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Abstract On the one hand, management accounting systems increase in complexity,
and the frequency and intensity of use of the provided information for decision-making
are rising. On the other hand, there is evidence that the provided information is inac-
curate, which in most cases incurs economic costs. This paper analyzes the impact of
biases in raw accounting data on the accuracy of the provided decision-influencing
information. The simulation study presents results concerning single and multiple
biases which are intendedly entered into traditional costing systems. The presented
results give insights into interactions among biases and indicate that multiple input
biases do not necessarily affect the information quality negatively. Surprisingly, in
some setups interactions among biases lead to a mitigation or even a compensation
among themselves. Furthermore, the findings can constitute the basis for generating
efficient organizational data quality policies, i.e., results indicate where (not) to toler-
ate biases and how to prioritize actions regarding information quality with respect to
accuracy and cost of accuracy.

Keywords Costing system · Simulation · Costing system accuracy ·
Information quality

1 Introduction

In its most simple form, management accounting can be defined as collecting and
recording useful accounting and statistical data as well as reporting them to decision
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makers (Bruns and McKinnon 1993; Crossman 1958; Singer 1961; Feltham 1968;
Chenhall 2003; Bouwens and Abernethy 2000; Cassia et al. 2005; Brignall 1997;
Horngren et al. 2005). The environment in which management accounting takes place
appears to have changed. As a response to increased turbulence, competition and
uncertainty, advances in information technology and new management practices, a
variety of management accounting systems (MAS) and techniques has emerged in
order to fulfill this basic management accounting function (Garg et al. 2003; Heidmann
et al. 2008; Burns and Scapens 2000; Ezzamel et al. 1996; Bouwens and Abernethy
2000). While MAS increase in complexity, the intensity and frequency of use of
these systems increase as well (Chong 1996; Paradice and Fuerst 1991; Labro and
Vanhoucke 2007; Leitner 2012). Many decisions are based on information provided
by MAS (Garg et al. 2003; Horngren et al. 2002). Hence, the scope of MAS can be
defined as providing decision-makers with data that reflect the real world (Cooper
and Kaplan 1988; Shim and Sudit 1995; Orr 1998). Consequently, the quality of
information is critical (Paradice and Fuerst 1991).

MAS are unlikely to be error-free in application (Labro and Vanhoucke 2007,
2008; Orr 1998; Banham 2002). There is evidence that data used for decision-making
is distorted between 5 and 10 % (Madnick and Wang 1992; Tee et al. 2007). Redman
(1996, 1998) reports error-rates of up to 30 %. Inaccurate MAS-output could result
in suboptimal or wrong decisions or even in failing to recognize the need to make a
decision (Ballou et al. 2003; Biros et al. 2002; Klein 2001; Lillrank 2003; Orr 1998;
Wang and Strong 1996; Fox 1961; Cooper and Kaplan 1988). Respective impacts can
range from disruptions in operations to organizational extinction (Tee et al. 2007; Fox
1961). According to elaborations by Christensen (2010), biases are inevitable due to
the fact that MAS serve many purposes. Although little is known about the effects
biases have on processed MAS-output their occurrence is broadly accepted among
users of MAS (Labro and Vanhoucke 2007). In order to react appropriately to biased
data in MAS, decision-makers have to know effects of biases and effects of interactions
among biases on the quality of the provided information (Labro and Vanhoucke 2007;
Tee et al. 2007). This emphasizes the need for research on the nature and extent of
biases in MAS.

Information processed by MAS serves two important roles: (1) assist in planning
and managerial decision-making and (2) motivate individuals, i.e., to help to miti-
gate the divergence of interests between the headquarters and the decentralized units
in order to solve organizational control problems (Zimmerman 2000; Sprinkle 2003;
Young and Lewis 1995). These two roles of MAS are also referred to as the decision-
facilitating and the decision-influencing role (Demski and Feltham 1976), whereby
this paper focuses on the decision-influencing perspective. At a general level, MAS
can be differentiated into (1) capital budgeting systems, (2) costing systems and (3)
accounting systems for planning and control (Horngren et al. 2002). Among the range
of different types of MAS, this paper focuses on costing systems. On the one hand,
several loops of cost-reallocation indicate that costing systems might be character-
ized by a larger number of arithmetic operations than the other types of MAS. This
potentially affects the propagation of errors. On the other hand, costing systems are
usually highly integrated into organizational processes with a large number of agents
interacting with the the system in order to enter data (Leitner 2012, 2013). Among
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different conceptions of costing systems this paper surveys biases in traditional costing
systems, due to a higher practical relevancy. According to investigations by Drury and
Tayles (1995) and Garg et al. (2003), traditional costing systems are widely used while
newer conceptions show a much lower rate of usage. The decision-influencing role of
the information provided by costing systems inter alia covers (1) the controlling of the
efficiency of organizational decision-making and (2) might also build the basis for an
incentivization that motivates the decision-makers towards a cost-effective behavior.
If the provided information is biased, these functions might not be fulfilled as desired,
which potentially affects the organizational performance negatively.

This paper analyses effects of intentionally distorted input data that result from
interactions of agents with the costing system. In particular, the following research-
questions are analyzed: What are the effects of (1) intended single input biases and (2)
intended multiple input biases in input data on the quality of the decision-influencing
information provided by costing systems.

