
CEJOR (2015) 23:899–912
DOI 10.1007/s10100-014-0337-8

ORIGINAL PAPER

MILP models for the optimization of real
production lines

Tamás Hajba · Zoltán Horváth

Published online: 25 January 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract A special class of the permutation flow shop problems (PFSPs) with
makespan minimization which contains repeated jobs, limited buffer sizes between
the machines and fixed number of palettes that carry the jobs on the production line
is introduced in this paper. We define the related PB-R-PFSP, the Permutation with
Repetition Flow Shop Problem with Palettes and Buffers, and construct new mixed
integer linear programming (MILP) models for this problem. The effectiveness of the
MILP models and the influence of the number of palettes and buffers on the problems
are investigated experimentally.
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1 Introduction

Scheduling of jobs on production lines at factories is an important task for the manage-
ment, often the most crucial planning stage. This is supported by some optimization
tools at modern factories to find the best production plan. The time available for this
planning is often restricted to a given, rather short period and the problem is large-scale
(see Jósvai 2009), which makes the optimization hard.
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In the present paper, as a continuation of our previous work (see Hajba and Horváth
2013), our aim is to develop and investigate exact mathematical models of the produc-
tion lines at factories taking into account as many real process components as possible.
Since the problems arising in this context are NP-hard, typically some heuristics are
applied. Our aim is to make define exact models with exploiting the inherent structure
of the industrial problem to be able to get the exact optimum for as big problems
as possible or, if this does not converge, serve approximate results of the more com-
plex model of the industrial problem. Our findings in the paper loc. cit. was that,
surprisingly, the optimization process based on some of the exact models could find
the guaranteed optimum even on large-scale problems when the industrial restrictions
were handled properly.

In the literature, only few papers can be found in the topics of exact models for large
scale production line scheduling. The classical mathematical problem is the permuta-
tion flow shop problem (PFSP) with makespan criterion for which several mixed inte-
ger linear programming (MILP) models were developed; namely as empirical analysis
showed (see Stafford et al. 2004; Stafford et al. 2005; Stafford and Tseng 2008) the
best models are themodels of theWagner family: theWilsonmodel (seeWilson 1989),
the TS2 model (see Stafford et al. 2005), the WST model (see Wagner 1959; Stafford
and Tseng 2002), the TBA and TS3 models (see Stafford and Tseng 2008). Beside the
MILPmodels other exact methods, such as the branch and bound algorithm were used
to solve the PFSP (see Ladhari et al. 2005; Kouki et al. 2010, 2011). In all of these
models the production line is idealized with having, among other assumptions, an
infinitely large buffer between adjacent machines and arbitrary many number of jobs
can be on the line under process at the same time. We remark that exact, mixed integer
programming models were succesfully applied to solve similar large scale problems
for integrated planning and scheduling in the industry (see Kis and Kovács 2012).

In this paper we develop MILP models for production lines with more special
features arising from industry. Namely, we investigate

– repetitions: the jobs can often be sorted into types so that jobs of the same type
have equal processing time values at each machine,

– palettes: the jobs are carried on palettes on the production line and the number of
palettes is bounded from above,

– buffers: there are limited buffer sizes between the machines.

The goal of the paper is to define the related PB-R-PFSP, the Permutation with Repe-
tition Flow Shop Problem with Palettes and Buffers, and construct the adequate new
MILP models for PB-R-PFSPs and investigate their effectiveness experimentally.

Although the features under PB-R-PFSP are widely used in the industry, PB-R-
PFSP models have not been investigated in the literature. Up to our knowledge, it is
known only that MILP models for the PFSP with repeated jobs were introduced and
studied in Hajba and Horváth (2013). Moreover, PFSP with zero buffer (special case
of the limited buffer size) was studied in Ronconi and Birgin (2012) with evaluating
classical MILP models for the PFSP to minimize the total tardiness and earliness
while in Fraschet et al (2011) MILP models for the non-permutation FSP with limited
buffers were introduced. The condition fixed number of palettes has not been studied
yet.
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Optimization of real production lines 901

The rest of the paper is organized as follows.We introduce the PB-R-FPSP in detail
in Sect. 2. Then, in Sect. 3, three new MILP models, derived from the state-of-the-art
MILP models for PFSP, are constructed for the problem. We present the results of
numerical experiments devoted to benchmarking the new MILP models on the new
problems in Sect. 4. The aim of the the numerical experiments was on one hand to
compare the three MILP models and on the other hand to investigate the effect of the
palettes and buffers on the optimum value of the problem and on the computational
time the MILP models need to solve the problem. Sect. 5 contains our conclusions.

