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Abstract This paper presents a genericmodeling framework to simultaneously decide
about production quantities and maintenance operations for a capacitated resource
facing a dynamic demand for different types of products. As the resource needs to
be setup for each specific type of product, a lot-sizing problem occurs. In addition it
is assumed that production causes intensive wear and tear. For this reason frequent
maintenance activities need to be coordinated with the production operations in order
to efficiently use the capacitated resource. A single generic model is presented to
capture alternative forms of maintenance and different modes of interaction between
maintenance and setups. As the model is numerically intractable for standard branch
and bound algorithms, we solve it heuristically via a decomposition using a Fix-
and-Optimize approach. Numerical results show that the proposed solution method
produces high-quality results quickly. We further study the impact of simultaneous vs.
sequential decisions about production and maintenance in the case of intensive wear
and tear.

Keywords Lot-sizing · Wear and tear · Maintenance

1 Introduction

Production very often leads to wear and tear of resources such as tools or machine
components that need to be replaced routinely in order to maintain the operational
capability of the production system. It is quite commonwithin time-basedmaintenance
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approaches to schedule these maintenance activities periodically and in advance at an
aggregate time scale and to schedule setup and production operations for the remaining
time in between the maintenance activities. Many practitioners and academics have
for a long time claimed that a use-based or condition-based approach to maintenance
could be more efficient if maintenance itself is expensive and/or time-consuming. In
order to avoid unplanned disruptions of the production process, wear and tear models
are required to predict when preventive maintenance activities will be necessary.

In this paper we study the special case that some of these maintenance activi-
ties have to be performed quite frequently due to wear and tear of what we call
a “critical resource” that is used for production. In order to maintain this criti-
cal resource, the production process has to be stopped until it has been restored.
Such a situation could on the one hand be due to resources such as tools that
wear down quickly. However, the critical resource could on the other hand also
be a material held in a limited and closed material storage like, e.g., a tank that
needs discrete re-filling operations in order to resume production. Both possible
cases call for a tight coupling of the production process, the wear and tear process,
and the maintenance process in order to model short-term production and main-
tenance planning and scheduling. To this end we use a relatively simple model
of a wear and tear function that can also naturally model the dynamic depletion
of a material storage. This model serves as link between short-term lot-sizing and
scheduling on the one hand and predictive and use-based maintenance on the other
hand.

As we aim at a generic model, we consider different forms of maintenance as well
as different forms of interaction between maintenance and setup operations. The lot-
sizing part of our generic model can be interpreted as a hybrid between a General
Lotsizing and Scheduling Problem as proposed by Fleischmann and Meyr (1997) and
the Proportional Lotsizing and Scheduling Problem developed by Drexl and Haase
(1995). Based on this very detailed lotsizing modeling approach we can represent
and anticipate the state of the critical resource at the required level of detail and
accuracy.

The resulting mixed-integer linear program, however, can only be solved for
very small problem instances using standard solvers like CPLEX. For this rea-
son, we develop a heuristic decomposition approach based on the Fix-and-Optimize
heuristic presented in Helber and Sahling (2010), also known as the “Exchange”
approach proposed by Pochet and Wolsey (2006). In order to evaluate the per-
formance of this heuristic, we further present the results of an extensive numer-
ical study. In addition, we use our model to analyze the impact of simulta-
neous as opposed to sequential planning of production and maintenance opera-
tions.

The remainder of the paper is structured as follows: In Sect. 2 we discuss different
forms of maintenance and maintenance planning. In addition, we present different
approaches to deal with the interdependencies between production and maintenance
planning that have been proposed in the literature. In Sect. 3 we first introduce the
assumptions and notation and then develop the generic lot-sizing and maintenance
scheduling model including the formal wear and tear function. Section 4 is devoted
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to the description of the Fix-and-Optimize algorithm and Sect. 5 to the numerical
experiments. Conclusions and directions for future research are presented in Sect. 6.

2 Production and maintenance planning in an intensive wear and tear
situation

2.1 Forms and interactions of production and maintenance operations

In our short-term perspective, we assume that production of a set of different prod-
ucts facing a dynamic demand takes place on a single capacity-constrained resource,
e.g., a machine. In order to be able to produce a specific type of product, the
machine needs to be set up which takes a setup time and may result in a setup
cost. Production of a single unit of any product type requires a type-specific process-
ing time. We assume that as a result of these production operations, the stock of
wear-out of a critical resource required in the process like, e.g., a tool or a mate-
rial in a limited material storage decreases over time as in Fig. 1 for the case
of the continuous production of a single product type, see (Jacobs et al. 2009, p.
1267).

The state of this critical resource is always between a maximum and minimum
level. It can be increased through maintenance activities. The linear function depicted
in Fig. 1 is only an approximation if wear and tear also depend on factors other than
production time, for example production intensities or environmental conditions.

In order to lay both the conceptional and notational foundation for a generic model,
we now introduce a notation of the form (α, β, γ ) with α, β, γ ∈ {0, 1} to describe
different forms of maintenance and their interaction with setup operations.

If the minimum state of the critical resource has been reached, production has to
stop until maintenance has been performed. This stop of production can interact with
the setup state of the resource: During the maintenance activity, the setup state can be
either be preserved (α = 1) or lost (α = 0).

The maintenance activity itself can be partial (β = 1) so that after the maintenance
activity the new level of the critical resource can still be below the maximum state or
it can be complete (β = 0) in the sense that the maintenance activity always leads to
the maximum state of the critical resource.

maximum

state

minimum

wear and tear

production time

Fig. 1 Depletion of a critical and renewable resource
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Makroperioden Mikroperioden

Parallel Setup &
Maintenance

(γ = 0)
Serial Setup &
Maintenance

(γ = 1)
Complete

Maintenance
(β = 0)

Partial
Maintenance

(β = 1)

Loss of the Setup State
during Maintenance

(α = 0)

Preservation of the Setup State
during Maintenance

(α = 1)

Fig. 2 Possible combinations of problem aspects

Finally, setup and maintenance operations may have to be performed serially
(γ = 1), or it may be possible to perform these two types of operation simultane-
ously, i.e., in parallel, (γ = 0). These three problem dimensions lead to eight different
combinations of problem features as depicted in Fig. 2.