In order to face the complexity of the research question, this investigation employs
a simulation approach. Costing systems are a collection of interacting components, i.e.
processing steps (cf. Table 1; Fig. 1), whereby some of the components are more influ-
ential than others but no component controls the behavior of the whole system. Simple
patterns of interactions among components of costing systems and repeated individual
interaction can lead to complex situations with their outcome being nearly impossible
to predict (Gilbert 1995). There are many agents interacting with the costing system
who might act opportunistically. The accuracy of the costing systems’ output is inex-
tricably linked to the individual judgments, decisions and actions of the interacting
agents (Sprinkle 2003). The consideration of different agents’ actions would lead to
intractable dimensions of formal modeling (Davis et al. 2007). It is widely believed
that simulation is a powerful research method for challenging this complexity (Resnick
1999). Furthermore, simulations make it possible to analyze macro level outcomes,
i.e., the accuracy of the costing systems’ output, that result from micro level inter-
actions, i.e., the (opportunistic) agents’ behavior and the interaction of the costing
system’s components (Ma and Nakamori 2005). Therefore, simulation might support
management in generating knowledge about the linkages between individual level
behaviors and the overall system level outcomes (North and Macal 2007). Estimating
biases in costing systems in empirical research would be particularly difficult. Results
regarding the effects of independent on dependent variables under research might be
contaminated because the respective effects cannot necessarily be disentangled from
other effects. Furthermore, dependent and independent variables themselves might
be measured imprecisely, i.e., the variables contain systematic noise (Sprinkle 2003).
Apart from these concerns, it is nearly impossible to determine a true costing bench-
mark in order to calculate effects of biases, while controlled simulation experiments
allow for this possibility and also allow for studying cause-and-effect relations under
uncontaminated conditions (Kerlinger and Lee 2000). Thus, due to the dimensions
of formal modeling and the limitations of empirical research, a simulation approach
appears appropriate.

This paper contributes to management accounting research and practice in the fol-
lowing ways. First, the presented results give insights into the impact of biases in input
data on costing systems’ accuracy. The results indicate that biases do not necessarily
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affect costing system accuracy negatively (cf. Table 5b). Rather, the results show that
interactions among biases lead to mitigation or even compensation among themselves.
Second, the generated knowledge can assist in assessing information quality in cost-
ing systems and can constitute the basis for individual prioritization of actions for
improving information quality in the best possible way. Thus, the presented results
potentially constitute the basis for the decision where (not) to tolerate biases and also
allow for assessing actions regarding data quality with respect the trade-off between
accuracy and cost of accuracy.

The remainder of this paper is structured as follows: in Sect. 2, the concept of
bias is elaborated more precisely. Section 3 outlines the computational model of the
costing system and the behavioral model of the interacting agents. Section 4 presents
the methodology of data analysis and discusses the key parameters for the simulation
experiments. In Sect. 5, the results are presented. Section 6 discusses the presented
results, concludes and suggests avenues for future research.

2 The concept of bias

For the concept of bias, this investigation follows Dechow et al. (2010), who state that
accounting systems’ accuracy is affected by estimations and judgments which inher-
ently entail unintentional errors and intentional biases. The applied concept of bias also
refers to elaborations by Barefield (1970), who distinguishes unintentional and inten-
tional biases in the context of forecasting, whereby unintentional bias corresponds to
the concept of unintentional error as elaborated by Dechow et al. (2010). Specifically,
Barefield (1970) defines unintentional biases as the difference of an agents’ estimate
and the forecast of an ideal observer who has the best knowledge of the respective
estimation and has no incentive do distort the forecast based on this estimation. Inten-
tional biases, on the contrary, are defined as the difference of the agents’ estimate of
the forecast and the actually reported forecast.

In the present study, intentional biasing behavior is considered to have two distinct
characterizations: (1) agents observe correct data but intentionally distort data intro-
duced into the costing system due to personal objectives, and (2) agents intentionally
reduce their effort for observing correct data to be introduced into the costing system.
Thus, agents have no knowledge about unbiased data and introduce the observed (and
biased) data into the costing system. The term unintentional biasing behavior is used
for unintentional distortions of data introduced into the costing system. In particu-
lar, unintended (input) biases might occur due to limitations of bounded rationality
(cf. Simon 1957), e.g. limited knowledge, limited understanding or human fallibility
(Hendry 2002; Simon 1991). Intended biases that result from reduced effort for deter-
mining correct data and unintentional biases cannot be distinguished in all cases. In
this paper, the focus is set on distortions that result from intentional biasing behavior.

3 The simulation model

In order to comprehend the simulation model, there are three aspects that have to
be described more precisely. This section discusses these three aspects. First, the
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formal model of the costing systems defines the way data is processed by the system’s
different components and provides the mode of interactions among these components.
Second, the behavioral model gives the behavioral assumptions from which the biases
under investigation are deduced. Third, an outline of how the structure of biases is
incorporated into the computational model of the costing system is necessary.

3.1 The formal model of the costing system

Costing systems are designed modularly, whereby the computational model of the
costing system introduced in this section can be subdivided into the modules (1)
determination and classification of costs, (2) building of direct cost pools, (3) allocation
of indirect costs to cost centers, (4) internal cost allocation and (5) cost allocation to
product (for an overview cf. also Fig. 1 and Table 1). The following sections are
organized accordingly.