2 Definition of the classical PFSP and the novel PB-R-PFSP

The regular permutation flow shop problem consists of a production system of M
machines and a set of N jobs, each of which has to be processed on every machine.
Each job has to be processed first on the first machine, next on the second machine
and so on. The schedule of the jobs must be the same on each machine. A machine
can process at most one job at any time and preemption is not allowed. In the classical
problem it is assumed that there is unlimited buffer between themachineswhichmeans
that a job can immediately leave a machine after its processing is completed on that
machine. The goal is to find a permutation of the jobs which minimizes the completion
time (or makespan) of the last job on the last machine.

Real-life industrial problems often have some special features which are not
included in the regular PFSP. One such property is that in practice the jobs can be
sorted into types so that jobs of the same type have equal processing time values at
each machine (see Hajba and Horváth 2013). If we take this property into consider-
ation then the number of different permutations, i.e. the design space for the PFSP
decreases from N ! to ≈ T N , where T denotes the number of different types. In indus-
trial problems jobs are often carried on palettes on the line which means that each job
entering the production line is placed on a palette and the job is carried along the line
on this palette. After a job is processed on the last machine the job is taken off the
palette and the palette is moved to the first machine where a new job can be placed
on it once again. Typically the number of palettes is less than the number of jobs,
implying that at the same time only a limited number of jobs can be on the line. As
a consequence, because of the size of the palettes and the space between consecutive
machines, only a limited number of palettes (hence limited number of jobs) can wait
between two consecutive machines which means that there are limited buffer sizes
between the machines. We will call a PFSP which contains repeated jobs, limited
buffer sizes between the machines and bounded number of palettes Permutation with
Repetition Flow Shop Problem with Palettes and Buffer (PB-R-PFSP).

3 MILP models for the PB-R-PFSP

3.1 Common notations of the MILP models for the PB-R-PFSP

We will use the following notations.
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Parameters:

M Number of machines
N Number of jobs
T Number of different types
nt Number of jobs of type t (1 ≤ t ≤ T ; ∑

nt = N )

Pri Processing time of the job of type i on machine r
K Number of palettes
br Buffer size between machine r and r + 1(1 ≤ r ≤ M − 1).

Continuous variables:

Cr j Completion time of the j-th job of the sequence on machine r
Br j Beginning time of the j-th job of the sequence on machine r
Xr j Idle time of machine r before the start of the j-th job of the sequence

(i.e. Xr j = Br j − Cr, j−1)
Yr j waiting time of the j-th job of the sequence after it finishes processing on

machine r (i.e. Yr j = Br+1, j − Cr j )
Cmax Makespan.

Binary variable:

Zi j 1, if a job of type i is placed in the j-th place of the order, 0 otherwise.

The term Dr j is used in the models to represent the processing time of the j-th job
of the sequence on machine r . It can be easily calculated that

Dr j =
T∑

i=1

Pri Zi j . (1)

The term Dr j is used to simplify the notation in the constraints of the 3 new MILP
models below.

