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Abstract We study the inverse optimization problem in the following formulation:
given a family of parametrized optimization problems and a real number called
demand, determine for which values of parameters the optimal value of the objec-
tive function equals to the demand. We formulate general questions and problems
about the optimal parameter set and the optimal value function. Then we turn our
attention to the case of linear programming, when parameters can be selected from
given intervals (“inverse interval LP”). We prove that the problem is NP-hard not only
in general, but even in a very special case. We inspect three special cases—the case
when parameters appear in the right-hand sides, the case when parameters appear in
the objective function, and the case when parameters appear in both the right-hand
sides and the objective function. We design a technique based on parametric program-
ming, which allows us to inspect the optimal parameter set. We illustrate the theory
by examples.
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748 M. Černý, M. Hladík

1 Introduction

1.1 Inverse optimization: definition

Consider the parametric optimization problem

{
min
x∈Rn

f (x, θ) subject to g(x, θ) ≤ 0

}
, θ ∈ Θ,

where the vector of parameters θ ∈ R
k is assumed to be restricted into a given set

Θ ⊆ R
k , called admissible parameter set, f : Rn ×R

k → R is the objective function
and g : Rn × R

k → R
m is the constraint function.

Definition 1 The inverse optimization problem ( f, g,Θ, f0) is the following task:
find θ0 ∈ Θ such that

min
x∈Rn

{ f (x, θ0) : g(x, θ0) ≤ 0} = f0

or state that none exists. The number f0 is called demand.

In other words, the formulation is as follows: given a parametrized optimization
problem, a set of admissible parameters, and a demand, find admissible values of
parameters such that the optimal value is equal to the demand or state that no such
choice of parameters is possible.

Remark 1 We have started with the formal definition of the inverse optimization prob-
lem at the very beginning because the term “inverse optimization” is still unsettled
within the optimization community and various authors use it in variousmeanings. For
example, Ahmed and Guan (2005) consider the case of linear programming, where
the objective function coefficients (cost coefficients) are to be chosen from a given
admissible set to achieve that the optimal value is as close as possible to a specified
value. This is near to our problem formulation and our paper can be understood as a
contribution to this branch of research. Another well-known example is the work of
Ahuja and Orlin (2001), who understand “inverse optimization” as follows: we are
given a feasible point of an optimization problem and we are to perturb the objective
function coefficients in order the feasible solution become optimal and the pertur-
bation is in some sense minimal. In decision support, “inverse problems” are often
understood as models of partial knowledge about the data which are to be completed
or reconstructed. An important example is the problem of completion of comparison
matrices in MCDM (Bozóki et al. 2010, 2011).

1.2 Motivation and examples

The following examples should illustrate some applications of our formulation of the
inverse problem fromDefinition 1. In the examples, the case whenΘ is finite is trivial;
the reader should think of the infinite case.
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Let e denote the all-one vector.

Example A Designing a network. The Network Flow Problem can be written as a
linear programming problem the data of which are capacities of arcs of the network.
Given admissible values of the capacities (say, intervals from which the capacities
can be selected), we are to select the capacities to achieve a prescribed value of the
maximum network flow.

Example B Unit transportation prices. Let a, b ≥ 0 be given. Consider the following
version of the Transportation Problem:

fT P (θ) = min
xi j≥0

⎧⎨
⎩

p∑
i=1

q∑
j=1

θi j xi j

∣∣∣∣ (∀ j = 1, . . . , q)

p∑
i=1

xi j = a j ,

(∀i = 1, . . . , p)
q∑
j=1

xi j = bi

⎫⎬
⎭ .

Now, given Θ ⊆ R
p×q and f0, we are to find θ ∈ Θ such that fT P (θ) = f0. In other

words, we ask how to adjust unit transportation prices θ such that the transporter’s
profit is at the prescribed level f0. Here Θ formalizes the admissible adjustments.

A nonlinear version of this problem can be considered when the objective function
is nonlinear (e.g. when there is an incentive to transport larger volumes).

Example C A version of the Matrix Casino problem (Mostafaee et al. 2015). Given
a family Θ of payoff matrices and a prescribed game value f0, find the payoff matrix
such that the game value is attained. In other words: given Θ ⊆ R

p×q and f0 ∈ R,
find A ∈ Θ such that maxγ,x {γ | ATx ≥ γ e, eTx = 1, x ≥ 0} = f0.