3.1.1 Determination and classification of costs

The simulation model considers cost information to be collected from business cases.
In order to represent these business cases, a number of input cost objects which contain
information on incurred costs is generated. The cost information contained in the input
cost objects is randomly drawn from the exogenously given interval U [aico; aico].
Input cost objects are denoted as coini ∈ C Oin with i ∈ {1, . . . , |C Oin|}. In a further
step, a cost category ka j ∈ K A is assigned to each input cost object whereby j ∈
{1, . . . , |K A|}. The assignment of cost categories to input cost objects is captured by
the function f co

(
coini

) = ka j .
Incurred costs can be subdivided into direct and indirect costs. Direct costs are

costs that can be specifically assigned to a certain cost objective. On the contrary,
indirect costs cannot be identified exclusively as belonging to a certain cost objective
in an economic feasible way (Horngren et al. 2002). Accordingly, the set of cost
categories can be disjunctively divided into a subset of direct and a subset of indirect
cost categories. Direct and indirect cost categories are denoted as ka j ∈ K Adir and
ka j ∈ K Aindir , respectively. On the basis of the assigned cost categories, input cost
objects can be classified as either direct or indirect. For further elaborations, input
cost objects that have assigned a direct cost category of ka j ∈ K Adir are denoted
as coini ∈ C Odir

in and input cost objects that have assigned an indirect cost category
ka j ∈ K Aindir are denoted as coini ∈ C Oindir

in .

3.1.2 Building of direct cost pools

In the simulation model, direct costs are mapped in a way that they can be exclusively
identified as belonging to a certain cost center. Direct cost categories can be clustered
into direct cost pools kadir,gr p

k ∈ K Adir,gr p with k ∈ {1, . . . , |K Adir,gr p|}. The

clustering of direct cost categories is captured by the function f ka
(
ka j

) = kadir,gr p
k .

By summing up cost information contained in input cost objects coini which have
assigned a direct cost category of the same direct cost pool, the total costs per direct
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cost pool costsdir
k can be calculated, i.e.,

costsdir
k =

∑

∀i : f ka
(

f co
(
coini

))=kadir,grp
k

coini . (1)

3.1.3 Allocation of costs to cost centers

Input cost objects that cannot be exclusively identified with one certain cost objective
have to be allocated to certain cost centers, i.e., allocation type 1 (Horngren et al. 2002).
Allocation type 1 usually is based on plausible and reliable output measures (Horngren
et al. 2002). In the simulation model, these output measures are randomly drawn from
the exogenously given interval U [acd:t ype1; acd:t ype1]. The keys for allocation type 1
are denoted as matrix V. Matrix V contains elements vn,i where n indicates cost centers
mn ∈ M and i indicates input cost objects coini ∈ C Oindir

in . Allocation type 1 takes
place by multiplying the (indirect) input cost objects with the respective allocation
keys. In the formal model, matrix G represents the indirect costs allocated to cost
centers whereby elements gn,i of matrix G are calculated as gn,i = coini ·vn,i where n
indicates cost centers and i indicates input cost objects coini ∈ C Oindir

in . Hence, gn,i

represents the share vn,i of the business case coini allocated to cost center mn . Based
on matrix G, the primary costs, i.e., the costs allocated to cost centers in allocation
type 1, can be calculated, i.e.,

costs prim
n =

∑

∀i :coini ∈C Oindir
in

gn,i . (2)

3.1.4 Internal cost allocation

If organizational units provide services or products to other organizational units, costs
that incur at the providing unit have to be reallocated to the receiving units (Horngren
et al. 2002). In the model of the costing system applied in this paper, a number of cost
centers that solely support other departments are considered. The set of cost centers
M can be disjunctively divided into a subset of direct and a subset of indirect cost
centers. Direct and indirect cost centers are denoted as mn ∈ Mdir and mn ∈ Mindir ,
respectively, whereby indirect cost centers refer to the providing units. Thus, costs
costs prim

n allocated to mn ∈ Mindir in allocation type 1 are fully reallocated to direct
cost centers mn ∈ Mdir in allocation type 2.

The reallocation of costs from indirect to direct cost centers is based on
cost center output which is randomly drawn from the exogenously given inter-
val U [acd:t ype2; acd:t ype2]. The cost center output is denoted as rl,n,u ∈ R where
l ∈ {1, . . . , |R|} indicates the basis of allocation type 2, n, u ∈ {1, . . . , |M |} indicate
cost centers, mn is the providing unit, mu is the receiving unit and n �= u. Which cost
center output is actually applied in order to allocate costs from cost center mn to cost
center mu in allocation type 2 is captured by the function f cd (mn; mu) = rl,n,u .