3.2 Computing the makespan of a given permutation in a PB-R-PFSP

In a PFSP a job can start on the first machine immediately after the previous job is
finished on the firstmachinewhichmeans that there is no idle time on the firstmachine.
In a PB-R-PFSP it is not always true. If we denote by K the number of palettes then
the j-th job of the order ( j > K ) can not start on the first machine unless there is an
empty palette which means that j-th job of the order can not start on the first machine
unless the ( j − K )-th job of the order is finished on the last machine. In a PFSP a
job can start immediately on machine r after it is finished on machine r − 1 and the
previous job is finished on machine r . If there are limited buffer sizes between the
machines this is not always true. Let us denote the buffer size between machine r and
r + 1 by br . Suppose that the j-th job of the order ( j > br ) is finished on machine
r − 1 and the ( j − 1)-th job of the order is finished on machine r . In this case if the
buffer between machines r and r + 1 is full then the ( j − 1)-th job of the order can
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Optimization of real production lines 903

not leave machine r hence we can not start to process the j-th job of the order on
machine r . It can be easily calculated that this means that the j-th job of the order can
start on machine r only after the ( j − br − 1)-th job of the order is started on machine
r + 1. Summarizing all these we get that for a given permutation the starting times of
the jobs and hence the makespan can be calculated recursively the following way:

B11 = 0 (2)

Br1 = Br−1,1 + Dr−1,1 (2 ≤ r ≤ M) (3)

B1 j = max
(
B1, j−1 + D1, j−1, B2, j−b1−1, BM, j−K + DM, j−K

)

(1 < j ≤ N ) (4)

Br j = max
(
Br, j−1 + Dr, j−1, Br+1, j−br−1, Br−1, j + Dr−1, j

)

(2 ≤ r ≤ M; 2 ≤ j ≤ N ) (5)

Cmax = BMN + DMN (6)

In the above formulations both Br j and Dr j are defined 0 if either M < r or j < 1.
Remark. As it can be seen the number of the palettes influence the beginning times of
the jobs on the first machine.

3.3 Construction of MILP models for the PB-R-PFSP

Based on earlier works ofWilson (1989), Stafford and Tseng (2002) and Stafford et al.
(2005), Hajba and Horváth (2013) introducedMILPmodels for the R-PFSPs. The new
MILP formulations of the PB-R-PFSPs are the modifications of these models.

3.3.1 The PB-R-Wilson model

N∑

j=1

Zi j = ni 1 ≤ i ≤ T (7)

T∑

i=1

Zi j = 1 1 ≤ j ≤ N (8)

B11 = 0 (9)

Br1 + Dr1 = Br+1,1 1 ≤ r ≤ M − 1 (10)

Br j + Dr j ≤ Br+1, j 1 ≤ r ≤ M − 1; 2 ≤ j ≤ N (11)

Br j + Dr j ≤ Br, j+1 1 ≤ r ≤ M; 1 ≤ j ≤ N − 1 (12)

BM, j−K + DM, j−K ≤ B1 j K + 1 ≤ j ≤ N (13)

Br+1, j−br−1 ≤ Br j 1 ≤ r ≤ M − 1, 2 + br ≤ j ≤ N (14)

min Cmax = BMN + DMN (15)

Equation (7) ensures that there are ni jobs in the sequence that are of type i .
Constraint (8) states that each position in the sequence is filled with exactly one type
of a job. Constraints (9), (10) state that the first job does not have to wait on any
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machine. Constraint (11) says that a job can not start on machine r + 1 until its
finished on machine r . Constraint (12) states that the ( j + 1)-th job in the sequence
can not start on machine r until the job in the j-th position in the sequence is finished
on machine r . Constraint (13) ensures that at most K palettes are used in the system.
Constraint (14) ensures that at most br jobs can wait in the buffer between machines
r and r + 1.

3.3.2 The PB-R-WST model

N∑

j=1

Zi j = ni , 1 ≤ i ≤ T (16)

T∑

i=1

Zi j = 1, 1 ≤ j ≤ N (17)

Yr1 = 0, 1 ≤ r ≤ M − 1 (18)

Dr, j+1 + Xr, j+1 + Yr, j+1 = Dr+1, j + Xr+1, j + Yr j
1 ≤ r ≤ M − 1; 1 ≤ j ≤ N − 1 (19)

