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Abstract This paper considers a two-warehouse fuzzy-stochastic mixture inventory
model involving variable lead time with backorders fully backlogged. The model is
considered for two cases—without and with budget constraint. Here, lead-time demand
is considered as a fuzzy random variable and the total cost is obtained in the fuzzy
sense. The total demand is again represented by a triangular fuzzy number and the fuzzy
total cost is derived. By using the centroid method of defuzzification, the total cost
is estimated. For the case with fuzzy-stochastic budget constraint, surprise function
is used to convert the constrained problem to a corresponding unconstrained problem
in pessimistic sense. The crisp optimization problem is solved using Generalized
Reduced Gradient method. The optimal solutions for order quantity and lead time are
found in both cases for the models with fuzzy-stochastic/stochastic lead time and the
corresponding minimum value of the total cost in all cases are obtained. Numerical
examples are provided to illustrate the models and results in both cases are compared.
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188 D. Panda et al.

1 Introduction

In the modern production/inventory management, the strategy of lead-time reduction
has received a great deal of attention by the researchers. Due to Tersine (1982), lead
time usually consists of the following components: order preparation, order transit,
supplier lead time, delivery time and setup time.

Although most of the early literatures dealing with inventory problems viewed lead
time as an uncontrollable variable [see, e.g., Naddor (1966) and Silver and Peterson
(1985)], however in some practical situations, lead time can be reduced by controlling
some or all of its components. To reduce lead time, Liao and Shyu (1991) first presented
a continuous review inventory model in which the order quantity is predetermined and
lead time is a unique variable that can be controlled by paying extra crashing cost. This
model has been extended by Ben-Daya and Raouf (1994) to include both lead time
and order quantity as decision variables. Later, Ouyang et al. (1996) developed a more
general model, where they extended Ben-Daya and Raouf (1994) by allowing shortages
and considered that only a fraction of the demand during the stock out period can be
backordered. The lead time demand normally is considered as a random variable.

But due to changing scenario, it would be better to represent the mean lead time
demand by a fuzzy number than to express it by a deterministic value. Thus the lead
time demand is represented by a fuzzy random variable, based on the concept proposed
by Puri and Ralescu (1986). Also, the annual average demand, due to the fact that it
may fluctuate a little in an unstable environment and is difficult to assess by a crisp
value, is represented as a fuzzy number (Chang et al. 2006a).

Due to the scarcity of the storage space at market places, retailers normally maintain
two warehoses—one showroom (OW) at the market place and one rented warehouse
(RW) little away from the market place to store the items. In the literature, a lot of work
(cf. Hartely 1976; Sarma 1987; Bhunia and Maiti 1998; Kar et al. 2001; Zhou and Yang
2003) has been reported on two warehouse inventory system in crisp environment.
Maiti and Maiti (2006, 2007), Rong et al. (2008a,b) have published papers on two
warehouse system in fuzzy environment taking fuzzy constraints and fuzzy lead time.
Recently, Rong et al. (2008a,b) has formulated and solved a single warehouse multi-
retailers mixture inventory distribution model for a single item involving controllable
lead-time with backorder and lost sales, considering lead-time demands of retailers to
be uncertain in both stochastic and fuzzy sense.

In recent years some research work have been done based on lead time. Ouyang
and Chuang (2000) considered a periodic review inventory model involving variable
lead time with a service level constraint. Ouyang and Yao Ouyang and Yao (2002)
developed a minimax distribution free procedure for mixed inventory model involving
variable lead time with fuzzy demand. Huq et al. (2006) discussed a simulation study
for a multi-product two echelon inventory replacement system with both one and
two warehouse systems. Chang et al. (2006a,b) studied some integrated vendor-buyer
cooperative inventory models with controllable lead time and ordering cost reduction.
Wu et al. Wu et al. (2007) considered integrated vendor–buyer inventory system with
sublot sampling inspection policy and controllable lead time. Recently, Rong and
Maiti (2010) presented a two-warehouse inventory model with stochastic demand,
controllable lead time and evaluated fuzzy present value of the profit.
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Fuzzy mixture two warehouse inventory model 189

Demand may be uncertain in both fuzzy and stochastic sense. Till now, researchers
have considered lead time demand to be either fuzzy or stochastic in single warehouse
model. A very few (Chang et al. 2006a etc.) researchers have considered fuzzy random
lead time demand in single warehouse inventory problem. None has considered fuzzy-
stochastic lead time demand for two warehouse inventory models. This research paper
is prepared to fill up this gap.

In this paper, we consider a two warehouse inventory model with fuzzy-stochastic
lead time demand. As usual, the replenishment is first placed in OW (i.e, the market
warehouse) and after that, the rest amount is kept at the little away rented warehouse
(RW). The item is transferred from RW to OW continuously. We consider two cases.
In first case we discuss the models in crisp sense and in second case we discuss
that in fuzzy sense. This paper has been developed by assumption that the expected
value of the random lead time demand must be fuzzy because the lead time length
is uncertain. For this assumption, the random lead time demand must be converted
to fuzzy random lead time demand because realization of a fuzzy random variable is
a fuzzy set/number. We solved the models without and with fuzzy-stochastic budget
constraint. Here, shortages are fully backlogged. The fuzzy total cost is defuzzified
using the centroid method of defuzzification and the crisp problems are solved using
GRG method. For the case with constraint, the surprise function is used to convert
the constrained optimization problem to the corresponding unconstrained problem.
The optimum order quantities are obtained for discrete values of lead time and hence
the optimal lead time and order quantities are obtained. The results, obtained in two
different cases, are compared.

This article is organized as follows. In Sect. 2, assumptions and notations are given.
In Sect. 3, we develop the model in two cases considering lead time demand as sto-
chastic variable (i.e. crisp stochastic variable). In Sect. 4, we develop the fuzzy mixture
inventory model involving fuzzy-stochastic lead time. Using the centroid method of
defuzzification, we derive the estimate of total cost in the fuzzy sense. In Sect. 5, we
derive the optimal order quantity and the optimal lead time by minimizing the estimate
of total cost in the fuzzy/crisp senses. Numerical examples are provided to illustrate
the models. In Sect. 6, results are discussed. In Sect. 7, a conclusion is given. The
paper is concluded by citing some references.

2 Notations and assumptions

To develop the proposed two warehouse inventory model, the following notations and
assumptions are used.