The model considers a step-down method for allocation type 2, i.e., services ren-
dered from indirect cost centers to other indirect cost centers are partially considered
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(cf. also Horngren et al. 2002). Allocation type 2 is divided into two steps. In the
first step, internal cost allocation among indirect cost centers takes place, while in the
second step, costs are fully reallocated to direct cost centers. In step one, the secondary
costs costssec

n,u allocated from indirect cost centers mn ∈ Mindir to indirect cost centers
mu ∈ Mindir are calculated, i.e.,

costssec
n,u =

costs prim
n + ∑

∀q<n:mq∈Mindir costssec
q,n

∑
∀q≥n:mq∈M f cd

(
mn; mq

) · f cd (mn; mu) . (3)

According to the applied step-down method, once costs assigned to indirect cost centers
are reallocated, other cost centers do not allocate costs back. In the second step of
allocation type 2, costs allocated to indirect cost centers are fully reallocated to direct
cost centers. As a result, the entire costs costsent

n allocated to direct cost centers
mn ∈ Mdir in allocations type 1 and 2 can be calculated, i.e.,

costsent
n = costs prim

n +
∑

∀u:mu∈Mindir

⎛

⎝
costs prim

u − ∑
∀q>u:mq ∈Mindir costssec

u,q + ∑
∀q<u:mq ∈Mindir costssec

q,u
∑

∀q≥u:mq ∈M f cd
(
mu; mq

) · f cd (mu; mn)

⎞

⎠ (4)

3.1.5 Cost allocation to products and calculation of costs per cost center

All costs allocated to organizational units in allocations type 1 and 2 have to be assigned
to cost objectives, e.g., products, services or activities (Horngren et al. 2002). This
last step of cost allocation is referred to as allocation type 3. In order to allocate costs
to cost objectives, this simulation study considers overhead rates whereby the model
of the costing systems distinguishes between direct cost centers Mdir,dcp with direct
cost pools and direct cost centers Mdir,mc with manufacturing costs as the basis of
allocation type 3. Mdir,dcp and Mdir,mc are disjunct subsets of Mdir .

For cost centers Mdir,dcp function f dcp (mn) = kadir,gr p
k defines which direct

cost pool is used as the basis of allocation type 3. Function f dcp
(mn) = k gives

the subscript that indicates the respective direct cost pool. Overhead rates bn for cost
centers mn ∈ Mdir,dcp are calculated on the basis of entire costs allocated to the
respective cost centers and the entire costs of the corresponding direct cost pool, i.e.,

∀n : mn ∈ Mdir,dcp : bn = costsent
n

costsdir
f dcp

(mn)

. (5)

For cost centers Mdir,mc, the manufacturing costs (i.e., all costs allocated to direct
cost centers Mdir,dcp in allocations type 1 and 2) are the basis of allocation type 3.
These cost centers might capture functions such as administration, sales or marketing.
Thus, for cost centers mn ∈ Mdir,mc overhead rates bn result in
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Table 1 Overview simulation model

No. Step Denotation Function Equation

0. Cost center structure

0.1 Cost centers can be subdivided into M – –

Direct cost centers Mdir – –

Indirect cost centers Mindir – –

1.1 Business cases are randomly drawn
from the interval U [aico; aico]

coini ∈ C Oin – –

2. Categorization

2.1 Cost categories are assigned to input
cost objects

ka j ∈ K A f co (
coini

)
–

2.2 Cost categories can be subdivided
into

K A – –

Direct cost categories ka j ∈ K Adir – –

Indirect cost categories ka j ∈ K Aindir – –

2.3 Direct cost categories are clustered
into direct cost pools

kadir,gr p
k ∈ K Adir,gr p f ka (

ka j
)

–

2.4 Costs per direct cost pool can be
calculated

costsdir
k – (1)

3. Allocation type 1

3.1. Allocation keys for the allocation
of indirect costs to cost centers are
randomly drawn from the interval
U [acd:t ype1; acd:t ype1]

V – –

3.2 Primary costs (costs allocated to
cost centers in allocation type 1) can
be calculated

costs prim
n – (2)

4. Allocation type 2

4.1. Keys for the reallocation of costs
from indirect to direct cost centers
are randomly drawn from the inter-
val U [acd:t ype2; acd:t ype2] and it is
determined which key is used for the
reallocation of costs

rl,n,u ∈ R f cd (mn; mu) –

4.2 Costs are reallocated from indirect
to direct cost centers according to a
step-down method and entire costs
per direct cost center are calculated

costsent
n – (3, 4)

5. Allocation type 3 and final calculation

5.1 Costs allocated in allocations type
1 and 2 are allocated to services an
products, i.e., it is determined which
direct cost pool is used as the basis
for the calculation of overhead rates
and overhead rates are calculated

bn f dcp (mn) (5, 6)

5.2 The entire costs of production per
cost center are calculated

costs prod
n – (7, 8)

123



A simulation analysis of interactions among intended biases in costing systems 121

∀n : mn ∈ Mdir,mc : bn = costsent
n∑

∀q:mq∈Mdir,dcp costsdir
f dcp(mq)

· (
1 + bq

) . (6)

Finally, after having finished allocation type 3 and having calculated all overhead
rates, the entire production costs costs prod

n per direct cost center mn ∈ Mdir can
be calculated. As in the case of overhead rates, the calculation mode is different for
Mdir,dcp and Mdir,mc. In particular, for direct cost centers with direct cost pools as
the basis of allocation type 3, the entire costs of production result in

∀n : mn ∈ Mdir,dcp : costs prod
n = costsdir

f dcp
(mn)

· (1 + bn) , (7)

while for direct cost centers with the manufacturing costs as the basis of allocation
type 3, the entire costs of production result in