Xr,1 + Yr,1 + Dr1 = Xr+1,1 1 ≤ r ≤ M − 1 (20)
j−K∑

i=1

XMi +
j−K∑

i=1

DMi ≤
j∑

i=1

X1i +
j−1∑

i=1

D1i

K + 1 ≤ j ≤ N (21)
j−br−1∑

i=1

Xr+1,i +
j−br−2∑

i=1

Dr+1,i ≤
j∑

i=1

Xri +
j−1∑

i=1

Dri

1 ≤ r ≤ M − 1, 2 + br ≤ j ≤ N (22)

min Cmax =
T∑

i=1

ni · PMi +
N∑

p=1

XMp (23)

Again, constraint (16) ensures that there are ni jobs in the sequence that are of type
i and constraint (17) states that each position in the sequence is filled with exactly one
type of a job. Constraint (18) states that the first job in the sequence does not have
to wait on any machine. Constraints (19) and (20) say that the job in the ( j + 1)-th
position of the sequence can not begin its processing on machine r until the job in the
j-th position of the sequence has completed its processing on that same machine; and
a job can not start processing on any machine until it has completed its processing on
the previous machine. Constraint (21) implies that at most K palettes are used in the
system. Constraint (22) ensures that at most br jobs can wait in the buffer between
machines r and r + 1.

3.3.3 The PB-R-TS2 model
N∑

k=1

Zik = ni 1 ≤ i ≤ T (24)
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Table 1 Size complexity of the models

Model Binary variables Real variables Constraints

Wilson N2 MN 2MN − M + N + 1

WST N2 2MN − N + 1 MN + M + N + 1

TS2 N2 MN + 1 2MN − M + N + 1

PB-R-Wilson NT MN 3MN − 2M + T − K − B + 2

PB-R-WST NT 2MN − N + 1 2MN + T − K − B + 2

PB-R-TS2 NT MN + 1 3MN − 2M + T − K − B + 2

N number of jobs, M number of machines, T number of types, K number of palettes, B = ∑M−1
r=1 br

T∑

l=1

Zl j = 1 1 ≤ j ≤ N (25)

Cr j + Dr, j+1 ≤ Cr, j+1

1 ≤ r ≤ M, 1 ≤ j ≤ N − 1 (26)

Cr j + Dr+1, j ≤ Cr+1, j

1 ≤ r ≤ M − 1, 1 ≤ j ≤ N (27)

D11 ≤ C11 (28)

CM, j−K + D1 j ≤ C1 j K + 1 ≤ j ≤ N (29)

Cr+1, j−br−1 − Dr+1, j−br−1 + Dr, j ≤ Cr j

1 ≤ r ≤ M − 1, 2 + br ≤ j ≤ N (30)

min Cmax = CMN (31)

Equations (24) and (25) are the assignment problem as it was explained in the
PB-R-Wilson model. Constraint (26) says that the job in the ( j + 1)-th position of
the sequence can not finish on any machine until the job in the j-th position of the
sequence is finished on that machine and job in the ( j +1)-th position of the sequence
is processed on that machine. Constraint (27) ensures that a job can not finish on
any machine until it is finished on the previous machine and processed on the given
machine. Constraint (28) states that the first job can not finish earlier on the first
machine than its processing time on the first machine. Constraint (29) ensures that at
most K palettes are used in the system while constraint (30) ensures that at most br
jobs can wait in the buffer between machines r and r + 1.

3.4 Size complexity of the models

The size complexity of the original MILP models and their PB-R-versions are pre-
sented in Table 1. It can be seen that the main difference between the original models
and their PB-R versions is the number of binary variables, namely the new models
contain T/N times less binary variables than the original models. It can be seen that
the number of binary and continuous variables of the PB-R models are independent
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of the number of palettes and buffer sizes. The number of palettes and the buffer sizes
effect only the number of constraints, namely decreasing by one the number of palettes
or the buffer size between two machines yields one new inequality in all three PB-R
models.