In the generic model presented in Sect. 3, we use these binary incidence parameters
α, β, and γ to activate those elements of the model that are required in the respective
case and to de-activate the others.

As we are dealing with intensive and short-term wear and tear, we have to model
the state of the critical resource at a detailed level so that we eventually have to decide
about both lot sizes and sequences on the one hand and to schedule the maintenance
activities on the other hand.

2.2 Review of the literature

The problem studied in this paper addresses both lot-sizing and scheduling and main-
tenance planning and scheduling. A rich body of literature addresses these two fields,
but usually in isolation from each other.

Several authors reviewed the lot-sizing literature, typically from a specific perspec-
tive, in particular with respect to heuristic solution approaches. Such reviews were
given by Bahl et al. (1987), Brahimi et al. (2006), Drexl and Kimms (1997), Jans
and Degraeve (2007), Karimi et al. (2003), Kuik et al. (1994), Maes and Wassenhove
(1988), Salomon et al. (1991), Staggemeier and Clark (2001), Wolsey (1995) and
recently Buschkuehl et al. (2010). Dynamic lot-sizing models are often classified as
either of the “big bucket” or the “small bucket” type. “Big” time bucket models are
based on longer time periods like weeks so that to each week several production lots
are assigned, giving rise to a further sequencing decision for the lots assigned to each
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of those periods. In the “small” time bucket models, however, the length of a period is
shorter (hours or a few days) and only one or at most two different product types are
assigned to a small time bucket. This modeling approach simultaneously addresses
the lot sizing and the lot scheduling problem in a short-term perspective. It is therefore
a natural starting point for our model development which requires a detailed repre-
sentation of the consumption of the critical resource over time. One of the two most
relevant models in our context is the Proportional Lotsizing and Scheduling Problem
(PLSP), see Drexl and Haase (1995). It is based on the assumption that in each small
time period, at most one setup can occur so that at most two different product types can
be produced during such a short period, one before and one after the setup. The total
length of each of the short periods, however, is exogenously given. By contrast, the so-
called General Lotsizing and Scheduling Problem by Fleischmann and Meyr (1997)
combines an exogenous and fixed time grid of “big” time buckets, to which dynamic
demands are assigned, with a second flexible time grid of “small” time periods. Only
one product type can be assigned to each of these small periods. The characteristic
feature of this model is that the size of the respective lots endogenously determines the
length of the small time periods. We combine elements from both models in Sect. 3
as we integrate lot-sizing and maintenance scheduling.

With respect to the maintenance of production systems that face an uncertain wear
and tear, many authors derive production policies, often using dynamic stochastic
programming and often considering constant demand rates in continuous time. They
determine when and how much to maintain, setup, produce etc. as the state of the
system evolves over time. In these models, the working life of the critical resource
is often modeled as a random variable. Examples of this type of work are found in
Boukas and Haurie (1990), Chelbi and Ait-Kadi (2004), Iravani and Duenyas (2002),
Kenné and Nkeungoue (2008), Liberopoulos and Caramanis (1994) and Yao et al.
(2005), Suliman and Jawad (2012), Zhang et al. (2014), Liu et al. (2015) to name but
a few. Other authors tackle the problem to incorporate cyclic maintenance operations
in discrete time models, e. g., Yalaoui et al. (2014).

Several other authors tackle deterministic sequencing and scheduling problems
for deterministic production systems, very often focussing on a single or at most
two successive production stages. Common approaches to deal with maintenance
are to assume that either machines are temporarily unavailable due to time-based
maintenance or that maintenance activities have to be scheduled together with the
production activities. The length of the production jobs (reflecting in our context the
lot size), however, is often assumed to be exogenously given. Examples of this type
of work are found in Allaoui et al. (2008), Chen (2006), Gharbi et al. (2007), Kubzin
and Strusevich (2006), Qi et al. (1999) and Yuan et al. (2008).

Another branch of the literature addresses sequencing and scheduling problems for
machines that are subject to random failures. Cassady and Kutanoglu (2005), e.g.,
assume on the one hand that the sequence of the jobs processed by a single machine
has to be determined. On the other hand, immediately prior to each of these jobs,
preventive maintenance (PM) can be performed. This PM reduces the probability that
a random machine failure during the processing time of this job requires a repair or
corrective maintenance. As these failures are random events, the job completion times
are random as well. A possible objective is to minimize the expected total completion

123



494 A. Wolter, S. Helber

time or tardiness. Other papers in this field are Cassady and Kutanoglu (2003), Guo
et al. (2007), Lee and Lin (2001), and Sortrakul et al. (2005). As in the previously
mentioned deterministic models, lot-sizing problems do not occur.

Several works consider the coordination of production and maintenance activities
for the special case of process industries in which liquids or other continuous goods
like dry chemicals are treated, see, e.g., Ashayeri et al. (1996), Dedopoulos and Shah
(1995), Goel et al. (2003), Pistikopoulos et al. (2001), Sanmarti et al. (1997), Suryadi
and Papageorgiou (2004) and Vassiliadis et al. (2000). Often “state-task-networks”
are used to represent production processes within discrete-time mixed-integer linear
programming models.

One of the papers that are most closely related to the problem treated in this paper
has been presented by Aghezzaf et al. (2007) who study different versions of dynamic
lot-sizing models in which the objective function is augmented by a term dealing with
the cost of preventive and corrective maintenance based on a probabilistic failure rate
function for the case of cyclic preventive maintenance activities. The other closely
related paper was presented by Jacobs et al. (2009). They develop an integrated model
dealing with multiple machines, products and periods and determine both production
quantities and maintenance activities via a deterministic wear and tear function that
is conceptionally similar to the one used in this paper. They minimize the total cost
of production and maintenance using a mixed-integer linear model. However, like
many other authors, they do not consider setup costs or times and hence any lot-sizing
problem.