Example D Data perturbation problems—an example from geometry. To find
the minimum volume covering ellipsoid (MVCE) of a given family of data
points x1, . . . , xp ∈ R

q , we are to solve the problem fMVCE (x1, . . . , xp) =
minV,c{det V | (∀i = 1, . . . , p) (xi − c)TV−1(xi − c) ≤ 1, V psd}. Now

πq/2

Γ (1+q/2)

√
fMVCE is the volume of the ellipsoid. Assume that we are given an admis-

sible perturbation bound ε > 0 and we are to perturb the data points x1, . . . , xp in a
way that theMVCE has a prescribed volume f0. Sowe are solving the inverse problem
with Θ = [x1 − εe, x1 + εe] × · · · × [xp − εe, xp + εe].

1.3 Optimal value function and optimal parameter set

The function

F(θ) = min
x∈Rn

{ f (x, θ) : g(x, θ) ≤ 0}

is called optimal value function. We admit that F(θ) = ∞, meaning that the problem
min{ f (x, θ0) : g(x, θ0) ≤ 0} is infeasible, and F(θ0) = −∞, meaning that the
problem is unbounded.
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750 M. Černý, M. Hladík

The set

Θ∗ = {θ ∈ Θ : F(θ) = f0}

is called optimal parameter set of the inverse optimization problem ( f, g,Θ, f0).

1.4 Problems and questions

In general, a study of inverse optimization leads to (at least) the following natural ques-
tions and problems, the knowledge about which currently is only partial; in particular,
nonlinear problems deserve investigation.

Of course, answers and computational complexity of algorithms heavily depend on
properties of the underlying optimization problem (on properties of f, g) and on the
structure of Θ . This paper is a contribution to the case of linear programming and the
case whenΘ is a box (i.e., each parameter ofΘ is restricted by a given lower and upper
bound). However, as motivated by Examples A–D in Sect. 1.2, it is natural to state our
questions and problems more generally, in a way applicable to nonlinear optimization
as well. To “solve” a problem means: either design an efficient algorithm, or prove
NP-hardness. In the case of NP-hardness, find special cases or additional conditions
under which the problem is efficiently solvable.

– Problem 1. Decide whether Θ∗ �= ∅. (Decide whether the inverse optimization
problem has a solution.)

– Problem 2. Find some θ0 ∈ Θ∗. (Find a solution.)
– Problem 3. Determine set-theoretic properties of Θ∗ (e.g. whether it is bounded,
connected, “large” in some well-defined sense etc.).

– Problem 4. Define an ordering ≤∗ on Θ∗ and find θ0 ∈ Θ∗ which is ≤∗-maximal.
(If there are more solutions to the inverse optimization problem, define a relation
“the solution θ0 is not worse than the solution θ1” and find the best solution with
respect to this relation.)1

– Problem 5. Describe, either exactly or approximately, the setΘ∗ in a user-friendly
way. (Example: in Sect. 4.1 we will show that in a particular situation the set Θ∗
is a union of polytopes. Another example: when Θ∗ is intricate, find a simple
object—such as a box—which covers the set and is as tight as possible.2)

In design of algorithms for the inverse optimization problem, we often also face
natural question about the optimal value function F . For example:

– Problem 6. Determine whether F is continuous on Θ .
– Problem 7. Determine the range of F over Θ .

1 Recall Example C from Sect. 1.2: we are to find a payoff matrix A ∈ Θ to achieve a prescribed game
value. Assume that in addition, a fixed matrix A0 is given. For A, A′ ∈ Θ∗, define A ≤∗ A′ iff ‖A− A0‖ ≥
‖A′ − A0‖, where ‖ · ‖ is a matrix norm. This problem can be read as follows: find a payoff matrix such
to achieve the prescribed game value, and if the solution is not unique, then find the solution which differs
from the reference game A0 as little as possible.
2 This leads us to computational geometry, where the process or replacement of an intricate set A by another
simpler object approximating A in some well defined sense is referred to as “geometric rounding” of A.
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Inverse optimization: towards the optimal parameter set... 751

– Problem 8. Determine a tight box enclosure of the range of F over Θ .
– Problem 9. Find extreme scenarios: find θ, θ ∈ Θ such that F(θ) = inf{ f (θ) :

θ ∈ Θ} and F(θ) = sup{ f (θ) : θ ∈ Θ}.
– Problem 10. Determine whether F restricted to Θ fulfills the Lipschitz condition
(or another condition measuring that the function cannot be too “wild”).