2.1 Notation

D Average annual demand
μ Demand per day
σ Standard deviation of daily demand
p purchase price per unit

h1 Holding cost per unit per year in own warehouse (OW )
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190 D. Panda et al.

h2 Holding cost per unit per year in rented warehouse (RW )
� Fixed penalty cost per unit short
Q Order quantity (decision variable)
L Length of lead time (decision variable)
A Fixed ordering cost per order
r Reorder point
X Lead time demand, which is normally distributed with finite mean µL and stan-

dard deviation σ
√

L , where μ and σ denote the mean and standard deviation of
daily demand

x+ Maximum of x and 0 i.e, x+ = max{x, 0}
E(·) Mathematical expectations

2.2 Assumptions

(1) The retailer has two warehouses; one is own warehouse (OW ) at market place
and another is rented warehouse (RW ) at a little distant place.

(2) Shortages allowed and backlogged fully.
(3) Inventory is continuously reviewed. Replenishment is made whenever the inven-

tory level of OW falls to the reorder point r .
(4) The reorder point r in OW is the expected demand during lead-time plus safety

stock (SS) and SS = k. (standard deviation of lead-time demand), i.e, r =
μL+kσ

√
L, k is the safety factor and satisfying P(X > r) = P(Z > k) = q, Z

represents the standard normal random variable and q represents the allowable
stock-out probability during lead-time L .

(5) The lead time L has n mutually independent components each having a different
crashing cost for reducing lead time. The j-th component has a minimum duration
a j and normal duration b j and a crashing cost per unit time c j . Furthermore, we
assume that c1 ≤ c2 ≤ · · · ≤ cn .

(6) The components of lead time are crashed one at a time starting with the component
of least ci and so on.

(7) If L0 = ∑n
j=1 b j and Li be the length of lead-time for buyer’s with compo-

nents 1, 2, . . . , i crashed to their minimum duration, then Li = ∑n
j=1 b j −

∑i
j−1 (b j − a j ), i = 1, 2, . . ., n; and the lead time crashing cost per cycle for

buyer’s is C(L)for a given L ∈ [Li , Li−1] is given by

C(L) = ci [Li−1 − L] +
i−1∑

j=i

c j (b j − a j ) and C(L0) = 0 (1)

3 Mathematical modeling in crisp sense

After purchasing the quantity Q, W amount is kept in OW and the remaining amount
Q − W + X − r are transformed to RW which is located at some distant from the
market place (OW ). The supply is made from OW and it is replenished continuously
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Fig. 1 Level of inventory vs. time

transforming items from RW to OW . In other words the release from RW to OW
is continuous. When all items of RW are transferred to OW , then the stock level of
OW starts reducing to the level r . The maximum and minimum inventory at RW are
respectively (Q − W + r − μL) and 0 (see Fig. 1); so the average inventory at RW is

= 1

2
(Q − W + r − μL)

(Q − W + r − μL)

μ

μ

Q

= 1

2Q
(Q − W + r − μL)2 = 1

2Q
(Q − W + kσ

√
L)2.

The average holding cost in RW is

AHCRW = h2

2Q
(Q − W + kσ

√
L)2.

The average holding cost in OW is

AHCOW = 1

T

[

W xT1xh1 + 1

2
{W + (r − μL)}(T − T1)xh1

]

= μ

Q

[

W
(Q − W + r − μL)

μ
xh1

+ 1

2μ (W + r − μL) x (W − r + μL) xh1

]

[T μ = Q]

= h1

Q

[

W
(

Q − W + kσ
√

L
)

+ 1

2
(W + r − μL) (W − r + μL)

]

= h1

Q

[

W Q − 1

2
(W − kσ

√
L)2

]

.

The above calculation is justified by the Remark 1 (see “Appendix 1”).
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Total expected annual cost,

E AC = A
D

Q
+ h2

2Q
(Q−W +kσ

√
L)2+ h1

Q

[

W Q− 1

2
(W −kσ

√
L)2

]

+ D

Q

[
�E(X − r)+ + C(L)

]

Now, E(X − r)+ =
∞∫

r

(x − r) f (x)dx [By definition]

= σ
√

L�(k) [using r = μL + kσ
√

L].

where, �(k) ≡ φ(k) − k[1 − �(k)], and φ,� denote the standard normal p.d.f and
cumulative distribution function (c.d.f), respectively (for proof, see “Appendix 2”).

3.1 Unconstrained stochastic (crisp) model

In this case, the problem is

Minz = A
D

Q
+ h2

2Q
(Q − W + kσ

√
L)2 + h1

Q

[

W Q − 1

2
(W − kσ

√
L)2

]

+ D

Q

[
�E(X − r)+ + C(L)

]
, (2)

with E(X − r)+ = σ
√

L�(k), �(k) ≡ φ(k) − k[1 − �(k)].

3.2 Constrained stochastic (crisp) model

Let μL = μL and σL = σ
√

L , where μ is an estimate(known value) i.e., μL is an
estimate. If the purchasing cost is paid at the time of order received, then the problem
can be formulated by objective function with budget constraint,

MinE AC = A
D

Q
+ h2

2Q
(Q − W + kσ

√
L)2 + h1

Q

[

W Q − 1

2
(W − kσ

√
L)2

]

+ D

Q

[
�E(X − r)+ + C(L)

]

subject to

p(Q + r − X) ≤ B (3)

Since lead-time demand X is a random variable, we use the chance-constraint
programming technique, developed by Charnes and Cooper (1959). Let λ be the prob-
ability of non-violation of the constraint (3), which is a real value chosen from [0,1].
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Then the above constraint can be written as follows:

Pr ob [p(Q + r − X) ≤ B] ≥ λ

⇒ Pr ob [B + pX ≥ p(Q + r)] ≥ λ

⇒ E(B + pX)

p(Q + r)
≥ λ [By Markov inequality; see “Appendix 3”]

⇒ B + pE(X) ≥ λp(Q + r)

⇒ p{E(X) − λr} + B ≥ λpQ

⇒ p
(
μL − λμL − λkσ

√
L
)

+ B ≥ λpQ

⇒ p(1 − λ)μL + B ≥ pλkσL + pλQ

Therefore the above constrainedcrisp stochastic problem is reduced to

Min E AC = A
D

Q
+ h2

2Q
(Q − W + kσ

√
L)2 + h1

Q

[

W Q − 1

2
(W − kσ

√
L)2

]

+ D

Q

[
�E(X − r)+ + C(L)

]
(4)

subject to,

p(1 − λ)μL + B ≥ pλkσL + pλQ.