∀n : mn ∈ Mdir,mc : costs prod
n =

⎛

⎝
∑

∀q:mq∈Mdir,dcp

costsdir
f dcp(mq)

· (
1+bq

)
⎞

⎠ · bn . (8)

3.2 The behavioral model and resulting biases

This section introduces an agency model from which the biases under investigation
are deduced. The simulated organizations incorporate a large number of principal-
agent relationships between the headquarters and various agents. The organizations
are mapped to consist of headquarters and a set of cost centers which are under
the responsibility of cost center managers. For each cost center, there is one agent.
Furthermore, for each organization an accounting department which responsible to
an accounting department manager is considered. The agency model is introduced in
two steps. In a first step, the commonalities of the principal-agent relationships are
described in a generalized model. In a second step, the delegation relationships are
put into concrete terms for each agent based on the generalized model and respective
biases are deduced.

3.2.1 The generalized model of principal-agent relationships

In the simulated organizations, there are delegation relationships between one principal
P and a number of agents h ∈ H whereby the principal is assumed to be risk-neutral
and the agents are assumed to be risk-averse. The principal delegates tasks l ∈ L to
agents. While there is no task that is delegated to more than one agent, some agents
might be engaged in multiple tasks. The set of tasks delegated to agent h is denoted
as Lh . For each task, the function f l (l) = h gives the agent h who the respective
task l is assigned to. Exchanges between agents (e.g. side-contracts) remain uncon-
sidered. The principal offers contracts to agents. The contracts are exogenously given.
This simulation study does not aim at optimizing contracts, rather, this investigation
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analyses effects of biasing behavior on costing systems’ accuracy in case of the given
contracts.

The main elements of the contracts offered by the principal are (1) the task(s)
delegated to the respective agent, (2) the way to fulfill these task(s) requested by the
principal in order to achieve the desired outcome, (3) the reward scheme related to the
fulfillment of the respective task(s) and (4) the base(s) for the variable compensation
component. The model assumes that the agent cannot obtain better alternatives from
the market and, hence, accepts the offered contract. After having accepted the contract,
each agent is assumed to privately take an action ah,l ∈ Ah,l whereby Ah,l stands for
the set of actions agent h can select in order to fulfill task l. With respect to the quality
of information provided by costing systems, the principal desires the agents to enter
accurate data into the costing system. If the principal accepted biased data to be entered
into the costing system without fixing thresholds for the extent of distortion it might
be expected that the extent of input bias increases over time. This would probably lead
to a decreasing quality of information. Knowledge about the impact of input biases
on information quality and knowledge of interactions among biases might support the
principal in fixing a threshold for each type of bias which can be accepted.

Following the assumption that both the principal and the agent seek to maximize
their own utility functions (Jensen and Meckling 1994) and that the chosen actions
result in direct disutility for the agents, the principal and the various agents might have
conflicting target functions (Holmstrom 1979). In consideration of these potentially
divergent interests, actions chosen by agents in order to fulfill delegated tasks do not
necessarily correspond to the action defined in the contract. In the simulation model,
by selecting an action, agents decide whether or not to fulfill the task as desired by
the principal or to act opportunistically and to intentionally distort the data entered
into the costing system in order to increase the personal utility. During the simulation
runs, the decision whether or not to distort the entered data is made randomly (for the
operationalization of the investigated types of biases cf. also Sect. 3.2.2). The actions
chosen by agents are not observable, neither for the principal nor for other agents.

According to the model of the costing system (cf. Sect. 3.1), there are a number
of interactions among its components. Due to these interactions, data entered into the
costing system and the outcome of different tasks might be reciprocally interdependent.
In order to capture this interdependence, the model considers a state of interactions
among biases θ l for each task l ∈ L . The state of interactions realized with calculation
steps during the simulation runs, stands for interactions that affect the outcome of task l.
In particular, θ l denotes the impact of actions chosen by agent k ∈ H that affect the
outcome of task l ∈ Lh where h �= k. Thus, the outcome W h,l associated with each del-
egated task l ∈ L depends on the action ah,l selected by the respective agent h ∈ H and
the state of interactions among biases θ l , i.e, W h,l = f wh,l (

ah,l; θ l
)
. The outcome per

task is observable for the principal without incurring costs. In addition, the principal can
observe the overall outcome W ent which is a function of selected actions and states of
interactions, i.e., W ent = f went (

ai=1, j=1, . . . , ai=|H |, j=|L|; θ j=1, . . . , θ j=|L|). Also,
overall outcome is calculated on the basis of data which is probably biases and, hence,
might be inaccurate.
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Fig. 1 Costing system, biases and agents

Team-compensation is only beneficial if side-contracting is considered as well
(Holmstrom and Milgrom 1990). Thus, the model considers agents to be rewarded
individually. For all agents, the compensation consists of a fixed and a variable com-
pensation component. The fixed compensation component for agent h is denoted as
Sh

0 . The variable compensation component is based on the outcome of the tasks dele-

gated to agent h and is given by f s,h
(∑

∀l∈L: f l (l)=h W h,l
)

. The principal’s utility is

based on the overall outcome minus the agents’ compensation, i.e.,

U P = −W ent −
|H |∑

h=1

⎛

⎝Sh
0 + f sh

⎛

⎝
∑

∀l∈L: f l (l)=h

W h,l

⎞

⎠

⎞

⎠ . (9)