4 Numerical experiments

The main goals of the experiments were to compare the effectiveness of the 3 MILP
models and to investigate the influence of the number of palettes and buffers between
the machines on the optimal value and on the computational time the PB-R models
need to solve the problems. To do so a 4 cell experimental design, M ∈ {7, 8} by
T ∈ {6, 7}, 5 jobs from each type, five replications per cell, was used. As suggested
in Taillard (1993) the processing times were random integers drawn from the uniform
distribution in the range (1, 100). All instances were solved with K ∈ {8, 9, 10} by
br ∈ {0, 1, 2}, so each of the 3 PB-R models were tested on overall 180 problems. The
median solution times are shown in Tables 2 and 3 .

The formulations of the MILP models were written in GAMS modeling language
and solved using CPLEX 12.3 on an Intel Xeon E31225 3.1 GHz personal computer
equippedwith 4GB. TheCPLEXoptions employedweremixed integer programming,
parallel mode with 4 threads, an optimality stopping criterion of zero and a time limit
of 3600 seconds.

4.1 Experiment 1: Comparison of models for the PB-R-PFSP

To compare the 3 models first we examined the number of problems (from the total
180) the models solved in the time limit and the number of problems in which they

Table 2 Median solution times (in seconds) for problems with 7 machines in Experiment 1

b Model T = 6 T = 7

K = 8 K = 9 K = 10 K = 8 K = 9 K = 10

PB-R-Wil 1.064 0.446 0.437 1.898 1.655 1.238

2 PB-R-TS2 0.780 0.481 0.475 3.587 1.736 0.841

PB-R-WST 2.689 2.541 1.658 4.726 5.317 4.124

PB-R-Wil 1.042 0.698 1.045 2.863 1.880 1.782

1 PB-R-TS2 0.609 0.578 0.415 6.118 1.692 1.789

R-PB-WST 2.388 2.042 1.537 15.866 5.362 5.452

PB-R-Wil 965.973 1,933.102 1,233.905 a a a

0 PB-R-TS2 700.226 1,323.840 668.558 a a a

PB-R-WST 1,409.095 1,161.973 1,027.251 a a a

Number of machines M = 7; five problems per cell; number of types; five jobs from each type; number of
jobs N = 5T ; K = number of palettes; b = buffers between the machines (b1 = b2 = · · · = bM−1)
a At least three problems were not solved to proven optimality in 1 hour run time
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Table 3 Median solution times (in seconds) for problems with 8 machines in Experiment 1

b Model T = 6 T = 7

K = 8 K = 9 K = 10 K = 8 K = 9 K = 10

PB-R-Wil 2.391 2.636 2.599 a 3.073 3.660

2 PB-R-TS2 1.930 2.414 2.599 a 4.542 0.800

PB-R-WST 4.772 3.729 4.886 a 2.409 1.294

PB-R-Wil 2.444 2.482 2.853 a 8.859 6.199

1 PB-R-TS2 2.096 1.708 1.820 a 4.710 2.819

R-PB-WST 5.105 4.382 4.272 a 6.382 1.835

PB-R-Wil a a a a a a

0 PB-R-TS2 a a a a a a

PB-R-WST a a a a a a

number of machines M = 8; five problems per cell; T = number of types; five jobs from each type; number
of jobs N = 5T ; K = number of palettes; b = buffers between the machines (b1 = b2 = · · · = bM−1)
a At least three problems were not solved to proven optimality in 1 hour run time

Table 4 Comparison of the
models

Model Number of
problems
solved

Number of
problems with
lowest solution
time

Number of
problems with
highest solution
time

PB-R-Wil 113 31 27

PB-R-TS2 117 75 11

PB-R-WST 115 12 87

required the lowest/highest computation time to solve the problem. The results are
shown in Table 4.

4.1.1 Comparing the models on the easy problems

For the easy problems in which all of the models could solve the problem in the time
limit, the solution times were used to compare the models. For all of the pairs (K , br )
the distribution-free Friedman rank sums test (Hollander and Wolfe 1973) was used
to test the null hypothesis that the ranks of the 3 models are equal. When the null
hypothesis was rejected then for all pairs of the models the Wilcoxon signed rank test
was used to determine significant differences between all pairs.