4 Mathematical modeling in fuzzy sense

4.1 Unconstrained fuzzy stochastic model: (ref. Chang et al. 2006a,b)

We consider the fuzzy mixture inventory model in this article. Let (R, B, P) be the
probability space, where R is the set of real numbers, B is the Borel field on R, and P
is a probability measure. The lead-time demand, X , in Sect. 2 is a random variable on
(R, B, P), which is assumed to be normally distributed with mean μL and standard
deviation σ

√
L , i.e, X ∼ N (μL , σ

√
L). Using, μL = μL and σL = σ

√
L , we have

pdf of X as

f (x) = 1√
2πσL

e
− (x−μL )2

2σ2
L , −∞ < x < ∞ (5)

X is called the crisp random variable. Corresponding to X , let X̃ be a fuzzy random
variable. From the definition of Li (Assumption 7), we have min0≤i≤n Li = Ln

and max0≤i≤n Li = L0 and hence Ln ≤ L ≤ L0. In the uncertain and/or unstable
environments, for any L ∈ [Li , Li−1], i = 1, 2, . . . , n, it is difficult for the decision-
maker to determine the lead time demand (LTD) with a single value E(X) = μL , rather
it may be easier to determine LTD by an interval [μL −	1, μL +	2], where 	1,	2 are
determined by the decision-maker and should satisfy the conditions: 0 < 	1 < μLn
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and 0 < kσL0 < 	2 (see Eqs. (8) and (9) in the following). Since [μL −	1, μL +	2]
is an interval, so the decision maker must take an appropriate value (we denote it by
μ̂L ) from the inside of this interval as the estimate of LTD. If the chosen value is
μL , it is the same as E(X) = μL of the crisp case, and then the error of estimation∣
∣μ̂L − μL

∣
∣ is 0. Moreover, if the chosen value is located in the left-hand side (LHS)

or right-hand side (RHS) of μL , then further the chosen value μ̂L is away from μL ,
the larger the error of estimation

∣
∣μ̂L − μL

∣
∣, and the largest errors will occur at the

end points of the interval [μL − 	1, μL + 	2].
In the fuzzy viewpoint, we may employ the confidence level instead of error. For

the case of μ̂L = μL the error is 0, and the confidence level is the largest and we let it
be 1. In contrast, the further the value μ̂L is away from μL , the smaller the confidence
level to be. At the end points of the interval, i.e., μ̂L = μL − 	1 and μ̂L = μL + 	2,
the confidence level is in the smallest and we let it be 0.

Next, let us consider the following triangular fuzzy number,

μ̃L = (μL − 	1, μL , μL + 	2) (6)

where 0 < 	1 < μLn and 0 < kσL0 < 	2 [see Eqs. (8) and (9)]. The membership
grade of μ̃L is 1 at point μL , decreases as the point is away from μL , and reaches 0 at
the end points μL − 	1 and μL + 	2. Since the properties of membership grade and
confidence level are same, consequently, when the membership grade is treated as the
confidence level, corresponding to the interval [μL − 	1, μL + 	2], it is reasonable
to set the triangular fuzzy number μ̃L as Eq. (6). Utilizing the centroid method to
diffuzzify μ̃L , we obtain

C(μ̃L) = μL + 1

3
(	2 − 	1) = 2

3
μL + 1

3
	2 + 1

3
(μL − 	1) > 0. (7)

C(μ̃L) is regarded as the estimate of LTD in the fuzzy sense and C(μ̃L) ∈ [μL −
	1, μL + 	2]. For the special case 	1 = 	2, we have C(μ̃L) = μL . Furthermore,
from the assumption that the reorder point r = μL + kσL , we set R̄ is a fuzzy point
with membership function mr̃ (x) = 1 if x = r , and mr̃ (x) = 0 if x 
= r . We then
obtain the following triangular fuzzy number:

μ̃L(−)r̃ = (μL − r − 	1, μL − r, μL − r + 	2). (8)

Note that r̃ is identical with the fuzzy number r̃ = (r, r, r), and the arithmetic of
fuzzy numbers can be found in several textbooks., e.g., Kaufmann and Gupta (1991).

From the above, 0 < 	1 < μLn and 0 < r − μL = kσL < kσL0 < 	2, we have

μL − r − 	1 < μL − r; 0 < μL − r + 	2. (9)

From Puri and Ralescu (1986), the fuzzy random variable can be defined as a
mapping from R of probability space (R, B, P) to a family of membership functions.
Corresponding to the crisp random variableX , we set the fuzzy random variable X̃ as

X̃ : s(∈ �) → X̃(s), (10)
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where X̃(s) is the membership function. Let the fuzzy set that has X̃(μL) as member-
ship function be X̃∗(μL) = μ̃L [as defined in Eq. (6)].

Next, let us consider Y = X − r , then we can obtain the pdf of random variable Y
as:

g(y) = 1√
2πσL

e
− (y+r−μL )2

2σ2
L , −∞ < y < ∞. (11)

Corresponding to the crisp random variable Y , fuzzy random variable Ỹ is defined
as:

Ỹ : t (∈ �) → Ỹ (t), (12)

where Ỹ (t) is the membership function. Also, let the fuzzy set that has Ỹ (μL) as
membership function be Ỹ (μL) = X̃∗(μL)(−)r̃ = μ̃L(−)r̃ [as defined in Eq. (8)].
Then, we have

Ỹ (μL)(y) =

⎧
⎪⎨

⎪⎩

y−(μL−r−	1)
	1

, μL − r − 	1 ≤ y ≤ μL − r
(μL−r+	2)−y

	2
, μL − r ≤ y ≤ μL − r + 	2,

0, otherwise

(13)

The picture is shown in Fig. 2. Ỹ (μL)(y) is a continuous function on−∞ < y < ∞.
From the crisp probability theory, we note that Ỹ (μL)(Y ) is a crisp random variable.
From Fig. 1 and y ≥ 0, we can derive the expectation

E(Ỹ (μL )(Y ))+ =
μL−r+	2∫

0

⎛

⎝ (μL − r + 	2) − y

	2
x

1√
2πσL

e
− (y+r−μL )2

2σ2
L

⎞

⎠dy(> 0)

(14)

Let w = y+r−μL
σL

, φ(a) = 1√
2π

e− a2
2 , and �(a) = 1√

2π

∫ a
−∞ e− w2

2 dw, then from
r = μL + kσL , we obtain (see “Appendix 4”)

E(Ỹ (μL)(Y ))+ = 1√
2π	2

	2
σL∫

k

(	2 − σLw)e− w2
2 dw

= �

(
	2

σL

)

− �(k) + σL

	2

[

φ

(
	2

σL

)

− φ(k)

]

, (15)

where φ(·) and �(·)is the pdf and the cumulative distribution function (cdf) of the
standard normal distribution, respectively.