Bibliographic remark. Some particular results are known for nonlinear program-
ming where Θ is in a form of intervals (Bhurjee and Panda 2012; Hladík 2011;
Karmakar and Bhunia 2014). The linear case has been intensively investigated in
the last years and considerably more results are known than for the nonlinear case;
see, e.g., the surveys and recent developments in Fiedler et al. (2006), Hladík (2012,
2013, 2014a, b), Li et al. (2014), Luo et al. (2014), Mostafaee et al. (2015).

1.5 Illustration: how to construct an efficient method

To illustrate why questions about the optimal value function F are useful in design of
algorithms, assume that

(i) Θ is compact and convex,
(ii) F is continuous on Θ ,
(iii) F is a polynomial-time computable function,
(iv) there are polynomial-time algorithms for finding θ and θ .

Then we can solve the inverse optimization problem efficiently as follows. Let a
demand f0 be given. By (iii) and (iv) we can test f0 ∈ [F(θ), F(θ)] and we have
solved Problem 1. To solve Problem 2, we run Binary Search (known also as the
Bisection Method) over the line segment S0 := {λθ + (1 − λ)θ : 0 ≤ λ ≤ 1} ⊆ Θ;
this is correct by (i). By (ii) F we find a point θ0 ∈ S0 such that |F(θ0) − f0| < ε for
an arbitrarily small ε > 0. The method is very simple:

{1} S := θ, S := θ

{2} while | f0 − F(S′)| ≥ ε, where S′ := 1
2 (S + S), do

{3} if F(S′) < f0 then S := S′ else S := S′ end if
{4} end while

Assumption (iii) assures that every step of the Binary Search is efficient. Then, an
answer to Problem 10 will help us in estimation of the number of steps required to
achieve ε-convergence, as shown by the following proposition.

Proposition 1 If, in addition to (i)–(iv), F is κ-Lipschitz on Θ , then ε-convergence is
achieved after


0 :=
⌈
log2

κ‖θ − θ‖
ε

⌉
(1)

steps.

Proof Let S(x, y) denote a line segment with endpoints x, y. At the beginning of

Binary Search we start with the line segment S0 = S(θ0 := θ, θ
0 := θ), which is then,
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752 M. Černý, M. Hladík

in the 
-th iteration, changed into a line segment S(θ
, θ


). Let θ∗ ∈ S(θ
0 , θ


0
) be

such that F(θ∗) = f0. In the 
0-th iteration we have

|F(θ

0

) − f0| = |F(θ

0

) − F(θ∗)| ≤ κ‖θ
0 − θ∗‖ ≤ κ‖θ
0 − θ
0‖
≤ κ · 2−
0‖θ − θ‖ ≤ ε.

��
Wecan refine the analysis even further. By (iv) we assume that θ, θ can be computed

by a polynomial-time algorithm. Thus there exists a polynomial p such that ‖θ‖ ≤
2p(L) and ‖θ‖ ≤ 2p(L), where L is the bit-size of the input (i.e., the size of the data
structure representingΘ). Then ‖θ −θ‖ ≤ 2p(L)+1 and (1) tells us that ε-convergence
is achieved in a polynomial number of steps, or more precisely, we have an algorithm
working in O(p(L) log κ

ε
) steps.

1.6 Discussion: continuity of the optimal value function

It was pointed out by one of the referees that the question whether the assumptions (i)–
(iv) from the previous section are fulfilled is highly nontrivial and deserves separate
research. Of course, the answer depends on the particular problem under consider-
ation. As an illustration we consider the continuity assumption (ii) in case of linear
programming. For some classes of linear programs, the continuity assumption is sat-
isfied, and for some it is not; we refer to two examples from Černý (2015a, b). First
consider the problem

