̃l − P̃j ||, (11)

d̂ = 1

|P̃|
|P̃|∑
j=1

d j , (12)

dei = ||P̃e
i − P∗e

i ||. (13)

Thus, d j is Euclidean distance between neighbouring objective vectors, d̂ is an
average of these distances, dei is a distance between the extreme objective vectors
P̃e
i and P∗e

i . In the case when the points of the approximated Pareto front are
well-distributed, the Spread value is close to 0.

• Hypervolume (HV) metric measures the volume of the dominated region made
by the obtained objective vectors approximating Pareto front and the given point
R (Zitzler and Thiele 1998). The larger hypervolume value means the better quality
of the Pareto front approximation and distribution.

These metrics have been developed for evaluation performance of classical EMO
algorithms. In this paper, we investigate preference-based EMO algorithms where the
DM’s preferences are expressed by reference points, therefore we must consider them
when evaluating performance of the algorithms. Hence, we introduce one new metric
and adapt the aforementioned metrics for evaluation of the preference-based EMO
algorithms.
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In the case of a preference-based EMO algorithm, the DM is interested only in the
objective vectors that dominate the achievable reference points, i.e. they get into the
region of the DM’s interest (see Fig. 3). Therefore, we propose a PR metric (14) for
evaluation the preference-based EMO algorithms according to percentage of solutions
that get into the region of the DM’s interest.

PR = |P̃r |
|P̃| × 100. (14)

Here P̃r is a set of solutions that get into the region of the DM’s interest, P̃ is a set of
all the solutions, obtained by the EMO algorithm. The metric evaluates performance
of the algorithm in sense of an ability to obtain the concentrated solutions satisfying
the DM’s preferences.

As it is mentioned before, evaluation of hypervolume metric is already based on a
given point. In this investigation for hypervolume metric evaluation, we consider the
reference point provided by the DM instead of the nadir point that is commonly used
for classical EMO algorithms.

Moreover, we have proposed to modify Spread metric (Filatovas et al. 2015),
because incorporation of dei distances in the metric [Formula (10)] can distort rep-
resentation of diversity of the objective vectors obtained. We propose to eliminate dei
distance, and to calculate the Spread metric by the following formula:

SPp =
∑|P̃|

j=1 |d j − d̂|
|P̃|d̂ . (15)

In classical EMO algorithms all the obtained solutions are considered when eval-
uating GD and Spread metrics. Here we propose to consider only solutions from the
region of the DM’s interest when evaluating GD (9) and Spread (15) metrics.

4 Investigation of the proposed memetic algorithm

In this section the performed computational experiments with the proposed memetic
algorithm R-NSGA-II with MOSASS as well as the obtained results are described.
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The comparative analysis with the original R-NSGA-II algorithm is carried out. The
performance of the algorithms is evaluated by metrics, described in Sect. 3.2.

A set of well-known test problems has been considered: two-objective problems
ZDT1–ZDT4, ZDT6, and three-objective problems DTLZ1–DTLZ7 (Deb et al. 2002).
It should be noted, that these benchmark problems has different complexity and char-
acteristics as convexity, concavity, discontinuity, non-uniformity. Moreover, some of
them have many local Pareto fronts. A definition of the local Pareto front is introduced
in Deb (1999).

Each experiment has been performed for 100 independent runs using different ini-
tial populations and average results have been evaluated. We selected a population
size of 100 individuals and 100 generations for the problems with two objectives, and
a population size of 150 individuals and 150 generations for the three-objective prob-
lems, as such population sizes are enough to sufficiently represent an approximation
of a region of the Pareto front. We select relative small number of generation in order
to find good enough approximation in reasonable computation time.

The value of the clustering parameter δ = 0.0001 was fixed as it ensures both
diversity and concentration of the obtained solutions (Siegmund et al. 2012). Several
trials has been performed for different combinations of parameters (EG, EL ): (1000,
100), (1000, 200), (1000, 400), (2000, 100), (2000, 200), (2000, 400). The value
EG defines the number of function evaluations after which local search MOSASS is
performed, and EL sets the number of function evaluations to be performed during
each local search.

Preference information provided by the DM that is expressed as a reference point is
required for the evaluated algorithms, therefore various reference points were selected.
The used reference points, the numbers of objectives and variables for each test prob-
lem considered are presented in Table 1. All the reference points are achievable—it
means that all objectives can be improved at the same time without having to impair
any of them.