Let E(Ỹ )+ = E(Ỹ (μL)(Y ))+, then when the term E(X − r)+ in Eq. (2) is changed
to beE(Ỹ )+, we obtain the following theorem.
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))((
~

yLY μ

1

0 2Δ+−rLμrL −μ1Δ−−rLμ

Fig. 2 Triangular fuzzy number

Theorem 1 In Eq. (2), when the crisp random variable X with the probability dis-
tribution N (μL , σL) is changed to be the fuzzy random variable X̃ (as expressed in
Eq. (10)), we obtain the total expected annual cost in the fuzzy sense

E AC1(Q, L;	1,	2) = D

Q

[
A + �E(Ỹ )+ + C(L)

]
+ h2

2Q

(
Q − W + kσ

√
L
)2

+h1

Q

[

W Q − 1

2

(
W − kσ

√
L
)2

]

, (16)

for Q > 0, L ∈ [Li , Li−1], i = 1, 2, . . . , n.

As mentioned earlier, due to various uncertainties, the annual average demand may
have a little fluctuation, especially in a perfect competitive market. Therefore, it is
difficult for the decision-maker to assess the annual average demand by a crisp value
D, but easier to determine it by an interval [D −	3, D +	4]. Similar to the previous
approach, corresponding to the interval [D − 	3, D + 	4], we can set the following
triangular fuzzy number

D̃ = (D − 	3, D, D + 	4) (17)

where, 	3 and 	4 are determined by the decision-maker and should satisfy the con-
ditions: 0 < 	3 < D and 0 < 	4.

Now, we get the following by centroid method:

C
(

D̃
)

= D + 1

3
(	4 − 	3) > 0, (18)

which is the estimate of total demand in the fuzzy sense.

Theorem 2 Fuzzifying the annual average demand D in Eq. (16) to be the triangular
fuzzy number D as shown in Eq. (17), then we obtain:
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(i) the fuzzy total cost as

F(Q,L)(D̃) = D̃

Q

{

A + �E
(

Ỹ
)+ + C(L)

}

+ h2

2Q

(
Q − W + kσ

√
L
)2

+h1

Q

[

W Q − 1

2

(
W − kσ

√
L
)2

]

(19)

(ii) the estimate of total expected annual cost in the fuzzy sense as

K (Q, L;	1,	2,	3,	4) ≡ C
(

F(Q,L)

(
D̃

))
= E AC1(Q, L;	1,	2)

+	4 − 	3

3Q

{

A + �E
(

Ỹ
)+ + C(L)

}

, (20)

for Q > 0, L ∈ [Li , Li−1], i = 1, 2, . . . , n.

Proof (i) For each Q > 0, L ∈ [Li , Li−1], i = 1, 2, . . . , n, from Eq. (16), we set
F(Q,L) (D) ≡ E AC1(Q, L;	1,	2) and fuzzyfy D to be the fuzzy number D̃
as in Eq. (17), then the result shoed in Eq. (19) is obtained.

(ii) Since Q > 0 and A + �E
(

Ỹ
)+ + C(L) >0, hence we can get the following

triangular number:

F(Q,L)(D̃) = (F1, F2, F3), (21)

where

F1 = D − 	3

Q

{

A + �E
(

Ỹ
)+ + C(L)

}

+ h2

2Q

(
Q − W + kσ

√
L
)2

+h1

Q

[

W Q − 1

2

(
W − kσ

√
L
)2

]

= E AC1(Q, L;	1,	2) − 	3

3Q

{

A + �E
(

Ỹ
)+ + C(L)

}

,

F2 = E AC1(Q, L;	1,	2),

F3 = D + 	4

Q

{

A + �E
(

Ỹ
)+ + C(L)

}

+ h2

2Q

(
Q − W + kσ

√
L
)2

+h1

Q

[

W Q − 1

2

(
W − kσ

√
L
)2

]

= E AC1(Q, L;	1,	2) + 	4

3Q

{

A + �E
(

Ỹ
)+ + C(L)

}

.

123



198 D. Panda et al.

By centroid method F(Q,L)(D̃) is defuzzified to

C
(

F(Q,L)

(
D̃

))
= 1

3
(F1 + F2 + F3) . (22)

��
Substituting the values of F1, F2 and F3 in Eq. (22) we get the required result which

is denoted by K (Q, L; 	1,	2,	3,	4), as shown in Eq. (20).

4.2 Constrained fuzzy-stochastic model

For the fuzzy random lead-time demand the inequality in the problem, described by
(4), becomes

p(1 − λ)μ̃L + B ≥ pλkσL + pλQ.

Then the problem (4) reduces to

Min E AC = A
D

Q
+ h2

2Q
(Q − W + kσ

√
L)2 + h1

Q

[

W Q − 1

2
(W − kσ

√
L)2

]

+ D

Q

[
�E(X − r)+ + C(L)

]
(23)

subject to,

p(1 − λ)μ̃L + B ≥ pλkσL + pλQ.

Denoting p(1 − λ)μ̃L + B by ξ̃ = (ξ1, ξ2, ξ3) and pλkσL + pλQ by a the above
inequality becomes

ξ̃ ≥ a.

Following possibility theory (cf. Liu and Iwamura 1998a,b), the fuzzy membership
function is given as follows.

Pos
(
ξ̃ ≥ a

)
=

⎧
⎨

⎩

1, a ≤ ξ2
ξ3−a
ξ3−ξ2

, ξ2 ≤ a ≤ ξ3

0, a ≥ ξ3

.