F(θ1, θ2) = min{−x2 | − x1 + θ1x2 ≤ 0, x1 ≤ 0, x2 ≤ θ2},(
θ1

θ2

)
∈ Θ = [−1, 1] × [0, 10]; (2)
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Fig. 1 Illustration of (2)
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Fig. 2 Illustration of (3)

its optimal value function is discontinuous as shown in Fig. 1. The second example is
the class of matrix-game LPs (see Example C from Sect. 1.2); in this case, the optimal
value function is continuous and nondecreasing in every variable. The instance

F(θ1, θ2) = max
γ,x

⎧⎪⎨
⎪⎩γ

∣∣∣∣
⎛
⎝ 0 θ1 −1

−1 0 1
θ2 −1 0

⎞
⎠

T

x ≥ γ e, eTx = 1, x ≥ 0

⎫⎪⎬
⎪⎭ ,

(
θ1

θ2

)
∈ Θ = [−2, 2] × [−2, 2], (3)

which can be understood as a “perturbation” of the Rock-Scissors-Paper game, is
depicted in Fig. 2.

Some sufficient conditions for continuity of the objective value function of LP are
available, but as far as the authors are aware, a unified characterization of continuity
is still not known. And in case of nonlinear problems, even less is known. But there is
some progress: except for the seminal paper (Wets 1985), in Mostafaee et al. (2015)
a particular sufficient condition is proven, enabling us to prove continuity for various
classes of LPs. But, on the contrary, we are aware of many problems where the con-
dition fails, and for other classes, we know that checking that condition is equivalent
to solving an NP-hard problem. So there are still pros and cons, showing that further
refinements and derivation of new sufficient conditions for continuity is of a great
importance, both for linear and nonlinear programming problems.

2 Contribution of this paper to the general framework

This paper is a contribution to the general framework described in previous sections for
the case of linear programming, when the admissible space Θ is given as a family of
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754 M. Černý, M. Hladík

intervals of admissible values of LP-coefficients. Before we give a precise statement,
we need some definitions.

2.1 Interval matrices and vectors

An interval (m × n)-matrix A is defined as a family of matrices

A = [A, A] = {A ∈ R
m×n : A ≤ A ≤ A},

where the relation “≤” is understood componentwise. The boundary matrices A, A
are called endpoints. The center and radius are defined as, respectively,

Ac = 1
2 (A + A), AΔ = 1

2 (A − A).

Interval vectors are one-column interval matrices and are denoted a, b, . . .. The space
of all (m × n)-interval matrices is denoted IR

m×n . Similarly, IRn denotes the space
of n-dimensional interval vectors.

We say that an interval matrix A is crisp if A = A. The absolute value |A| of a
matrix A is understood componentwise.

For more information on computation with interval matrices, we refer the readers
to books (Alefeld and Herzberger 1983; Moore et al. 2009; Neumaier 1990).

2.2 Inverse LP with interval coefficients

We consider the linear programming problem in the form

min cTx subject to Ax = b, x ≥ 0. (4)

Let the admissible space Θ be given as a triple (A ∈ IR
m×n, b ∈ IR

m, c ∈ IR
n). We

study the inverse optimization problem in the following form: given a demand f0, find
A ∈ A, b ∈ b, c ∈ c such that f0 = min{cTx : Ax = b, x ≥ 0}. In other words, we
study the case when we can select every parameter of the LP (4) from a given interval.

Now it is natural to write the optimal value function in the form

F(A, b, c) = min{cTx : Ax = b, x ≥ 0}

and the optimal parameter space in the form

Θ∗ = {(A, b, c) : A ∈ A, b ∈ b, c ∈ c, F(A, b, c) = f0}.

3 A negative result

In this section we prove that the inverse problem stated in the previous section is NP-
hard. We prove even a stronger (and surprising) result that even a very special case of
the general problem is NP-hard, namely when we restrict ourselves to A and c crisp.
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Theorem 1 Given A ∈ R
m×n, b ∈ IR

m, c ∈ R
n and f0 ∈ R, checking whether there

is b ∈ b such that F(A, b, c) = f0 is an NP-complete problem.

Proof By Fiedler et al. (2006), checking solvability of the system

|Ax | ≤ e, eT |x | ≥ 1 (5)

is an NP-complete problem on a class of non-negative positive definite matrices. Let
such A be given and consider the LP

max bT x subject to − e ≤ Ax ≤ e,

where b ∈ [−e, e], A is non-negative positive definite, and the desired optimal value
is f0 = 1. Notice that this linear program is always feasible (x = 0 is a feasible point)
and bounded (by positive definiteness of A), so it has an optimal solution and finite
optimal value for each b ∈ [−e, e].