Table 1 Test problems and
reference points used in the
evaluated algorithms

Problem Number of
objectives

Number of
variables

Reference
point

ZDT1 2 30 (0.50, 0.90)

ZDT2 2 30 (0.90, 0.60)

ZDT3 2 30 (0.35, 0.85)

ZDT4 2 10 (0.90, 0.60)

ZDT6 2 10 (0.90, 0.60)

DTLZ1 3 7 (0.10, 0.20, 0.40)

DTLZ2 3 12 (0.60, 0.90, 0.50)

DTLZ3 3 12 (0.60, 0.90, 0.50)

DTLZ4 3 12 (0.60, 0.90, 0.50)

DTLZ5 3 12 (0.60, 0.50, 0.95)

DTLZ6 3 12 (0.50, 0.80, 0.70)

DTLZ7 3 22 (0.10, 0.80, 2.70)
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Table 2 Values of PR metric

Problem R-NSGA-II R-NSGA-II with MOSASS

EG = 1000 EG = 2000

EL = 100 EL = 200 EL = 400 EL = 100 EL = 200 EL = 400

ZDT1 99.96 99.29 99.20 91.85 99.85 99.70 99.58

ZDT2 99.68 98.68 98.17 74.03 99.88 99.79 98.04

ZDT3 100.00 99.99 99.65 90.76 100.00 100.00 99.91

ZDT4 99.62 81.23 85.65 74.80 99.63 99.47 98.45

ZDT6 95.14 92.92 88.74 71.54 95.05 95.20 94.88

DTLZ1 0.00 25.00 16.67 22.88 29.17 24.54 18.33

DTLZ2 100.00 99.98 99.98 99.98 99.99 99.99 99.98

DTLZ3 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DTLZ4 99.67 90.92 93.01 94.96 99.93 99.99 84.84

DTLZ5 100.00 99.83 99.82 99.74 99.86 99.99 99.75

DTLZ6 95.89 83.46 87.04 80.86 88.65 90.76 93.24

DTLZ7 0.00 0.00 0.00 0.00 0.00 0.00 0.00

After the final population has been obtained, the number of the objective vectors
that get into the region of the DM’s interest is calculated and its percentage of the
whole final population, i.e. value of PR metric (14) is evaluated. The mean values
of PR for all performed runs with each test problem are presented in Table 2 for the
original R-NSGA-II algorithm and for each trial of the memetic R-NSGA-II with
MOSASS algorithm. The best average values of PR metric are presented in Italic and
Bold italic. The values obtained by the proposed R-NSGA-II with MOSSAS algorithm
which are better than obtained by original R-NSGA-II are marked in bold. One can
see that the majority of the final population solutions get into the region of the DM’s
interest for all the test problems except DTLZ1, DTLZ3, and DTLZ7. It means that
the fixed number of function evaluations is enough to find crowded set of solutions
when running the investigated algorithms. DTLZ1, DTLZ3, and DTLZ7 problems are
hard to approximate in limited number of function evaluations, therefore PR values
are low in these cases. However, in the case of DTLZ1 problem, the proposed R-
NSGA-II with MOSSAS algorithm manages to obtain some solutions in the region of
the DM’s interest unlike the original R-NSGA-II algorithm. For further performance
evaluation of the algorithms we will not consider the DTLZ1, DTLZ3, and DTLZ7
problems.

The mean values of Generational Distance (9), Spread (15) and Hypervolume met-
rics and their confidence intervals (95 % confidence level) for each test problem are
presented in Tables 3, 4 and 5, respectively. The best average values (lowest for Gen-
erational Distance and Spread, highest for Hypervolume) of the calculated metrics are
presented with italics. The values obtained by the proposed R-NSGA-II with MOSSAS
algorithm which are better than obtained by original R-NSGA-II are marked in bold.
Table 3 shows that the proposed R-NSGA-II with MOSSAS algorithm approximates
the Pareto front of two-objective problems ZDT2, ZDT3, ZDT4, ZDT6, and three-
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objective problems DTLZ2, DTLZ4 better. The proposed algorithm is superior in cases
of almost all combinations of parameters EG, EL for problems ZDT2, ZDT3, DTLZ2,
DTLZ4. Moreover, for problems ZDT2, ZDT3, ZDT6, DTLZ2, confidence intervals
are not overlapped comparing with the original R-NSGA-II algorithm. Although the
results obtained by the original algorithm are better in the case of ZDT1 and DTLZ5
problems, however for these problems the confidence intervals for some combinations
of parameters EG, EL are overlapping, hence the difference between the obtained
results is not essential.