The surprise function sξ for the membership function Pos(ξ̃ ≥ a), is given by
(cf. Neumaier 2003)

sξ =
[{

Pos
(
ξ̃ ≥ a

)}−1 − 1

]2

.
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Introducing the above surprise function, we have the above problem as follows

Min E ACc = A
D

Q
+ h2

2Q
(Q − W + kσ

√
L)2 + h1

Q

[

W Q − 1

2
(W − kσ

√
L)2

]

+ D

Q

[
�E(X − r)+ + C(L)

] +
(

a − ξ2

ξ3 − a

)2

,

where,

(ξ1, ξ2, ξ3) = {p(1 − λ)(μL − 	1)+B, p(1 − λ)μL +B, p(1 − λ)(μL +	2) + B} ,

a = pλkσL + pλQ.

Now considering annual demand as fuzzy as considered in the previous problem, the
above problem becomes

Min E AC2 = A
D

Q
+ h2

2Q
(Q − W + kσ

√
L)2 + h1

Q

[

W Q − 1

2
(W − kσ

√
L)2

]

+ D

Q

[
�E(X − r)+ + C(L)

] + 	4 − 	3

3Q

{

A + �E
(

Ỹ
)+ + C(L)

}

+
(

a − ξ2

ξ3 − a

)2

, (24)

where,

(ξ1, ξ2, ξ3) = {p(1 − λ)(μL − 	1)+B, p(1 − λ)μL +B, p(1 − λ)(μL + 	2)+B},
a = pλkσL + pλQ.

5 Optimal solution of the models

5.1 Optimal solution of the unconstrained fuzzy stochastic model (cf. Sect. 4.1)

The solution technique (ref. Chang et al. 2006a,b) is discussed for finding the optimal
order quantity and the optimal lead time giving the minimum value of the total expected
annual cost in the fuzzy sense, while the decision-maker takes 	1,	2,	3,	4 satis-
fying the conditions:

0 < 	1 < μLn ,	2 > kσL0 > 0, 0 < 	3 < D and 0 < 	4.
Let S = {L|L ∈ [Li , Li−1], i = 1, 2, . . . , n}. Also, from Eq. (1), let

Ci (L) ≡ C(L) = ci [Li−1 − L] +
i−1∑

j=i

c j (b j − a j ),

i = 1, 2, . . . , n and
0∑

j=i

c j (b j − a j ) = 0.
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From Eqs. (18) and (22), let

Gi (Q, L;	1,	2,	3,	4)= D

Q

[
A+�E(Ỹ )++Ci (L)

]
+ h2

2Q

(
Q − W + kσ

√
L
)2

+h1

Q

[

W Q − 1

2

(
W − kσ

√
L
)2

]

+	4 − 	3

3Q

{

A + �E
(

Ỹ
)+ + Ci (L)

}

, (25)

for Q > 0, L ∈ [Li , Li−1], i = 1, 2, . . . , n.
Then the mathematical expression of our problem is to find

M K ≡ min
Q>0,L∈S

K (Q, L;	1,	2,	3,	4) = min
L∈S

min
Q>0

K (Q, L; 	1,	2,	3,	4)

= min
1≤i≤n

min
L∈[Li ,Li−1]

min
Q>0

Gi (Q, L; 	1,	2,	3,	4) (26)

We first find minQ>0 Gi (Q, L;	1,	2,	3,	4).
For fixed i ∈ {1, 2, . . . , n} and L ∈ [Li , Li−1], we take the first and second partial

derivatives of Eq. (25) with respect to Q, and obtain

∂

∂ Q
Gi = − D

Q2

{

A + �E
(

Ỹ
)+ + Ci (L)

}

− h2

2Q2

(
Q − W + kσ

√
L
)2

+h2

Q

(
Q − W + kσ

√
L
)

− h1

Q2

[

W Q − 1

2

(
W − kσ

√
L
)2

]

+h1W

Q
− 	4 − 	3

3Q2

{

A + �E
(

Ỹ
)+ + Ci (L)

}

(27)

and

∂2

∂ Q2 Gi = 2D

Q3

{

A + �E
(

Ỹ
)+ + Ci (L)

}

+ h2

Q3

(
Q − W + kσ

√
L
)2

−2h2

Q2

(
Q − W + kσ

√
L
)

+ h2

Q
+ 2h1

Q3

[

W Q − 1

2

(
W − kσ

√
L
)2

]

−2h1

Q2 W + 2

3

	4 − 	3

Q3

{

A + �E
(

Ỹ
)+ + Ci (L)

}

= 2Hi

3Q3 (3D + 	4 − 	3) − h1

Q3

(
W − kσ

√
L
)2

+ h2

Q3

(
W − kσ

√
L
)2

, where Hi = A + �E
(

Ỹ
)+ + Ci (L)

= 2Hi

3Q3 (3D + 	4 − 	3) − h1 − h2

Q3

(
W − kσ

√
L
)2

(28)
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We choose 	3,	4 such that

V = 2Hi

3
(3D + 	4 − 	3) − (h1 − h2)

(
W − kσ

√
L
)2

> 0. (29)

Now under the condition (29), ∂2

∂ Q2 Gi (Q, L;	1,	2,	3,	4) > 0. Thus for fixed
i ∈ {1, 2, . . . , n} and L ∈ [Li , Li−1], the minimum value of Gi (Q, L; 	1,	2,

	3,	4) will occur at the point Q that satisfies ∂
∂ Q Gi (Q, L;	1,	2,	3,	4) = 0.

We solve this equation for Q, which is denoted by Q(0)
i (L), as follows:

∂

∂ Q
Gi (Q, L;	1,	2,	3,	4) = 0

⇒
(

	4 − 	3

3
+ D

)

Hi + h2

2

(
Q − W + kσ

√
L
)2

+ h1

[

W Q − 1

2

(
W − kσ

√
L
)2

]

= h2 Q
(

Q − W + kσ
√

L
)

+ h1 QW

⇒ Q(0)
i (L) =

√
2Hi

3h2
(	4 − 	3 + 3D) − (h1 − h2)

h2

(
W − kσ

√
L
)2

(30)

The minimum value of Gi (Q, L;	1,	2,	3,	4) is Gi (Q(0)
i (L), L;	1,	2,	3,	4)

i.e, Gi (Q(0)
i (L), L;	1,	2,	3,	4) = minQ>0 Gi (Q, L;	1,	2,	3,	4).