Lu et al. (2013) consider a big-bucket capacitated lot sizing problem (CLSP) with
maintenance operations, but without setup times, so that the interaction of the times
required for setups andmaintenance cannot bemodeled. In Ramezanian et al. (2013), a
discrete time lot sizing andmaintenance schedulingmodel is presentedwhich assumes
that maintenance tasks are explicitly given, i. e., a wear and tear function like the one
presented in Fig. 1 is not considered. Fitouhi and Nourelfath (2012) propose a lot
sizing model and present a solution method for a case with non-cyclical maintenance
operations in which the expected cost and capacity reduction due to random repairs is
considered.

Based on the discussion of the literature we are not aware of any paper dealing with
a generic and integrated lot-sizing and maintenance scheduling model using a wear
and tear function. We hence present such a model in the next section.

3 Model formulation

3.1 Assumptions and notation

In our generic model, both setup and production operations with specific production
quantities (lot sizes) as well as various kinds of maintenance activities are considered
over multiple products and periods. In order to integrate maintenance planning, it is
necessary to track the state of the critical resource on a lot-for-lot basis which requires
the knowledge of the production sequences. For this reason, it appears to be natural to
work with a fine and flexible time grid to integrate lot-sizing and scheduling. To fur-
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Fig. 3 First production
operation, setup operation and
second production operation
within a single microperiod tsk

Ct

tpi · Q1
it tpk · Q2

kt

ther integrate maintenance, a combination of the proportional lotsizing and scheduling
problem (PLSP) by Drexl and Haase (1995) and the general lotsizing and schedul-
ing oroblem (GLSP) by Fleischmann and Meyr (1997) is used, combining exogenous
macroperiods with given length and demand with endogenous microperiods with flex-
ible length. In a PLSP, the production quantity of product k in a microperiod t is given
either by the decision variable Q1

kt if it uses a setup state carried over from a previous
period t − 1 or by the decision variable Q2

kt if it follows a setup operation in this
microperiod, see Fig. 3. In a GLSP, the length of the microperiod is endogenous.

The following general set of assumptions holds for all variants of the genericmodel:

• Different product types k = 1, . . . , K are produced.
• The planning horizon is divided into macroperiods τ = 1, . . . , P . Each macrope-
riod τ consists of K consecutive microperiods. Hence, there are t = 1, . . . , T =
P · K microperiods. Denote with T M = {K , 2K , . . . , P · K } the set of the last
microperiods assigned to the macroperiods and with T Pτ the set of microperiods
within macroperiod τ .

• The demand dkt which has to be satisfied is given for each product k and each last
microperiod t ∈ T M of the macroperiods.

• The production of the K products takes place on a machine with limited exogenous
capacity cτ per macroperiod τ . The capacity Ct in each microperiod and hence the
length of the microperiod t is determined endogenously.

• The unit processing time of product k is tpk .
• Setting up the machine for product k causes a setup cost csk per setup and takes a
setup time tsk .

• Atmost one setup is allowed in eachmicroperiod. The setup state can be carried over
into the next microperiod. Hence, at most two different products can be produced
in each microperiod.

• The inventory of product k at the end of microperiod t is given by Ikt .

Note our assumption that setup times are not sequence-dependent. It is a technical
assumption to avoid an extremely large number of binary setup variables leading to
an extremely challenging lot sizing problem, even without considering maintenance.
With respect to wear and tear as well as maintenance of the critical resource, several
modeling assumptions hold for every possible maintenance case from Sect. 2.1:

• The state of the critical resource is at any moment in time between the minimum
state smin and the maximum state smax.

• It is reduced by ak units for each produced unit of product k.
• Maintenance activities can be performed to increase the state of the resource again
if it is below the maximum state smax.
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Fig. 4 State variables for case
α = 1, β = 0, γ = 1

S4
t−1

smax

S

S4
t

S1
t

tsk
Ct

S2
t

smin

S3
t

tpi · Q1
it tpk · Q2

kt

• If the state of the resource reaches the minimum state smin, production stops until
a maintenance activity increased the state again.

In order to track the state of the critical resource over time, four different variables
are used and related to different moments in time within in a microperiod t . The
variable S1t gives the state of the critical resource immediately before the start of
the production of quantity Q1

kt while variable S2t gives the state after the end of the
production of quantity Q1

kt . Likewise, the variable S3t gives the state immediately
before the production of quantity Q2

kt and S4t the state at the end of microperiod t .
The example in Fig. 4 shows the use of these variables for the special case of setup
state preservation (α = 1), complete maintenance (β = 0), and serial maintenance
and setup operations (γ = 1).

The first and general part of the notation used in the generic model is presented in
Table 1. We now further present the specific assumptions and notational elements (see
Table 2) that apply to the specific cases maintenance depicted in Fig. 2.

If a maintenance activity preserves the setup state of the machine (α = 1), at most
two maintenance activities are possible in each microperiod t , one at the beginning of
the microperiod and one before the setup in the microperiod, as shown in Fig. 4. How-
ever, if the setup state is lost during maintenance (α = 0), at most one maintenance
operation is possible in each microperiod t , right before the setup in this microperiod,
which implies S4t−1 = S1t in this case, see Fig. 5 as opposed to Fig. 4.

For the case of partial maintenance (β = 1), the following assumptions hold:

• The state of the critical resource is lifted by integer multiples of the state increase
pm for a single discrete unit of maintenance to a state below or up to smax. The unit
state increase pm is assumed to be large enough to avoid too short maintenance
operations.

• The integer variablesU 1
t andU 2

t give the scheduled number of partial maintenance
units pm prior to the production of the first and second quantities Q1

kt and Q2
kt in

this period, respectively.
• Each unit of partial maintenance requires tm time units of the machine capacity
and causes a partial maintenance unit costs cm.