The test showed that there is no significant difference between the models for
problems with br ≡ 0 and K = 8, 9, 10.

For problems with br ≡ 1 and K = 8, 9, 10 the PB-R-TS2 model is significantly
faster than the PB-R-WSTmodel(p = 0.013; p = 0.0003; p = 0.008 respectively).
For problems with br ≡ 1 and K = 8, 9 the PB-R-TS2 model is significantly faster
than the PB-R-Wilson model (p = 0.0217; p = 0.0015) while for problems with
br ≡ 1 and K = 10 there is no significant difference between the PB-R-TS2 and PB-
R-Wilson models. The PB-RWilson model is significantly faster than the PB-R-WST
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model for problems with br ≡ 1 and K = 8, 10(p = 0.0057; p = 0.0436) while
for problems with br ≡ 1 and K = 9 there is no significant difference between the
PB-R-Wilson and the PB-R-WST models.

The PB-R-TS2 model is significantly faster than the PB-R-WST model (p =
0.0113; p = 0.0436; p = 0.0008)for problems with br ≡ 2 and K = 8, 9, 10. The
PB-R-TS2 model is significantly faster (p = 0.0034)than the PB-R-Wilson model for
problems with br ≡ 2 and K = 10 but there is no difference between the two models
for problems with br ≡ 2 and K = 8, 9. The PB-R-Wilson model is faster than the
PB-R-WSTmodel (p = 0.0329; 0.0268) for problemswith br ≡ 2 and K = 8, 10 but
there is no difference between the two models for problems with br ≡ 2 and K = 9.

The results suggest that the PB-R-TS2 model is the best to solve easy PB-R-PFSPs,
followed by the PB-R-Wilson and the PB-R-WST model.

4.1.2 Comparing the models on the hard problems

For the hard problems in which none of the models could solve the problem in the
time limit, the relative gap (GAP) was used to compare the models. GAP is calculated
by the formula

GAP = 100 · UB − LB

LB
(32)

where UB is the best solution, and LB is the lower bound produced by GAMS solving
the MILP model of the problem. (For the problems with br ≡ 0 the median GAPs are
shown in Table 5). Again for all of the pairs (K , br ) which contained at least 5 hard
instances the distribution-free Friedman rank sums test (Hollander and Wolfe 1973)
was used to test the null hypothesis that the ranks of the 3 models are equal. When
the null hypothesis was rejected then for all pairs of the models the Wilcoxon signed
rank test was used to determine significant differences between all pairs.

The test showed that there is no significant difference between the models for
problems with br ≡ 1, 2 and K = 8 and for problems with br ≡ 0 and K = 10.

Table 5 Median relative gaps (GAPs) for problems with br ≡ 0 in Experiment 1

M Model T = 6 T = 7

K = 8 K = 9 K = 10 K = 8 K = 9 K = 10

PB-R-Wil 0 0 0 0.046 0.040 0.042

7 PB-R-TS2 0 0 0 0.046 0.043 0.046

PB-R-WST 0 0 0 0.041 0.046 0.042

PB-R-Wil 0.014 0.014 0.014 0.082 0.087 0.086

8 PB-R-TS2 0.012 0.013 0.016 0.085 0,080 0.085

PB-R-WST 0.041 0.036 0.036 0.039 0.100 0.092

Five problems per cell; M = number of machines; T = number of types; five jobs from each type; number
of jobs N = 5T ; K = number of palettes; b = buffers between the machines (b1 = · · · = bM−1 = 0)
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For problems with br ≡ 0 and K = 8, 9 the PB-R-TS2 model yields significantly
smaller GAP than the PB-R-WST model(p = 0.0455; p = 0.0455 respectively)
while there is no significant difference between the GAPs of the PB-R-TS2 and the
PB-R-Wilson models. For problems with br ≡ 0 and K = 8, 9 the PB-R-Wilson
model yields significantly smaller GAP than the PB-R-WST model(p = 0.0055;
p = 0.0075 respectively)

4.2 Experiment 2: Increasing the number of palettes

Increasing the number of palettes from 8 to 9: The optimum value of the 60 problems
with 8 palettes could be calculated at least by one of the PB-R models in 32 cases. In
these instances the optimum value did not change when the number of palettes was
increased form 8 to 9.