Therefore from Eq. (26), the problem is reduced to

M K = min
1≤i≤n

min
L∈[Li ,Li−1]

Gi

(
Q(0)

i (L), L;	1,	2,	3,	4

)
. (31)

Next, for fixed i ∈ {1, 2, . . . , n}, by the numerical analysis method, we can find
L(0)

i ∈ [Li , Li−1] such that

Gi

(
Q(0)

i (L(0)
i ), L(0)

i ; 	1, 	2, 	3, 	4

)
= min

L∈[Li ,Li−1]
Gi

(
Q(0)

i (L), L; 	1, 	2, 	3, 	4

)
.

(32)

Furthermore, for each i = 1, 2, . . . , n, we evaluate the value of Gi (Q(0)
i (L(0)

i ), L(0)
i ;

	1, 	2, 	3,	4) and find min1≤i≤n Gi (Q(0)
i (L(0)

i ), L(0)
i ; 	1, 	2, 	3, 	4).

If Gm(Q(0)
m (L(0)

m ), L(0)
m ; 	1,	2,	3, 	4) = min1≤i≤n Gi (Q(0)

i (L(0)
i ), L(0)

i ; 	1,

	2, 	3, 	4), then we have

M K = Gm

(
Q(0)

m

(
L(0)

m

)
, L(0)

m ; 	1, 	2, 	3, 	4

)
. (33)

Thus the optimal lead time is L∗ = L(0)
m and the optimal order quantity is Q∗ = Q(0)

m (L(0)
m ).
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5.1.1 Numerical example of the unconstrained fuzzy stochastic model

We use the following data to find the results of the proposed model and compare them with those
obtained from the crisp model. D = 730 units /year; A = $200 per order; W = 30; h1 = $25
per unit per year; h2 = $20 per unit per year; � = $ 60 per unit short; σ = 7 units /week;
q = 0.2 (hence k = 0.8416) and the lead time, having three components, is given in Table 1.

Using the data given in Table 1, we get the following length of lead time with some com-
ponents crashed to their minimum duration: L0 = 70 days, L1 = 56 days, L2 = 42 days,
L3 = 35 days, L4 = 28 days, Hence L4 = min Li = 28 days(=4 weeks), L0 = max Li = 70
days(=8 weeks), 0 < 	1 < μL4 = 56 and 	2 > kσL0 = kσ

√
L = 18.62; 0 < 	3 < D =

730 and 0 < 	4. Also, the lead time crashing costs are as follows.
For fixed i ∈ {1, 2, . . . , n} and L ∈ [Li , Li−1], from Eq. (30)

Q(0)
i (L) =

√
2Hi

3h2
(	4 − 	3 + 3D) − (h1 − h2)

h2

(
W − kσ

√
L
)2

=
√

1

30
(	4−	3+2190)

(

200+60E
(

Ỹ
)++Ci (L)

)

− 1

4
(30 − 18.62)2.

Corresponding total cost

Gi

(
Q(0)

i (L), L; 	1, 	2, 	3, 	4

)
= 730

Q(0)
i (L)

[
200 + 60E(Ỹ )+ + Ci (L)

]

+ 10

Q(0)
i (L)

(
Q(0)

i (L)−30+18.62
)2+ 25

Q(0)
i (L)

[

30Q(0)
i (L) − 1

2
(30 − 18.62)2

]

+ 	4 − 	3

3Q(0)
i (L)

[
200 + 60E(Ỹ )+ + Ci (L)

]
, L ∈ [Li , Li−1], i = 1, 2, 3, 4,

where

E(Ỹ )+ = �

(
	2

7
√

L

)

− �(0.8416) + 7
√

L

	2

[

φ

(
	2

7
√

L

)

− φ (0.8416)

]

.

It is further noticed that 	1, 	2, 	3 and 	4 are given parameters. When L is specified,
we can use the formulas listed in Table 2 to calculate Ui (L), and by checking the standard
normal distribution table or using the software such as Microsoft Excel to find the values of
�(

	2
7
√

L
), �(0.8416), φ(

	2
7
√

L
) and φ(0.8416), then calculate E(Ỹ )+. Once Ci (L) and E(Ỹ )+

are obtained, the values of Q(0)
i (L) and Gi (Q(0)

i (L), L; 	1, 	2, 	3, 	4), can be found easily.

Table 1 Lead time data
Lead time Normal Minimum Unit crashing
Component i duration bi (days) duration ai (days) cost ci ($/day)

1 20 6 0.4

2 20 6 1.2

3 16 9 5.0

4 14 7 8.0
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Table 2 Lead time crashing cost

i Ci (L)

1 0.4(70 − L) = 28 − 0.4L for 56 ≤ L ≤ 70

2 0.4 x14 + 1.2x(70 − L) = 72.80 − 1.2L for 42 ≤ L ≤ 56

3 0.4 x14 + 1.2x14 + (42 − L)x5.00 = 232.4 − 5L for 35 ≤ L ≤ 42

4 0.4 x14 + 1.2x14 + 35x5.00 + (35 − L)x8.00 = 337.40 − 8L for 28 ≤ L ≤ 35

Table 3 Optimal solutions of unconstrained fuzzy-stochastic model for different values of L

L(days) Ci (L) E(Ỹ )+ Q(0)
i (L) Gi

(
Q(0)

i (L), L; 	1, 	2, 	3,	4

)

70 0.0 0.0094 121.69 2956.48

69 0.4 0.0099 121.82 2956.34

68 0.8 0.0103 121.95 2956.18

67 1.2 0.0108 122.07 2956.00

66 1.6 0.0113 122.20 2955.81

65 2.0 0.0118 122.33 2955.60

64 2.4 0.0123 122.46 2955.37

63 2.8 0.0129 122.58 2955.12

62 3.2 0.0134 122.71 2954.85

61 3.6 0.0140 122.84 2954.56

60 4.0 0.0146 122.96 2954.25

59 4.4 0.0153 123.09 2953.92

58 4.8 0.0159 123.22 2953.57

57 5.2 0.0166 123.35 2953.20

56 5.6 0.0173 123.48 2952.81

55 6.8 0.0180 123.84 2957.18

54 8.0 0.0188 124.21 2961.51

50 12.8 0.0220 125.68 2978.39

42 22.4 0.0300 128.57 3010.04

41 27.4 0.0312 130.02 3035.50

35 57.4 0.0394 138.39 3181.25

34 65.4 0.0409 140.53 3220.28

28 113.4 0.0515 152.76 3440.96

The optimal values are indicated in bold

For example, consider a case where	1 = 10, 	2 = 25, 	3 = 30, 	4 = 60. For i = 1,

L ∈ [L1, L0] = [56,70], using C1(L) = 28 − 0.4L and above procedure, we obtain the
results listed in Table 3. Here, for L ∈ [56,70], V > 0 is satisfied. From Table 3 we find that
the minimum value of G1(Q(0)