Figure 6 shows the time structure of amicroperiod in the case of partialmaintenance.
For the case of complete maintenance (β = 0), the following assumptions apply:

123



Simultaneous production and maintenance planning... 497

Table 1 General notation

Indices and sets

i, k ∈ K Set of products, K = {1, . . . , K }
t ∈ T Set of microperiods, T = {1, . . . , T = P · K }
τ ∈ P Set of macroperiods, P = {1, . . . , P}
t ∈ T M Subset of the K -th microperiods, T M = {K , 2 · K , . . . , T }
t ∈ T Pτ Microperiods of macroperiod τ , T Pτ = {K · (τ − 1) + 1, . . . , K · τ }
Parameters

cτ Available capacity in macroperiod τ

cik Inventory cost per macroperiod for storing one unit of product k

csk Setup cost for product k

cek Penalty cost for external supply of one unit of product k

dkt Demand for product k in microperiod t

Ik0 Initial inventory of product k

tpk Unit production time of product k

tsk Setup time for product k

ak State decrease of the critical resource per produced unit of product k

s0 Initial state of the critical resource

smin, smax Minimum/maximum state of the critical resource

Binary incidence parameters

α =
{
1, if setup state is preserved during maintenance

0, if setup state is lost during maintenance

β =
{
1, if partial maintenance is possible

0, if only complete maintenance is possible

γ =
{
1, if only serial setup and maintenance operations are possible

0, if parallel setup and maintenance operations are possible

Binary variables

δkt =
{
1, if setup operation is scheduled for product k in microperiod t

0, otherwise

ωkt =
{
1, if the machine is setup for product k at the end of microperiod t

0, otherwise

Variables

Ct Used capacity in microperiod t

Ikt Inventory of product k at the end of microperiod t

Q1
kt , Q

2
kt First/second production quantity of product k in microperiod t

S1t , S
2
t Resource state before/after production of quantity Q1

kt in microperiod t

S3t , S
4
t Resource state before/after production of quantity Q2

kt in microperiod t

Xkt Amount of external supply of product k in microperiod t

Z Objective function value
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Table 2 Maintenance-specific notation

Parameters

cm Cost of one unit of partial maintenance

pm State increase due to one unit of partial maintenance

tm Time required for one unit of partial maintenance

cv Cost of one complete maintenance operation

tv Time required for one complete maintenance operation

Continuous variables

SI 1t , SI 2t State increase due to a complete maintenance activity prior to production
of lots Q1

kt and Q2
kt , respectively

CBt Capacity bonus due to simultaneous setup and maintenance operations in
microperiod t

Integer variables

U1
t ,U2

t Units of partial maintenance prior to production of lots Q1
kt and Q2

kt ,
respectively

Binary variables

μ1
t , μ

2
t =

⎧⎪⎨
⎪⎩
1, if a complete maintenance is performed immediately prior to

production of lotsQ1
kt and Q2

kt , respectively

0, otherwise

Fig. 5 State variables for case
α = 0, β = 0, γ = 1

S4
t−1 = S1

t

smax

S

S4
t

tsk
Ct

S2
t

smin

S3
t

tpi · Q1
it tpk · Q2

kt

Fig. 6 State variables for case
α = 1, β = 1, γ = 1

S4
t−1

smax

S

S4
t

S1
t

tsk
Ct

S2
t

smin

S3
t

tpi · Q1
it tpk · Q2

kt
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Fig. 7 State variables for case
α = 1, β = 0, γ = 0

• A complete maintenance activity always results in the maximal state smax of the
resource.

• One complete maintenance activity causes costs cv and requires time tv time units,
independent of the state prior to the maintenance operation.

• Binary variables μ1
t and μ2

t indicate whether a complete maintenance operation is
scheduled prior to the production of the first and second production quantities Q1

kt
and Q2

kt in this period, respectively.
• The variables SI 1t and SI 2t give the required state increase of the critical resource
to reach the maximal state smax for the first and second maintenance operation in
the period, respectively.

If maintenance and setup operations can be performed in parallel (γ = 0), the
continuous variable CBt gives the capacity bonus due to performing setup and main-
tenance operations in parallel, which is zero if maintenance and setup have to be
performed serially (γ = 1).

Note that both a complete and a partial maintenance can only be scheduled as a
first operation preceding Q1

kt in microperiod t if the setup state is preserved during
maintenance, i.e., case α = 1. In Fig. 4, the time structure of a microperiod in the case
of serial and complete maintenance is shown. Figure 7 shows the time structure of a
microperiod in the case of parallel and complete maintenance.

3.2 Description of the model

With the above mentioned notation, the General Lotsizing and Maintenance Schedul-
ing Problem (GLMSP) is defined. It is a generic model as specific parts are only
(de-)activated for specific values of the incidence parameters α, β and γ .

The objective function (1) minimizes the total costs:

min z =
∑
k∈K

∑
t∈T M

cik · Ikt +
∑
k∈K

∑
t∈T

(
csk · δkt + cek · Xkt

)

+
∑
t∈T

(
β · cm · (α ·U 1

t +U 2
t ) + (1 − β) · cv · (α · μ1

t + μ2
t )

)
(1)
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The total costs consist of the inventory costs at the end of each macroperiod, the
setup costs and the (penalty) cost of planned external supply Xkt . We finally add the
respective costs of partial or complete maintenance.

Equation (2) are the inventory balance constraints. Restrictions (3) and (4) are the
production and rough capacity constraints per microperiod. Restrictions (5) are the
setup constraints and restrictions (6) are the setup carry-over constraints.