The PB-R-Wilson model could not solve 21 problems neither with 8 nor with 9
palettes. The PB-R-Wilsonmodel solved 6 problems with K = 9 that were unsolvable
with K = 8 by the PB-R-Wilson model. In 19 instances the PB-R-Wilson model
required less computational time with K = 9 than with K = 8, while in 14 instances
it required more computational time with K = 9 than with K = 8.

The PB-R-TS2 model was unable to solve 19 problems neither with 8 nor with 9
palettes. The PB-R-TS2 model solved 7 problems with K = 9 that were unsolvable
with K = 8 by the PB-R-TS2 model. In 23 instances the PB-R-TS2 model required
less computational timewith K = 9 than with K = 8, while in 11 instances it required
more computational time with K = 9 than with K = 8.

The PB-R-WST model was unable to solve 19 problems neither with 8 nor with 9
palettes. The PB-R-WST model solved 8 problems with K = 9 that were unsolvable
with K = 8 by the PB-R-TS2 model. In 26 instances the PB-R-WST model required
less computational time with K = 9 than with K = 8, while in 7 instances it required
more computational time with K = 9 than with K = 8.

Increasing the number of palettes from 9 to 10: The optimum value of the 60
problems with 9 palettes could be calculated at least by one of the PB-R models in 41
cases. In 39 of these instances the optimum value did not change when the number of
palettes was increased from 9 to 10 while in the remaining two instances the optimum
value was decreased.

The PB-R-Wilson model could not solve 19 problems neither with 9 nor with
10 palettes. The PB-R-Wilson model solved 2 problems with K = 10 that were
unsolvable with K = 9 by the PB-R-Wilson model. In 25 instances the PB-R-Wilson
model required less computational time with K = 10 than with K = 9, while in 14
instances it required more computational time with K = 10 than with K = 9.

The PB-R-TS2 model was unable to solve 18 problems neither with 8 nor with 9
palettes. The PB-R-TS2 model solved 1 problem with K = 10 that was unsolvable
with K = 9 by the PB-R-TS2 model. In 26 instances the PB-R-TS2 model required
less computational time with K = 10 than with K = 9, while in 15 instances it
required more computational time with K = 10 than with K = 9.

The PB-R-WST model was unable to solve 19 problems neither with 9 nor with 10
palettes. In 27 instances the PB-R-WST model required less computational time with
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K = 10 than with K = 9, while in 14 instances it required more computational time
with K = 9 than with K = 8.

Experiments show that increasing the number palettes has small impact on the
optimal value of the problem but it can decrease the computational time that the PB-R
models need to optimally solve the problem.

4.3 Experiment 3: Increasing the number of buffers between the machines

Increasing the number of buffers between the machines from 0 to 1: The optimum
value of the 60 problems with br ≡ 1 could be calculated at least by one of the PB-R
models in 49 cases. In these instances the optimum value decreased in 43 cases while
in 6 cases it remained unchanged when the number of buffers between the machines
was increased from 0 to 1.

The PB-R-Wilson model could not solve 12 problems neither with br ≡ 1 nor
with br ≡ 0. The PB-R-Wilson model solved 33 problems with br ≡ 1 that were
unsolvable with br ≡ 0 by the PB-R-Wilson model. In 15 instances the PB-R-Wilson
model required less computational time with br ≡ 1 than with br ≡ 0.

The PB-R-TS2 model was unable to solve 9 problems neither with br ≡ 1 nor with
br ≡ 0. The PB-R-TS2 model solved 36 problems with br ≡ 1 that were unsolvable
with br ≡ 0 by the PB-R-TS2 model. In 15 instances the PB-R-TS2 model required
less computational time with br ≡ 1 than with br ≡ 0.