1 (L), L; 	1, 	2, 	3, 	4), for L ∈ [56, 70], is $2952.81, which

occurred at L = 56 days, and Q(0)
1 (L) = 123.48 units. From Eq. (32), this solution is denoted by

L(0)
1 = 56, Q(0)

1 (L(0)
1 ) = 123.48 and G1(Q(0)

1 (L(0)
1 ), L(0)

1 ; 	1, 	2, 	3, 	4) = $2952.81.
For i = 2, L ∈ [L2, L1] = [42, 56], C2(L)= 72.80 − 1.2L; for i = 3, L ∈ [L3, L2] =

[35, 42], C3(L) = 232.4 − 5L and for i = 4, L ∈ [L4, L3] = [28, 35], C4(L)= 337.40 − 8L ,
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Table 4 The optimum solutions
of unconstrained crisp model for
different value of L

The optimal values are indicated
in bold

L(days) Ci (L) Q∗ E AC(Q∗, L∗)

70 0.0 159.35 3709.52

69 0.4 159.19 3703.76

68 0.8 159.04 3697.95

56 5.6 156.99 3623.02

55 6.8 156.98 3620.02

43 21.2 156.75 3577.08

42 22.4 156.71 3572.84

41 27.4 157.55 3586.14

40 32.4 158.38 3599.22

35 57.4 162.40 3661.41

34 65.4 163.85 3686.57

28 113.40 172.16 3828.94

we use the same procedure and obtain the following results: L(0)
2 = 56, Q(0)

2 (L(0)
2 ) = 123.48

and G2(Q(0)
2 (L(0)

2 ), L(0)
2 ; 	1,	2,	3, 	4) = $2952.81; L(0)

3 = 42, Q(0)
3 (L(0)

3 ) = 128.57

and G3(Q(0)
3 (L(0)

3 ), L(0)
3 ;	1, 	2, 	3, 	4) = $3010.04 and L(0)

4 = 35, Q(0)
4 (L(0)

4 ) =
138.39 and G4(Q(0)

4 (L(0)
4 ), L(0)

4 ; 	1, 	2, 	3,	4) = $3181.25.

By comparing the values of Gi (Q(0)
i (L), L; 	1, 	2, 	3, 	4), for i = 1, 2, 3, 4, we

get the minimum value M K = G1(Q(0)
1 (L(0)

1 ), L(0)
1 ; 	1, 	2, 	3, 	4) = G2(Q(0)

2 (L(0)
2 ),

L(0)
2 ; 	1,	2,	3, 	4) = $2952.81. Thus the optimal lead time is L∗ = L(0)

1 = L(0)
2 = 56

days (=8 weeks)., and the optimal order quantity is Q∗ = Q(0)
1 (L(0)

1 ) = Q(0)
2 (L(0)

2 ) = 124
units (truncated).

5.1.2 Optimal solution of the unconstrained crisp stochastic model

Now to compare the results with those obtained from crisp model (crisp random lead-time
demand and crisp annual demand), we first find the optimal solution of crisp model in Table 4.

From the results given in Table 5, we observe that the solution of the crisp model is given
by L∗= 6weeks; Q∗ = 157units(truncated); E AC(Q∗, L∗)= $3572.84.

5.2 Optimal solution of the constrained fuzzy stochastic model (cf. Sect. 4.2)

The problem (24) cannot be solved by the procedure used above, for the first order derivative
with respect to Q considering L fixed wouldn’t give any explicit solution for Q. Therefore in
this case we follow the following indirect way.

We find the optimal value of Q1 minimizing the function E AC2 with the help of tech-
nique, GRG. The corresponding values of other parameters, the surprise function and objective
function, E AC3 are given in Table 6, where

E AC3 = A
D

Q
+ h2

2Q
(Q − W + kσ

√
L)2 + h1

Q

[

W Q − 1

2
(W − kσ

√
L)2

]

+ D

Q

[
�E(X − r)+ + C(L)

] + 	4 − 	3

3Q

{

A + �E
(

Ỹ
)+ + C (L)

}

,
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Table 5 The results of solution of constrained fuzzy-stochasticmodel for different values of L

L(days)Ci (L) E(Ỹ )+ Q(0)
i (L) E AC2 Surprise partE AC3

70 0.0 0.00942 118.38 2957.46 0.058 2957.40

69 0.4 0.00986 118.41 2957.38 0.061 2957.32

68 0.8 0.01033 118.45 2957.28 0.063 2957.22

67 1.2 0.01080 118.48 2957.16 0.066 2957.09

66 1.6 0.01129 118.52 2957.02 0.068 2956.95

65 2.0 0.01180 118.55 2956.87 0.071 2956.80

64 2.4 0.01234 118.31 2956.82 0.000 2956.82

63 2.8 0.01289 118.34 2956.64 0.000 2956.64

62 3.2 0.01345 118.38 2956.43 0.000 2956.43

58 4.8 0.01592 118.53 2955.42 0.000 2955.42

57 5.2 0.01659 118.58 2955.12 0.000 2955.12

56 5.6 0.01729 118.62 2954.80 0.000 2954.80

C2(L) = 72.80 − 1.2L

56 5.6 0.01729 118.62 2954.80 0.000 2954.80

55 6.8 0.0180 118.66 2959.44 0.000 2959.44

54 8.0 0.0187 118.71 2964.04 0.000 2964.04

50 12.8 0.0220 118.90 2982.24 0.000 2982.24

42 22.4 0.0300 119.38 3017.08 0.000 3017.08

C3(L) = 232.4 − 5L

42 22.4 0.0300 119.38 3017.08 0.000 3017.08

41 27.4 0.0312 119.44 3044.83 0.000 3044.83

35 57.4 0.0394 119.90 3209.78 0.000 3209.78

C4(L) = 337.40 − 8L

35 57.4 0.0394 119.90 3209.78 0.000 3209.78

34 65.4 0.0409 119.98 3255.48 0.000 3255.48

28 113.4 0.0515 120.55 3527.04 0.000 3527.04

The optimal values are indicated in bold

Interestingly, it can be seen that for the optimal value of Q, surprise function’s contribution
is zero.