Ik,t−1 + Q1
kt + Q2

kt − Ikt + Xkt = dkt · 1{∀t∈T M } ∀k ∈ K ,∀t ∈ T (2)

Q1
kt ≤ cτ

tpk
· ωk,t−1 ∀k ∈ K ,∀τ ∈ P,∀t ∈ T Pτ (3)

Q2
kt ≤ cτ

tpk
· ωkt ∀k ∈ K ,∀τ ∈ P,∀t ∈ T Pτ (4)∑

k∈K
ωkt ≤ 1 ∀t ∈ T (5)

δkt ≥ ωkt − ωk,t−1 ∀k ∈ K ,∀t ∈ T (6)

The indicator function1{∀t∈T M } in the inventory balance Eq. (2) is used as demand
is only assigned to the last microperiod within each macroperiod. In each of the
microperiods, we permit an external supply Xkt , so that formally any problem instance
is capacity-feasible. We use prohibitively high (penalty) cost parameters cek on exter-
nal supply to eventually price out any external supply if possible in the implementation
of our decomposition algorithm. Inequalities (3) and (4) ensure the resource is set up
for product k in order to produce product k. Restrictions (5) state that the resource can
be set up for at most one product at the end of microperiod t . Restrictions (6) model
the carry-over of the setup state into the next microperiod. The following restrictions
(7) and (8) are the capacity constraints with variables Ct and parameters cτ expressed
in time units.

∑
k∈K

(tpk · (Q1
kt + Q2

kt ) + tsk · δkt ) + β · tm · (α ·U 1
t +U 2

t )

+ (1 − β) · tv · (α · μ1
t + μ2

t ) = Ct + (1 − γ ) · CBt ∀t ∈ T (7)∑
t∈T Pτ

Ct ≤ cτ ∀τ ∈ P (8)

The constraints (7) determine the required capacity Ct in each microperiod t and
hence implicitly its length. The capacity constraints (8) make sure that the time needed
for production, setup and maintenance in a microperiod t belonging to a macroperiod
τ does not exceed the available capacity cτ of that macroperiod τ . The capacity
consumption due to partial (β = 1) or complete maintenance (β = 0), a potential
loss of the setup state (α = 0) and a capacity bonus CBt in case of parallel setup and
maintenance operations (γ = 0) are reflected in constraints (7).
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The next restrictions (9)–(14) track the state of the critical resource.

S4t−1 + α · (β · pm ·U 1
t + (1 − β) · SI 1t ) = S1t ∀t ∈ T (9)

S1t −
∑
k∈K

ak · Q1
kt = S2t ∀t ∈ T (10)

S2t + β · pm ·U 2
t + (1 − β) · SI 2t = S3t ∀t ∈ T (11)

S3t −
∑
k∈K

ak · Q2
kt = S4t ∀t ∈ T (12)

S1t , S
2
t , S

3
t , S

4
t ≤ smax ∀t ∈ T (13)

smin ≤ S1t , S
2
t , S

3
t , S

4
t ∀t ∈ T (14)

Restrictions (9) to (12) connect the state variables S1t to S
4
t and account for bothwear

and maintenance. In restrictions (9), the state increase due to maintenance operations
at the beginning of microperiods is considered. The state decrease prior to a setup
operation in a microperiod is accounted for in restrictions (10). In a similar way
restrictions (11) and (12) model the state increase or decrease due to maintenance or
production adjacent to the setup process of microperiod t .

Restrictions (13) and (14) make sure that the state of the critical resource is always
in the interval [smin, smax].

The following restrictions (15)–(18) are only activated in the case of complete
maintenance (β = 0).

S1t ≥ smax · μ1
t ∀t ∈ T , α = 1, β = 0 (15)

SI 1t ≤ smax · μ1
t ∀t ∈ T , α = 1, β = 0 (16)

S3t ≥ smax · μ2
t ∀t ∈ T , β = 0 (17)

SI 2t ≤ smax · μ2
t ∀t ∈ T , β = 0 (18)

Restrictions (15) and (16) make sure that the state of the resource is equal to smax

after a maintenance activity at the beginning of microperiod t . Likewise, restrictions
(17) and (18) guarantee that the state of the resource equals smax after the maintenance
activity before or parallel to the setup operation. A further set of restrictions (19)–(20)
is used to determine the capacity bonus CBt for the case of parallel maintenance
(γ = 0) to determine the overlap of maintenance and setup operations, see restriction
(7).

CBt ≤
∑
k∈K

tsk · δkt ∀t ∈ T , γ = 0 (19)

CBt ≤ β · tm ·U 2
t + (1 − β) · tv · μ2

t ∀t ∈ T , γ = 0 (20)

In the capacity constraint (7), the capacity consumption for setup as well as main-
tenance operations is considered. If these operations can be performed in parallel, the
capacity bonus CBt cannot exceed the minimum of the time required for these two
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operations, see (19) and (20). Note that a possible maintenance operation prior to a
setup operation during that microperiod cannot result in a capacity bonus as there
cannot be a parallel setup process.

Restrictions (21) are only required if a maintenance operation leads to a loss of
the setup state (α = 0) and ensure that a new setup has to be carried out in order to
continue production.

∑
k∈K

δkt + 1 ≥ β · pm ·U 2
t

smax + (1 − β) · μ2
t +

∑
k∈K

ωkt ∀t ∈ T , α = 0 (21)

Note that it is not possible to have a a maintenance operation prior to a setup
operation during that microperiod if the setup state is lost (α = 0) duringmaintenance.

Constraints (22)–(27) give the starting values for the state of the resource, the
inventory and the setup state of the resource and define the domains of the different
variables.

s0 = smax (22)

Ik0 = 0 ∀k ∈ K (23)

ωk0 = 0 ∀k ∈ K (24)

Ct ,CBt , Ikt , Q
1
kt , Q

2
kt , S

1
t , S

2
t , S

3
t , S

4
t , SI

1
t , SI 2t , Xkt ≥ 0 ∀k ∈ K ,∀t ∈ T (25)

U 1
t ,U 2

t ∈ N0 ∀t ∈ T (26)

δkt , ωkt , μ
1
t , μ

2
t ∈ {0, 1} ∀k ∈ K ,∀t ∈ T (27)

Equation (22) initialize the state of the resource at the beginning of the first period
to smax. Equation (23) set the inventory level at the beginning of the planning hori-
zon to zero. Eq. (24) prohibit an initial setup state. Restrictions (25)–(27) are the
nonnegativity, integer and binary constraints of the model.