We claim that (5) is solvable iff there is b ∈ [−e, e] such that f0 = 1 is attained as
the optimal value.

“If.” Suppose that f0 = 1 is attained as the optimal value for b ∈ [−e, e] and the
corresponding optimal solution x∗. Then

1 = f0 = bT x∗ ≤ |b|T |x∗| ≤ eT |x∗|.

That is, x∗ solves (5).
“Only if.” Suppose to the contrary that (5) is solvable, but f0 = 1 is optimal value

for no b ∈ [−e, e]. If there is K > 1 such that K is the optimal value for some
b ∈ [−e, e], then f0 = 1 is attained for b′ := 1

K b. So we have proved that all optimal
values are< 1. By solvability of (5) we derive a contradiction: since if x solves (5) and
b := sgn(x), then x is feasible solution to the linear program and bT x = eT |x | ≥ 1.
Thus the optimal value is at least 1. ��
Remark 2 A related result was shown by Gabrel et al. (2010), who proved that it is
NP-hard to determine the worst case optimal value maxb∈b F(A, b, c).

4 Good news

Theorem 1 shows that in general, inverse LP with interval coefficients is a compu-
tationally intractable problem, even in the special case with A, c crisp. Though the
general result is negative, the situation is not quite disappointing and much can be
achieved in a computationally efficient way.

4.1 Case 1: only right-hand sides contain intervals

Here we continue with the case when intervals are only in the right-hand sides (i.e.,
A ∈ R

m×n , b ∈ IR
m , c ∈ R

n). This problem has been partially addressed inMostafaee
et al. (2015).
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756 M. Černý, M. Hladík

We will use the usual LP-notation: if B is a basis, AB denotes the basic columns
of A, AN denotes the nonbasic columns of A. Similarly with cB , cN .

Definition 2 (Basis decomposition of Θ∗) Let B be a basis. The B-class of Θ∗,
denoted Θ∗

B , is the set of vectors b∗ ∈ b such that F(A, b∗, c) = f0 and B is an
optimal basis of the LP

min cTx subject to Ax = b∗, x ≥ 0. (6)

This definition was inspired by the theory of multiparametric programming, see
Gal (1979), Gal and Greenberg (1997), Hladík (2010), Nožička et al. (1974).

The proof of the following proposition is straightforward.

Proposition 2 Let B be a basis. Now b ∈ Θ∗
B if and only if the following conditions

hold:

(a) domain condition: b ∈ b,
(b) nonnegativity condition: A−1

B b ≥ 0,
(c) optimality condition: cTN − cB A

−1
B AN ≥ 0,

(d) optimal value condition: cB A
−1
B b = f0.

Corollary 1 Θ∗
B is a polytope.

Proof Conditions (a)–(d) are linear with respect to b and b is bounded. ��
Corollary 2 If the problem (4) is not dual degenerate, then the sets Θ∗

B, Θ∗
B′ for

different bases B and B ′ are either disjoint or meet at their faces only.

Proof Due to condition (d) of Proposition 2, the possible non-facial intersection of
Θ∗

B and Θ∗
B′ can happen only if cB A

−1
B = cB′ A−1

B′ . This condition, however, implies
degeneracy of the dual problem max bT y subject to AT y ≤ c. ��

Clearly we have
Θ∗ =

⋃
B is a basis

Θ∗
B . (7)

It follows that Θ∗ can be written as a (not necessarily convex) union of polytopes,
each of which corresponds to one basis, which is an optimal basis for some class of
admissible LPs the objective value of which is f0.

Example 1 Consider the LP

min−x1 − 2x2 subject to x1 + 4x2 + s1 = b1,

2x1 + 3x2 + s2 = b2,

3x1 + 2x2 + s3 = 4,

4x1 + x2 + s4 = 6,

x ≥ 0, s ≥ 0,
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Fig. 3 Illustration of Example 1

where b1 ∈ [0, 8] and b2 ∈ [0, 8]. The admissible set Θ = [0, 8] × [0, 8] is shown
in Fig. 3, together with contour lines of the optimal value function F (which is now
understood as a function of b1, b2). Given a demand f0, the optimal parameter set Θ∗
is a contour line of F . The figure illustrates Corollary 1 and the fact (7): each contour
line is a connection of line segments.