The agents’ utility is given by the utility of compensation minus the disutility of
selected actions in order to fulfill tasks. Utility of compensation is captured by function
f vh

(·) while disutility of effort is given by function f gh
(·). The agents’ utility function

results as

U h = f vh

⎛

⎝Sh
0 + f sh

⎛

⎝
∑

∀l∈L: f l (l)=h

W h,l

⎞

⎠

⎞

⎠− f gh
(

ah, j=1, . . . , ah, j=|Lh |) . (10)

Opportunistic agents are assumed to aim at maximizing their own utility in two ways.
First, they might manipulate the performance measure that builds the basis for their
variable compensation component in a way that U h increases. Second, if the offered
compensation function is not sufficiently attractive to the agents and does not provide
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Table 2 Principal-agent relationships

Agents Responsibility Delegated task Performance measure

Hdir Direct cost center (1) Cost information Incurred costs

Hindir Indirect cost center (1) Cost information Incurred costs

(3) Cost center output Provided goods/services

Hacc Accounting department (2) Cost categories Information quality

an acceptable level of perceived utility, they might minimize their disutility of effort
by selecting an action not equal to the action desired by the principal.

3.2.2 Principal-agent relationships and resulting biasing behaviors

The principal-agent relationships investigated in this simulation study comprise three
different tasks delegated to agents, i.e., (1) the introduction of cost information, (2) the
assignment of cost categories to the entered cost information, and (3) the introduction
of cost center output (production of goods and services). These tasks are delegated to
three different types of agents, i.e., managers of direct cost centers Hdir , managers of
indirect cost centers Hindir and the manager of the accounting department Hacc. Table
2 gives an overview of the principal-agent relationships considered in this simulation
study. In addition, the performance measures by which the fulfillment of the delegated
task are measured are given in Table 2.

After goods and services are produced, all cost center managers are in charge of
entering cost information into the costing system. When selecting an action in order
to fulfill the delegated task, the agents decide whether the data introduced into the
costing system is free of bias or inaccurate. Two types of biases for the context of cost
information are considered, i.e., input biases on input cost objects and input biases on
the basis of allocation type 1.

In the case of input biases on input cost objects, when selecting an action in order
to fulfill the task of entering cost information into the costing system the agents might
decide for a certain number of input cost objects to be inaccurate, i.e., in order to
increase their personal utility, agents introduce a smaller extent of costs into the costing
system than actually incurred. If the input cost object coini is affected by input biases
on input cost objects, it is replaced by cobiased

ini
= coini · (1+δico

i ). The error-term δico
i

is randomly drawn from the exogenously given interval U [aico; aico]. Input biases
on input cost objects are indicated by ico and occur with the exogenously given
probability of occurrence pico.

Input biases on the basis of allocation type 1 might be entered into the costing
system by managers of direct and indirect cost centers. In order to increase their
personal utility, when selecting an action in order to fulfill the delegated task they aim
at decreasing the costs allocated to their own area of responsibility. The respective
agents act opportunistically and manipulate the allocation keys for allocation type 1
given by matrix V. An agent responsible for cost center mn distorts two elements of
the matrix V. In particular, the agent replaces an element vn,i �= 0 by vbiased

n,i = 0 and

replaces an element vu �=n,i by vbiased
u �=n,i = vu �=n,i + vn,i . As a result, the share vn,i of
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input cost object coini which should originally have been allocated to cost center mn

is allocated to cost center mu instead. The subscript t ype1 indicates this type of bias
for further elaborations.

The second task delegated to agents is (2) to assign cost categories to the previously
generated input cost objects. This task is delegated to the accounting department’s
manager. The behavioral model assumes this agent to aim at increasing the personal
utility by decreasing the disutility of effort which leads to a certain number of input cost
objects being categorized incorrectly, i.e., the function f co

(
coini

) = ka j is replaced
by the function f co,biased

(
coini

) = kab �= j with exogenously given probability pacc.
This type of bias is referred to as input biases on the assignment of cost categories
and indicated by subscript acc. As a result, input cost object coini has been assigned
cost category kab instead of cost category ka j . The effects of this miscategorization
are random, e.g., the input cost object is categorized as direct instead of indirect, the
direct cost category belongs to the wrong direct cost pool, etc.

The final principal-agent relationship investigated in this simulation study involves
the task of entering cost center output into the costing system. In order to increase
their personal utility, managers of indirect cost centers are assumed to enter a higher
cost center output into the costing system than actually provided. This type of bias
is referred to as input biases on the basis of allocation type 2. In the model of the
costing system, the determination of the cost driver activity which is the basis in order
to allocate costs from cost center mn to cost center mu is represented by the function
f cd (mn; mu). In the case of a bias being entered, this function is replaced by the

function f cd,biased
(

mn; mu; δ
t ype2
n,u

)
= rl,n,u ·

(
1 + δ

t ype2
n,u

)
. The error-term δ

t ype2
n,u is

drawn from U [atype2; atype2]. Input biases on the basis of allocation type 2 occur with
the probability ptype2. The subscript t ype2 indicates this type of bias.