It should be noted that a more compact and mathematically equivalent formula-
tion of this model is possible. We chose the presented version to serve the ease of
presentation.

4 Adapted fix-and-optimize heuristic

Standard solvers for mixed-integer programs (MIPs) like CPLEX can only solve very
small instances of the problem presented in the previous section due to its combi-
natorial structure. To solve large problem instances, we developed a decomposition
heuristic of the Fix-and-Optimize type as proposed by Helber and Sahling (2010).
In this approach, the original problem is decomposed into interrelated subproblems
that are solved iteratively. In each such subproblem, all real-valued decision vari-
ables, but only a (usually small) subset of the binary decision variables of the original
problem are endogenously optimized while the other binary variables of the origi-
nal problem are assigned a fixed value and hence treated as an exogenous parameter
within the subproblem. As this fixation results in a limited number of the binary vari-
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Table 3 Additional notation for each subproblem GPLSM-Sub

Sets

K T Set of all product-period combinations (k,t)

Subsets

K T
f i x

δ Subset of product-period combinations (k,t), whose binary setup operation variables
δkt are held fixed

K T
opt

δ Subset of product-period combinations (k,t), whose binary setup operation variables
δkt are being optimized

K T
f i x

ω Subset of product-period combinations (k,t), whose binary setup state variables ωkt
are held fixed

K T
opt

ω Subset of product-period combinations (k,t), whose binary setup state variables ωkt
are being optimized

T
f i x

μ Subset of all periods t , whose binary complete maintenance variables μ1
t and μ2

t are
held fixed

T
opt

μ Subset of all products t , whose binary complete maintenance variables μ1
t and μ2

t are
being optimized

Parameters

δkt Fixed value of the binary setup variable δkt

ωkt Fixed value of the binary setup state variable ωkt

μ1
t Fixed value of the binary complete maintenance variable μ1

t

μ2
t Fixed value of the binary complete maintenance variable μ2

t

ables, it is often possible to solve each subproblem to (sub)optimality in moderate
time using any standard solver for MIPs. Most of the original binary variables that
are optimized in one subproblem are fixed in the following subproblem. For this rea-
son, the decomposition algorithm sequentially explores different areas of the solution
space.

For the Fix-and-Optimize decomposition algorithm, a set K T of product-period
combinations is firstly defined, i.e.,K T = {1, . . . , K }×{1, . . . , T }. To identify those
setup operation and setup state variables δkt and ωkt of the original problem, that are
either fixed or optimized in the current subproblem, the following disjunctive subsets
K T

f i x
δ ⊆ K T , K T

opt
δ ⊆ K T , K T

f i x
ω ⊆ K T and K T

opt
ω ⊆ K T are

defined.
As explained in Sect. 3, see also Table 1, the binary variables μ1

t and μ2
t are only

required in the case of complete maintenance to define the precise timing of main-
tenance operations within each period. For this reason, we also introduce disjunctive
subsetsT f i x

μ ⊆ T andT opt
μ ⊆ T to determine which of these variables are fixed or

optimized within each subproblem. Using the additional notation in Table 3, we can
state the subproblem GLMSP-Sub as (1)–(27) extended by the following additional
constraints:
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δkt = δkt ∀(k, t) ∈ K T
f i x

δ (28)

ωkt = ωkt ∀(k, t) ∈ K T f i x
ω (29)

μ1
t = μ1

t ∀t ∈ T f i x
μ , α = 1, β = 0 (30)

μ2
t = μ2

t ∀t ∈ T f i x
μ , β = 0 (31)

The additional constraints (28)–(31) limit the optimization of the binary setup vari-
ables δkt to the subsetK T

opt
δ = K T \K T

f i x
δ , of the binary setup state variables

ωkt to the subsetK T
opt

ω = K T \K T
f i x

ω , and of the binary complete maintenance
variables to the subset T opt

μ = T \T f i x
μ .

We start our iterative decomposition algorithmwith a trivial solution.As the number
of microperiods per macroperiod equals the number of products, we initially schedule
a setup operation for product 1 in microperiod 1 (δ1,1 = 1), for product 2 in micrope-
riod 2 (δ2,2 = 1) etc. In the first microperiod of the second macroperiod, we again
schedule a setup operation for product 1 and so on. This way the setup operation and
setup state variables are assigned initial variables. In the case of complete mainte-
nance (β = 0), we furthermore need initial values of the binary variables μ1

t for the
maintenance activities at the beginning of each microperiod t as well as the binary
variables μ2

t for the maintenance activities before and during setup, respectively. If
the entire setup pattern is assigned the initial values just mentioned, we can initially
solve the augmented problem GLMSP-Sub (1)–(31) by fixing all setup variables, i.e.,
setting K T

f i x
δ = K T

f i x
ω = K T and optimizing over all real-valued as well as

all binary maintenance variables, i.e., setting T
opt

μ = T . For a given setup pattern,
the latter optimization can be performed quickly.

In the Fix-and-Optimize algorithm, we solve a sequence of subproblems (1)–(31)
which only differ with respect to the set of currently fixed binary variables of the
original problem. Those variables are set to the values that were either determined or
optimized in the previous subproblem or already fixed in the last subproblemwhich led
to an improvement of the solution. For a detailed description of the Fix-and-Optimize
heuristic and its decomposition strategies see Sahling (2010) as well as Helber and
Sahling (2010).