An algorithm for determining the “radius” of Θ∗ in a given direction bΔ. (The
algorithm gives us at least partial information about the “width” ofΘ∗ in the direction
bΔ, giving a partial answer to Problem 5 of Sect. 1.4.) Here, the “radius” is understood
as follows: given b∗ ∈ Θ∗ and βΔ, we are to determine the maximum t such that
b∗ + tbΔ ∈ Θ∗.

Let b∗ ∈ Θ∗ be given (e.g. found by the method of Sect. 1.5) and let B be an
optimal basis of (6). For the sake of simplicity assume that B is unique (or we must
enumerate all optimal bases). Let a perturbation vector bΔ be given. If

cB A
−1
B bΔ = 0,

then we can move in Θ∗
B from b∗ in direction bΔ since b∗ + tbΔ is admissible for a

sufficiently small t ≥ 0.

Step 1. Finding a boundary point of Θ∗
B . The furthest admissible point is computed

as
t∗ := max t subject to b∗ + tbΔ ∈ b, A−1

B (b∗ + tbΔ) ≥ 0, (8)

which is an easy optimization problem. The corresponding point is then b∗∗ := b∗ +
t∗bΔ. This point lies on the boundary of Θ∗

B .
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758 M. Černý, M. Hladík

Step 2. Basis switch. If the LP

min cTx subject to Ax = b∗∗, x ≥ 0

has another optimal basis B ′ such that cB′ A−1
B′ bΔ = 0, we set B := B ′, b∗ := b∗∗ and

repeat (8). In other words, we have switched fromΘ∗
B toΘ∗

B′ and we can move further
in the direction bΔ through Θ∗

B′ . We repeat until we reach the boundary of Θ∗.

4.2 Case 2: only the objective function contains intervals

Suppose that only c is interval, and the other coefficients in A and b are fixed values.
Complexity of checking whether there is some c ∈ c such that (4) is an open problem.
We can, however, state the following interesting special case.

Proposition 3 If the feasible set {x : Ax = b, x ≥ 0} is bounded, then checking
whether there is some c∗ ∈ c such that F(A, b, c∗) = f0 holds true is a polynomial
time problem.

Proof Under the assumption, the optimal value function is continuous (Wets 1985),
and the optimal value set is [ f , f ], where

f = min cT x subject to Ax = b, x ≥ 0,

f = min cT x subject to Ax = b, x ≥ 0.

��
Now we proceed similarly as in Sect. 4.1. The detailed analysis would be similar.

We describe the main idea. Let B be an optimal basis (assuming that it is unique for
simplicity) and let x∗ be the corresponding optimal solution of

min(c∗)Tx subject to Ax = b, x ≥ 0,

where c∗ ∈ Θ∗ is given. This problem was considered by Mostafaee et al. (2015).
Now, the set of c ∈ c for which f0 is the optimal value and x∗ remains optimal is
described by

c ≤ c ≤ c, cT x∗ = f, cTN − cB A
−1
B AN ≥ 0.

This is a polytope. It follows thatΘ∗ is a union of polytopes, each ofwhich corresponds
to a particular optimal basis.

Let a perturbation vector cΔ such that (cΔ)T x∗ = 0 be given. Then we can move in
Θ∗ from c∗ in direction cΔ since c∗ + tcΔ is admissible for a sufficiently small t ≥ 0.
The furthest admissible point is computed as

t∗ := max t subject to c∗ + tcΔ ∈ c, cTN − cB A
−1
B AN ≥ 0, (9)
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which is an easy optimization problem. The corresponding point is then c∗∗ := c∗ +
t∗cΔ. Nowwe perform the basis-switch step: we find another optimal basis B ′ (or: enu-
merate optimal bases) of the LP

min(c∗∗)Tx subject to Ax = b, x ≥ 0,

and its corresponding solution x∗∗. If (cΔ)T x∗∗ = 0, we can set x∗ := x∗∗ and repeat
(9), until we reach the boundary of Θ∗.