In the economic literature, judgment in (financial) reporting which aims at influ-
encing the contractual outcome is referred to as earnings management (Healy and
Wahlen 1999). The revelation principle claims that each mechanism which involves
earnings management, i.e., non-truthful reporting, can be beaten by an equilibrium
mechanism in which truthful reporting is induced (Lambert 2001; Myerson 1979).
For economic explanations of earnings management, one or more assumptions of the
revelation principle need to be violated (Dye 1988). The revelation principle assumes
that (1) communication is not blocked (i.e., it is free of costs to establish commu-
nication channels that allow the agents to fully report their private information), (2)
the form of contract is not blocked (i.e., there are no limitations regarding the design
of the contract), and (3) the principal commits to using the information provided by
the agents in a pre specified-manner (Arya et al. 1998). Due to the fact that in the
applied model of the costing system the agents deal with aggregated information, the
revelation principle’s assumptions do not hold from the very start. Costing systems are
designed for a certain aggregation-level of data to be entered. Thus, reporting more
detailed data would lead to additional costs for communication. For this reason, the
revelation principle does not hold for the given setup (Arya et al. 1998).
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Table 3 Key-parameters for generating costing systems

Parameter Denotation Parameterization

Direct cost categories K Adir 40

Indirect cost categories K Aindir 40

Direct cost pools K Adir,gr p 10

Direct cost centers (direct cost pools) Mdir,dcp 10

Direct cost centers (manufacturing costs) Mdir,mc 2

Indirect cost centers Mindir 10

Cost drivers (allocation type 2) R 10

Input cost objects C Oin 7.000

4 Simulation experiments and data analysis

This simulation study is set up in accordance with prior work on accounting errors
(Labro and Vanhoucke 2007, 2008; Babad and Balachandran 1993; Gupta 1993; Datar
and Gupta 1994). It builds on a framework that assumes an unbiased costing bench-
mark and a number of scenarios where biased data is entered into the costing system.
According to the elaborations above, the simulation run in which the unbiased costing
benchmark is calculated refers to a scenario in which all delegated tasks are fulfilled
as desired by the principal.

In order to analyze the impact of biases on information quality in a representative
sample of costing systems, a wide variety of costing systems’ architectures is auto-
matically generated on the basis of exogenously given parameterization. Since there is
little research on the current practice in the design of costing systems, there is only little
empirical evidence that helps to choose realistic key parameters for generating costing
systems (Drury and Tayles 1995; Labro and Vanhoucke 2007). Table 3 summarizes
the selected key parameterization. The presented results are based on 100 randomly
generated costing system architectures, i.e., on the basis off the parameterizaton given
in Table 3, the structure of cost categories, the pooling of direct cost categories, the
structure of cost centers and the the interrelations of cost centers are randomly gen-
erated. For each costing system structure, 100 simulation runs are executed, i.e., each
presented number is based on 10.000 simulations.

For all types of input biases, as introduced in Sect. 3.2.2, the probability of occur-
rence is varied in the simulation experiments. In particular, the impact in the case
of a probability of occurrence of 0.1, 0.2 and 0.3 is investigated. For input biases
on input cost objects and input biases on the basis of allocation type 2, the opera-
tionalization of biases requires an exogenously given interval from which the extent
of bias is randomly drawn. These intervals are assumed to be uniformly distributed.
For input biases on input cost objects, the interval is set to U [−0.10, 0.00[. Thus, the
error term −0.10 ≤ δico

i < 0 indicates the percentage distortion of the introduced
cost information. For input biases on the basis of allocation type 2, the interval is set
to U ]0.00; 0.10]. Accordingly, the error term 0 > δ

t ype2
n,u ≥ 0.10 is drawn from a
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uniformly distributed interval and indicates the relative distortion of the cost center
output entered into the costing system which constitutes the basis of allocation type 2.

In this simulation study, a maximum of two biases are investigated at the same time.
The denotation of costs per cost center, as introduced in Eqs. 7 and 8, is expanded by the
respective types of biases x and y and superscript z which indicates the simulation runs,
i.e., cost per cost center mn calculated in simulation run z are denoted as costs prod,z

n,x,y .
Subscripts x and y indicate biases whereby x, y ∈ {ico; t ype1; acc; t ype2; 0}. In
addition to the subscripts introduced in Sect. 3.2.2, 0 is a potential characterization
for x and y. 0 indicates that no respective bias is entered into the costing system.
Thus, costs prod,z

n,x=0,y=0 denotes the (unbiased) benchmark costs for cost center mn at

simulation run z. For all simulation runs z and all direct cost centers mn ∈ Mdir a
relative error is calculated, i.e.,

ez
n,x,y = costs prod,z

n,x,y − costs prod,z
n,x=0,y=0

costs prod,z
n,x=0,y=0

. (11)

Based on the relative errors, this simulation study reports the Euclidean Distance as a
condensed measure for information quality, cf. also Babad and Balachandran (1993);
Hwang et al. (1993); Homburg (2001); Labro and Vanhoucke (2007, 2008); Leitner
(2012, 2013). The Euclidean Distance is calculated as

EUC Dx,y =
√√√√
√

10.000∑

z=1

∑

∀n:mn∈Mdir

ez
n,x,y

2
. (12)