In our implementation, we start with a single round of a period-oriented decom-
position which is followed by a single round or a product-oriented decomposition. In
the period-oriented decomposition all binary setup operation, setup state and mainte-
nance variables δkt , ωkt , μ1

t and μ2
t optimized within a time-window of κ consecutive

microperiods. The remaining binary variables outside this time-window are fixed to
the values of the last subproblem that improved the incumbent solution. Beginning in
the first microperiod, this time-window is shifted by λ microperiods into the future to
create the next subproblem until the end of the planning horizon is reached. We then
perform a product-oriented decomposition where pairs of two products are treated
within a subproblem. The binary setup operation variables δkt , setup state variables
ωkt and maintenance variablesμ1

t andμ2
t are optimized over all microperiods ∀t ∈ T

for those two products of the current subproblem. The binary variables of all other
products are fixed to the values of the incumbent solution. Beginning with the pair
of products 1 and 2 and continuing with the pair of products 1 and 3 etc., the pair of
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products is switched successively until every possible combination of two products
was tried once. Whenever a subproblem leads to a solution with lower cost than the
current incumbent solution, it becomes the new incumbent solution. Extensive numer-
ical pre-tests showed that this simple algorithmic design combines a good relationship
between solution quality and computer runtime.

5 Numerical experiments

5.1 Purpose and outline of the numerical experiments

In our numerical experiments, we want to address two different questions. The first
question is related to the numerical tractability of the model developed in Sect. 3. We
ask for the computational effort as well as the solution quality if either a standard
branch&bound algorithm for mixed-integer linear programs like CPLEX or the spe-
cialized Fix-and-optimize heuristic from Sect. 4 is used to solve themodel. The second
question is more management-related and asks for the impact of simultaneously vs.
sequentially scheduling setup, production, and maintenance operations. The aim is to
identify those conditions which call for a simultaneous approach or suggest a possibly
less sophisticated sequential approach.

5.2 Test instances, computational environment, and solution metrics

For the numerical investigation we define two problem classes A and B differing in the
number K of products and T of periods. Generally speaking, the instances of problem
class A are small while those of B are substantially larger, see Table 4. For each of
the eight possible combinations of the maintenance cases (α/β/γ ) from Fig. 2 and
each of the two problem classes numerous (artificial) test instances (TI) are defined
by systematically varying different parameters of the model. Table 5 gives a selection
of the different parameter values used the two problem classes. A document with the
complete description the data set leading to a total of 1152 test instances can be found
at http://www.prod.uni-hannover.de/GLMSP-testinstances.

The model formulation presented in Sect. 3 and the Fix-and-optimize heuristic in
Sect. 4 were implemented in GAMS 23.7.3. We used CPLEX 12.3 to solve the models
and to determine reference values. All computations were performed at the parallel
cluster systemof LeibnizUniversität Hannover’s IT Services. This is a highly powerful
and flexible scientific computing system which allows the user to specify the number
of processor cores or threads as well as the RAM used to solve a MIP instance, see
http://www.rrzn.uni-hannover.de/scientific_computing_doku.html?&L=1 for details.
Due to the high number of processors operating in parallel, we were able to perform

Table 4 Problem classes
K T #TI

Class A 5 25 576

Class B 20 200 576
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Table 5 Selection of parameters for the test instances

Problem class PC ∈ {A, B}
Time (macroperiods) between orders T BO = 2

Time (macroperiods) between successive maintenance activities T BM ∈ {0.5, 2}
Overall resource utilization Util = 0.9

Setup time as a fraction of the average production time in a macroperiod tsrel = 0.15

Maintenance time as a fraction of the average setup time in a macroperiod tmrel ∈ {0.5, 1, 2}
State increase due to one unit of partial maintenance pm ∈ {1, 5, 20}
Maintenance costs as a fraction of the average setup and inventory costs in
a macroperiod

cmrel ∈ {0.5, 1, 2}

Inventory costs per macroperiod for one unit cik = 1

Production time for one unit of product k tpk = 1

Minimum state of the resource smin = 0

Maximum state of the resource smax = 100

Penalty cost for external supply of one unit of product k ce = 1000

an extremely time-consuming analysis of our large test bed, both for applying the
Fix-and-Optimize heuristic and for computing CPLEX reference values directly. For
the Fix-and-optimize heuristic we used two parallel threads with 2.93GHz, 4GB of
RAM and a time limit of 15 s per subproblem. For each problem instance, this led to
a solution with an objective function value denoted as Z F&O .

To compute a reference value, we furthermore solved for each of the 1152 test
instances the model in Sect. 3 directly. As this turned out to be extremely time-
consuming, we provided to CPLEX the solution from the Fix-and-optimize heuristic
as a starting solution to speed up the branch and bound process. CPLEX was then
given 1h of CPU time for each of the test instances of Class A and 10h for each of
the test instances of Class B. Here we used four parallel threads with 2.93GHz and
32GB of RAM in an attempt to find reference solutions that are better than those
found by the Fix-and-optimize heuristic. The objective function values of these ref-
erence values were denoted as ZCPLEX. Note that Z F&O ≥ ZCPLEX holds and that
both Z F&O and ZCPLEX are upper bounds on the optimal objective function value.
When CPLEX terminated its attempt to determine reference values, it also reported
the final lower bound on the objective function value, denoted here as ZLB. Note that
when for a problem instance ZCPLEX = ZLB holds, then CPLEX was able to solve the
problem instance to proven optimality. This was possible for 43.92% of the instances
of problem class A, but none of problem class B.

As an upper bound on the relative deviation from the optimal objective function
value we determined the following gaps:

GAPF&O = Z F&O − ZLB

ZLB
(32)

GAPCPLEX = ZCPLEX − ZLB

ZLB
(33)
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We furthermore asked towhich extent the initial solution from the Fix-and-optimize
heuristic could actually be improved in the attempt to compute a reference value. To
this end, the relative deviation of the objective function value of the heuristic from the
objective function value of CPLEX is determined as follows:

DevCpx = Z F&O − ZCPLEX

ZCPLEX
(34)

In both approaches explained so far, setup, production, and maintenance operations
were treated simultaneously. In order to analyze the benefits of such a simultane-
ous approach, we compared it to two different (non-simultaneous) approaches which
reflect to some extent the usual industrial practice to separate production and main-
tenance planning. The common feature of both non-simultaneous approaches is that
in a first step decisions about production operations are made under the (preliminary)
assumption that wear and tear does not occur (i.e., by setting ak = 0,∀k). In this set-
ting, maintenance operations are not necessary and hence not included in the schedule.
We use the Fix-and-optimize heuristic in this first step to solve the model. This leads
to a setup pattern and time-phased production and inventory quantities. In the second
step, we eliminate this preliminary assumption (ak = 0,∀k) again and determine a
schedule for the maintenance activities that is compatible with those decisions that are
adopted from the first step. For this second step, we used CPLEX right away for the
remaining problem. CPLEX was given 1h for each instance of problem class A and
10h for each instance of class B for this second step.