The mean values of Spread metric (see Table 4), obtained by the proposed algorithm
are lower for all problems except of DTLZ5. It means that the non-dominated objective
vectors are more evenly distributed on the part of the Pareto front covered by the
region of the DM’s interest. For problem DTLZ5 the original algorithm has better
performance considering the Spread metric, however Spread values are small enough
in the investigated algorithms, hence sufficient distribution of the obtained objective
vectors is ensured in both cases.

HV metric estimates both precision of the Pareto front approximation and distri-
bution of the objective vectors. Reference points are selected as the points R for HV
estimation (see Table 1). Table 5 shows that in almost all cases the proposed algorithm
has better performance considering HV value, and higher EL value enables obtaining
a higher HV value.

5 Conclusions

The memetic preference-based evolutionary multi-objective algorithm has been pro-
posed in this paper. It is an extension of the R-NSGA-II algorithm where the local
search strategy based on single agent stochastic search MOSASS is incorporated.
The proposed memetic algorithm enables improving of quality of the Pareto front
approximation and obtaining more even distribution of the approximating objective
vectors.

The proposed memetic R-NSGA-II with MOSASS algorithm has been experimen-
tally compared with the original R-NSGA-II algorithm by solving the widely-used
benchmark test problems with the limited number of function evaluations. To evaluate
the preference-based EMO algorithms we have proposed a new PR metric and adapted
the well-known performance metrics—Generational Distance, Spread and Hypervol-
ume, where only solutions from the region of the DM’s interest are considered.

Experimental investigation has shown that, in most of the analysed cases, the pro-
posed algorithm approximates the Pareto front better than the original R-NSGA-II
algorithm by measuring the approximation quality using the Generational Distance.
The values of Spread metric has shown that the solutions obtained by the proposed
memetic algorithm are more evenly distributed. In the sense of Hypervolume metric,
that estimates both approximation quality and distribution, the proposed algorithm is
superior for all analysed test problems.

Acknowledgements This research is funded by a Grant (No. MIP-051/2014) from the Research Council
of Lithuania.

123



A preference-based multi-objective evolutionary algorithm… 877

References

Auger A, Bader J, Brockhoff D, Zitzler E (2009) Articulating user preferences in many-objective problems
by sampling the weighted hypervolume. In: Proceedings of the 11th annual conference on genetic and
evolutionary computation, ACM, pp 555–562

Caponio A, Neri F (2009) Integrating cross-dominance adaptation in multi-objective memetic algorithms.
Springer, Berlin

Deb K (1999) Multi-objective genetic algorithms: problem difficulties and construction of test problems.
Evolut Comput 7:205–230

Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Hoboken
Deb K, Kumar A (2007) Light beam search based multi-objective optimization using evolutionary algo-

rithms. In: 2007 IEEE congress on evolutionary computation (CEC), pp 2125–2132
Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm:

NSGA-II. IEEE Trans Evolut Comput 6(2):182–197
Deb K, Sundar J, Udaya Bhaskara Rao N, Chaudhuri S (2006) Reference point based multi-objective

optimization using evolutionary algorithms. Int J Comput Intell Res 2(3):273–286
Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems.

In: Proceedings of the world on congress on computational intelligence, pp 825–830
Filatovas E, Kurasova O, Sindhya K (2015) Synchronous R-NSGA-II: an extended preference-based evo-

lutionary algorithm for multi-objective optimization. Informatica 26(1):33–50
Goel T, Deb K (2002) Hybrid methods for multi-objective evolutionary algorithms. In: Proceedings of the

fourth Asia-Pacific conference on simulated evolution and learning (SEAL02), pp 188–192
Gong M, Liu F, Zhang W, Jiao L, Zhang Q (2011) Interactive MOEA/D for multi-objective decision

making. In: Proceedings of the 13th annual conference on genetic and evolutionary computation, ACM,
pp 721–728

Ishibuchi H, Murata T (1998) A multi-objective genetic local search algorithm and its application to flowshop
scheduling. IEEE Trans Syst Man Cybern Part C Appl Rev 28(3):392–403

Jain H, Deb K (2014) An evolutionary many-objective optimization algorithm using reference-point based
non-dominated sorting approach, part II: handling constraints and extending to an adaptive approach.
IEEE Trans Evolut Comput 18(4):602–622

Knowles JD, Corne DW (2000) Approximating the nondominated front using the Pareto archived evolution
strategy. Evolut Comput 8(2):149–172
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