The PB-R-WST model was unable to solve 10 problems neither with br ≡ 1 nor
with br ≡ 0. The PB-R-WST model solved 35 problems with br ≡ 1 that were
unsolvable with br ≡ 0 by the PB-R-TS2 model. In 15 instances the PB-R-WST
model required less computational time with br ≡ 1 than with br ≡ 0.

Increasing the number of palettes from1 to 2: The optimumvalue of the 60 problems
with br ≡ 2 could be calculated at least by one of the PB-R models in 50 cases. In
these instances the optimum value decreased in 8 cases while in 42 cases it remained
unchanged when the number of buffers between the machines was increased from 1
to 2.

The PB-R-Wilson model could not solve 10 problems neither with br ≡ 1 nor with
br ≡ 2. The PB-R-Wilson model solved 2 problems with br ≡ 2 that were unsolvable
with br ≡ 1 by the PB-R-Wilson model. In 32 instances the PB-R-Wilson model
required less computational time with br ≡ 2 than with br ≡ 1 while in while in 16
instances it required more computational time with br ≡ 2 than with br ≡ 1.

The PB-R-TS2 model was unable to solve 7 problems neither with br ≡ 1 nor with
br ≡ 2. The PB-R-TS2 model solved 1 problem with br ≡ 2 that was unsolvable
with br ≡ 1 by the PB-R-TS2 model while it failed to solve one problem with br ≡ 2
that was solvable with br ≡ 1. In 28 instances the PB-R-TS2 model required less
computational time with br ≡ 2 than with br ≡ 1 while in 23 instances it required
more computational time with br ≡ 2 than with br ≡ 1.

The PB-R-WST model was unable to solve 10 problems neither with br ≡ 1 nor
with br ≡ 2. In 30 instances the PB-R-WST model required less computational time
with br ≡ 2 than with br ≡ 1 while in 20 instances it required more computational
time with br ≡ 2 than with br ≡ 1.
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Experiment show that increasing the number of buffers between the machines form
0 to 1 has great impact on both the optimal value of the problem and the computational
time the PB-R models need to solve the problem. Increasing the number of buffers
between themachines form1 to 2 has less influence on the optimal value of the problem
but it can decrease the computational time the PB-R models need to optimally solve
the problem.

5 Conclusions

In this paper a newproblem, namely the PB-R-PFSP, derived from the classical PFSP is
introduced. The newproblemarises from industrial production linemodeling problems
where the jobs are carried on palettes between the machines and number of palettes
is bounded. Furthermore there is limited storage between the machines and there are
repeated jobs. To solve the PB-R-PFSP, we defined three new MILP models.

Three experiments were conducted to compare the MILP models and to investigate
the effect of changing the number of palettes or the buffer sizes between the machines.
The major conclusions from the numerical experiments reported in this paper are as
follows.

1. The PB-R-TS2 model performed significantly better on the Friedman test than the
PB-R-WST model on easy problems with br ≡ 1, 2 and K = 8, 9, 10.

2. The PB-R-TS2 model was significantly faster on the Friedman test than the PB-R-
Wilson model on easy problems with br ≡ 1 and K = 8, 9 and on problems with
br ≡ 2 and K = 10.

3. The PB-R-Wilson model performed significantly better on the Friedman test than
the PB-R-WST model on easy problems with br ≡ 1, 2 and K = 8, 10.

4. Both the PB-R-Wilson and the PB-R-TS2 models performed significantly better
on the Friedman test than the PB-R-WST model on hard problems with br ≡ 0
and K = 8, 9.

5. Increasing the number of palettes by one has small impact on the optimal value
of the problems but it can make a problem easier to solve by the MILP models
(for example none of the PB-R models could solve a problem with M = 8, N =
35, br ≡ 2, K = 8, but they could all solve the problem in a few seconds when
the number of palettes was increased to 9).

6. Increasing the number of buffers between the machines from 0 to 1 can decrease
the optimal value of a problem and it dramatically decreases the computational
time that the MILP models need to solve the problems. (In several instances all
three models could solve the problem in a few seconds with br ≡ 1 which they
were unable to solve in 3,600s with zero buffer size).
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