5.2.1 Numerical example of the constrained fuzzy stochastic model

Here, all data remain same as taken in the unconstrained model; only new data taken as B =
1475; p = 12; λ = 0.95.

From Tables 5 and 6 we see that the minimum value of the expected annual cost func-
tion is attained at L = L∗ = 8 weeks. The corresponding value of Q = Q∗ =
119(truncated);E AC3∗ = $2954.80;

5.2.2 Numerical example of the stochastic model with budget constraint

Now to compare the results with those obtained from crisp model (crisp random lead-time
demand and crisp annual demand), we first find the optimal solution of crisp model in Table 6.
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Table 6 Optimal solutions of
constrained crisp model for
different values of L

The optimal values are indicated
in bold

L(days) Ci (L) Q∗ E AC(Q∗, L∗)

70 0.0 118.12 3853.37

69 0.4 118.15 3846.31

68 0.8 118.18 3839.17

67 1.2 118.21 3831.96

65 2.0 118.27 3817.30

63 2.8 118.34 3802.32

60 4.0 118.21 3831.96

58 4.8 118.53 3763.37

57 5.2 118.58 3755.30

56 5.6 118.62 3747.14

55 6.8 118.66 3743.80

54 8.0 118.71 3740.35

52 10.4 118.80 3733.13

43 21.2 119.31 3694.58

42 22.4 119.38 3689.61

41 27.4 119.44 3707.70

40 32.4 119.51 3725.61

35 57.4 119.89 3812.06

34 65.4 119.98 3846.93

33 73.4 120.07 3881.52

28 113.40 120.55 4049.93

6 Discussion

In Sect. 5.1.1, we find optimal solutions of unconstrained model with fuzzy-stochastic lead time
as L∗ = 56 days(8 weeks);Q∗ = 124 units (truncated);E AC(Q∗, L∗) = $2952.80 where
as in Sect. 5.1.2, optimal solutions of unconstrained model with stochastic lead time (crisp) as
L∗ = 42 days(6 weeks);Q∗ = 157units(truncated);E AC(Q∗, L∗) = $3572.84.

In Sect. 5.2.1, we find optimal solutions of constrained model with fuzzy-stochastic lead time
as L∗ = 56 days(8 weeks);Q∗ = 119 units(truncated); E AC(Q∗, L∗) = $2954.80 where
as in Sect. 5.2.2, optimal solutions of constrained model with stochastic lead time (crisp) as L∗
= 42 days (6 weeks); Q∗ = 120 units(truncated);E AC(Q∗, L∗) = $3689.61.

From the above results, it is observed that the models (both unconstrained and constrained
type) with fuzzy-stochastic lead time give significantly less cost than the cost due to the model
with stochastic lead time.

Moreover, from the above results it is verified that the constrained models give more costs
than the corresponding unconstrained models, which are expected in the minimization problems.

7 Conclusion

In this article, fuzzy-stochastic lead time has been introduced in a two warehouse inventory
model and the corresponding optimal results are obtained. As a particular case, the results for
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the two-warehouse inventory system with stochastic lead time (termed here as crisp model) are
also obtained. Here, a methodology of introducing fuzziness on stochastic parameter has been
presented. This process of treatment of fuzzy-stochastic parameters can be incorporated in the
other fuzzy-stochastic inventory models such as models with inventory costs represented by
fuzzy-stochastic parameters, fuzzy-stochastic demand, etc.

Appendix 1

Remark 1 If per unit holding cost at RW and OW are same (i.e. h1 = h2 = h, say) then
the total average holding cost expression is same with the holding cost expression of single
warehouse EOQ model for the same order quantity.

Proof

AHCRW+ AHCOW

= h2

2Q

(
Q − W + kσ

√
L
)2 + h1

Q

[

W Q − 1

2

(
W − kσ

√
L
)2

]

= h

Q

[
1

2

{

(Q−W +kσ
√

L)2− 1

2
(W −kσ

√
L)2

}

+W Q

]

[Putting h1 = h2 = h]

= h

Q

[

Q

(
Q

2
− W + kσ

√
L

)

+ W Q

]

= h

(
Q

2
+ kσ

√
L

)

= h

(
Q

2
+ r − μL

)

[Proved].

Appendix 2

∞∫

r

(x − r) f (x)dx =
∞∫

r

(x − r)
1√

2πσ
√

L
e
− 1

2

(
x−μL
σ
√

L

)2

dx

=
∞∫

r

{(x − μL) − (r − μL)} 1√
2πσ

√
L

e
− 1

2

(
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σ
√

L

)2

dx

=
∞∫

r

(x − μL)
1√

2πσ
√

L
e
− 1

2

(
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σ
√

L

)2

dx −
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r

(r − μL)
1√

2πσ
√

L
e
− 1

2

(
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σ
√
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dx

=
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k

1√
2π

te− 1
2 t2

dt − σ
√

L
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k

1√
2π

e− 1
2 t2

dt

[Putting
x − μL

σ
√

L
= t in both integrations and using r = μL + kσ

√
L]

= −
∞∫
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1√
2π
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e− 1
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dt − σ
√

L
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k

1√
2π

e− 1
2 t2

dt

= σ
√

L�(k), where, �(k) ≡ φ(k) − k[1 − �(k)][Proved].
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Appendix 3 (Markov inequality)

Pr ob[B + pX ≥ p(Q + r)] ≥ λ ⇒
∫

B+pX≥p(Q+r)

f (x)dx ≥ λ (34)

Again,
∫

B+pX≥p(Q+r)

(
B+pX
p(Q+r)

)
f (x)dx ≥ ∫

B+pX≥p(Q+r) f (x)dx

We have

∞∫

−∞

(
B + pX

p(Q + r)

)

f (x)dx ≥
∫

B+pX≥p(Q+r)

(
B + pX

p(Q + r)

)

f (x)dx

≥
∫

B+pX≥p(Q+r)

f (x)dx

⇒ E(B + pX)

p(Q + r)
≥ λ[By (A1)]

⇒ B + pE(X) ≥ λ(pQ + r)[Proved]. (35)

Appendix 4

1√
2π	2
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σL∫
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(	2 − σLw)e− w2
2 dw
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2 dw − σL√
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σL
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(
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(
	2
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[Proved]
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