4.3 Case 3: interval right-hand side and the objective function

Herein, we suppose that both b and c are interval, and the entries of A are fixed. Now,
the problem is more complicated as the optimal value condition cB A

−1
B b = f0 is

nonlinear.
Some specific subproblems are, however, still easily solvable. Let x∗ be an optimal

solution of the LP

min(c∗)Tx subject to Ax = b∗, x ≥ 0,

where b∗ ∈ b and c∗ ∈ c are such that F(A, b∗, c∗) = f0 and let B be the corre-
sponding optimal basis. Let perturbation vectors bΔ and cΔ be given, and consider the
problem of what is the maximal distance we can move from b∗, c∗ in the direction of
bΔ, cΔ in Θ∗. (This is another contribution to Problem 5 of Sect. 1.4.) Formally find
the maximal t ≥ 0 such that for b(t) = b∗ + tbΔ and c(t) = c∗ + tcΔ we have

(a) domain condition: b(t) ∈ b and c(t) ∈ c,
(b) nonnegativity condition: A−1

B b(t) ≥ 0,
(c) optimality condition: cTN (t) − cB(t)A−1

B AN ≥ 0,
(d) optimal value condition: cB(t)A−1

B b(t) = f0.

The conditions describe a B-class Θ∗
B of Θ∗ corresponding to the basis B.

Condition (d) is the only nonlinear one. The impact of the nonlinearity is that Θ∗
can be no more described as a union of polytopes corresponding to particular bases.
This is illustrated by the following example.

Example 2 Consider the LP

min−c1x1 − 2x2 subject to x1 + 4x2 + s1 = b1,

2x1 + 3x2 + s2 = 3,

3x1 + 2x2 + s3 = 4,

4x1 + x2 + s4 = 6,

x ≥ 0, s ≥ 0,

where c1 ∈ [0, 5] and b1 ∈ [0, 4]. Given a demand f0, the optimal parameter set Θ∗
is a contour line of the optimal value function F , see Fig. 4.
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Fig. 4 Illustration of Example 2

In spite of the nonlinearity in the optimal value condition (d), we can use the
following trick. We reformulate (d) as follows:

f0 = cB(t)A−1
B b(t) = (c∗ + tcΔ)B A

−1
B (b∗ + tbΔ)

= c∗
B A

−1
B b∗ + t

(
c∗
B A

−1
B bΔ + cΔ

B A
−1
B b∗) + t2cΔ

B A
−1
B bΔ.

Using f0 = c∗
B A

−1
B b∗, we get

0 =
(
c∗
B A

−1
B bΔ + cΔ

B A
−1
B b∗) + tcΔ

B A
−1
B bΔ,

from which

t∗ = −c∗
B A

−1
B bΔ + cΔ

B A
−1
B b∗

cΔ
B A

−1
B bΔ

. (10)

Thus, the only possible perturbation length is (10) provided such t∗ is admissible. Of
course, in the degenerate case

0 = c∗
B A

−1
B bΔ + cΔ

B A
−1
B b∗ = tcΔ

B A
−1
B bΔ

the optimal value condition holds for any t , so we easily determine the maximal
admissible t from the linear conditions (a)–(c).

Remark 3 Both cases are illustrated in Fig. 4: the degenerate case can be illustrated
by the straight segments of contour lines, while the non-degenerate case, when only
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the step of length (10) can be performed, corresponds to the nonlinear segments of
contour lines.

Remark 4 Note that this analysis holds only in the B-classΘ∗
B ofΘ∗. Currently we do

not know how to find a point of basis switch, which would allow us to inspect not only
Θ∗

B , but the entire optimal parameter set Θ∗. This is a tempting research question.

5 Conclusion

First, we stated ten general questions about the optimal parameter set of the general
inverse optimization problem and its associated optimal value function. Then main
question is: how does the set Θ∗ of all solutions look? Then we inspected the case of
inverse linear programming with interval coefficients. We proved a general negative
complexity-theoretic result. This is a justification for analysis of particular caseswhich
are easier-to-handle. We studied the case of (a) interval right-hand sides, (b) interval
objective function and (c) the case then both the right-had sides and the objective
function contains intervals. We proved that in case (a) and (b), the set Θ∗ is a union
of polytopes corresponding to optimal bases, giving an insight into the structure of
Θ∗. Based on this description, we proposed a technique, derived from parametric
programming, allowing us to inspect the solution set Θ∗ in a pre-selected direction.
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