In the first alternative approach (denoted as the “sequential approach”), we adopt in
the second step only the setup pattern from the first step, i.e., the values of the binary
variables δkt and ωkt . Given this setup pattern, we then determine simultaneously
values for all themaintenance-related variables as well as (new and compatible) values
for the production, inventory and external supply quantities. This approach can still
be interpreted as a partial coordination of production and maintenance decisions.

For the second alternative approach (denoted as the “independent approach”), we
adopt in the second step both the setup pattern and the inventory quantities Ikt from
the first step. We furthermore try to retain the production quantities from the first step
to the extent that this is possible, while at the same time including in the schedule
compatible maintenance operations to the extent that this is necessary. However, due
to the capacity restrictions, maintenance operations cannot simply be “added” for the
given production quantities Q1

kt and Q2
kt from step 1 unless there is substantial slack

capacity. For this reason, we compute from the results of the first step a parameter
Q f ix,S1

kt as follows:

Q f ix,S1
kt := Q1

kt + Q2
kt + Xkt ∀k ∈ K ,∀t ∈ T (35)

In the second step a new restriction is added to the model, which allows to re-
compute Q1

kt and Q2
kt and substitute production quantities with (additional) external

supply Xkt :
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Q f ix
kt = Q1

kt + Q2
kt + Xkt ∀k ∈ K ,∀t ∈ T (36)

Thiswaywecan ensure that the end-of-period inventory levels are not changed in the
solution related to the second step. In the solution to the second step, the re-computed
production quantities Q1

kt and Q2
kt are again compatible with the maintenance deci-

sions.
Both the sequential approach (SA) and the independent approach (IA) tend to lead

to an increase of the external supply. As it is punished in the objective function, the
objective function values of the corresponding schedules tend to increase. We denote
with ZSA and ZIA the respective objective function values. The relative deviation from
the best available solution to a problem instance is computed as follows:

DevCpxSA = ZSA − ZCPLEX

ZCPLEX
(37)

DevCpxIA = ZIA − ZCPLEX

ZCPLEX
(38)

It shows to which extent costs increase do to the increased external supply which
becomes necessary if setup, production, and maintenance operations are not coordi-
nated simultaneously.

5.3 Numerical results

First we compare the solutions found by the heuristic with the solutions found by
CPLEX. In Table 6 the numerical results are presented for Class A and in Table 7 for
Class B. The averages of the gaps for the Fix-and-optimize heuristic (32) and CPLEX
(33) are reported in the columns “AvgGAP”, together with the average computation
times. The average of the improvement (34) by CPLEX over the Fix-and-optimize
solution is reported in column “AvgDevCpx”. In a similar manner we report for the
sequential and the independent approach the average of the relative cost increase (37)
and (38) aswell as the average fraction of the demand that has to be supplied externally.

The results indicate that the specialized Fix-and-optimize heuristic can solve both
problem classes, irrespective of the problem aspects from Table 5. Even if CPLEX is
given a good initial solution and a lot of additional computation time, it cannot improve
the Fix-and-optimize solution substantially. For problem class A, the solutions are
close to optimal and found quickly. For problem class B, the averages of the upper
bounds on the relative deviation from the optimal solutions are relatively large. This
might be due to the weak lower bounds from the LP-relaxation used in the branch
and bound process. Note that the many fractional values of the originally binary or
integer variables created in the LP-relaxation of the branch and bound process lead to
many nodes in the branch and bound tree that are not integer feasible such that finding
feasible solutions by applying CPLEX to the monolithic model can be extremely time-
consuming. Again, the specialized heuristic outperforms the standard solver and we
conclude that it can solve medium-sized problems.
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On average, the solutions from the sequential approach (SA) as well as those from
the independent approach (IA) are muchmore costly than those from the simultaneous
approach, even if only a small fraction of the demand is supplied externally. This is due
to the high penalty costs cek for the external supply, see Table 5 and indicates that it
can be economically important to solve the problem simultaneously. It should be noted
that this cost increase is much higher for problem class A than for problem class B.
The reason is that in problem class B the number of both the products and the periods
is substantially larger, which apparently leads to a larger and better structured solution
space and more options to include maintenance operations in a partially determined
production schedule.

A comparison of the average values of the best solutions (column “AvgBestSol”)
shows the expected behavior, for example that average total costs decrease as the time
between maintenance operations (TBM) increases from 0.5 to 2 macroperiods or that
they increase as the relative maintenance cost cmrel increase from 0.5 to 2.

6 Conclusion and future research

In this paper we have presented a new and generic lot sizing and maintenance schedul-
ing model including a formal wear and tear function. This way we established a
simultaneous planning approach that can be more cost-efficient than a traditional
sequential planning approach. The solution of the model results in an integrated pro-
duction and maintenance schedule for the case of intensive and predictable wear and
tear. The model is generic in the sense that a total of eight different problem constel-
lations can be treated. A specialized Fix-and-optimize heuristic has been developed
and shown to be powerful in a extensive numerical study.

Future research could address the case of nonlinear wear and tear functions as well
as the case of different components that are subject to wear and tear. In addition, one
could treat the case of multiple machines that compete for a limited maintenance crew.
In such a setting, production and maintenance schedules have to be coordinated over
several machines.

Acknowledgments We would like to thank Paul Cochrane for his valuable support during the numerical
study.
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