In addition to the Euclidean Distance, this simulation study reports the mean absolute
relative error emean

x,y as a further measure for information quality (Christensen and
Demski 1997). The mean absolute relative error is calculated as

emean
x,y = 1

10.000 · |Mdir |
10.000∑

z=1

∑

∀n:mn∈Mdir

|ez
n,x,y | (13)

As these measures are symmetric and do not give any information on the
economic consequences, for all scenarios the probability for overcosting px,y

(i.e., costsent,z
n,x,y > costsent,z

n,x=0,y=0) and the probability for undercosting p
x,y

(i.e.,

costsent,z
n,x,y <costsent,z

n,x=0,y=0) are reported.
In order to illustrate interactions among biases, the measure ρx,y is introduced, i.e.,

ρx,y = EUC Dx,y

EUC Dx,y=0 + EUC Dx=0,y
, (14)

whereby ρx,y > 1 indicates that input biases x and y interact overproportionally, i.e.,
they reinforce each other regarding their impact on information quality. If ρx,y < 1,
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the two types of input biases mitigate each other, i.e., the Euclidean Distance in the
case of simultaneously entered input biases x and y is lower than a notional Euclidean
Distance with assumed linear interactions among the two types of biases (Leitner
2012, 2013).

Furthermore, this simulation study investigates whether interactions among biases
lead to compensational effects. For this purpose, the measure νx,y is introduced, i.e.,

νx,y = EUC Dx,y − EUC Dx,y=0

EUC Dx,y=0
. (15)

If νx,y ≤ 0, the impact of input bias x on information quality is compensated by
interactions among biases x and y. Consequently, if νx,y > 0, no compensation can
be observed (Leitner 2012, 2013).

5 Results

The presentation of the results is organized in three sections. First, Sect. 5.1 deals with
the impact of single input biases on information quality. Second, Sect. 5.2 presents
interactions among biases. Finally, Sect. 5.3 discusses the robustness of the presented
results to the parameterization for generating costing systems.

5.1 Single input bias scenarios

On the basis of the results presented in Table 4, a ranking of biases can be made from the
single input bias perspective with respect to their impact on the quality of information
provided by the costing system. The highest Euclidean Distance can be observed in
the case of input biases on the assignment of cost categories, followed by input biases
on the basis of allocation type 1, input biases on input cost objects and input biases
on the basis of allocation type 2. In contrast, due to differences in the distribution of
relative output errors, the mean absolute relative errors suggest input biases on input
cost objects to be ranked second and input biases on the basis of allocation type 1 to
be ranked third.

Input biases on input cost objects appear to lead to undercosting in all cases while
input biases on the basis of allocation type 1 and input biases on the assignment of cost
categories lead to under- and overcosting with almost the same probability. For the case
of input biases on the basis of allocation type 2, a slight trend towards undercosting
can be observed.

5.2 Multiple input bias scenarios

The results referring to interactions among biases in costing systems (cf. Table 5a)
suggest that for the majority of scenarios, an underproportional interaction can be
observed. In particular, the measure for interactions among biases ρx,y is below 0.940
except for the combination of input biases on the assignment of cost categories with
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Table 4 The impact of single input biases on information quality

px EUC Dx,y=0 emean
x,y=0 p

x,y=0 px,y=0

Input bias on input cost objects (ico)a

0.10 1.920 0.550 1.000 0.000

0.20 3.825 1.100 1.000 0.000

0.30 5.728 1.650 1.000 0.000

Input bias on the assignment of cost categories (acc)

0.10 6.799 1.532 0.447 0.553

0.20 11.354 2.504 0.451 0.549

0.30 15.792 3.407 0.458 0.542

Input bias on allocation type 1 (t ype1)

0.10 3.607 0.731 0.500 0.500

0.20 5.104 1.037 0.498 0.502

0.30 6.244 1.268 0.501 0.499

Input bias on allocation type 2 (t ype2)b

0.10 0.351 0.067 0.681 0.319

0.20 0.490 0.099 0.595 0.405

0.30 0.583 0.119 0.569 0.431

x indicates the different types of biases as listed in the table. a Interval: U [−0.10; 0.00]; b Interval:
U [0.00; 0.10]; results are based on 10.000 simulation runs per scenario, confidence intervals for relative
errors are ≤ 0.0002 for all scenarios (with α = 0.001)

input biases on the basis of allocation type 2. For the combination of input biases on
input cost objects with input biases on the assignment of cost categories and input
biases on the basis of allocation type 1, a decreasing measure for compensation can
be observed, i.e., with increasing probabilities of occurrence, the extent of offsetting
among biases appears to increase as well. An increase in the measure for interactions
among biases can be observed for the cases of input biases on input cost objects in
combination with input biases on the basis of allocation type 2 and input biases on
the assignment of cost categories in combination with input biases on the basis of
allocation type 1. In these two scenarios, increasing the probabilities of occurrence of
the respective biases appears to lead to a decrease in the extent of offsetting among
biases. Results suggest stable measures for interactions among biases for input biases
on the basis of allocation type 1 in combination with input biases on the basis of
allocation type 2.

The results concerning compensations among biases in costing systems cf. Table
5b) suggest that an offsetting can be observed or 3 scenarios while for the remaining
scenarios, the extent of mitigation (as listed in Table 5a) appears not to lead to an
offsetting. In particular, a compensation among biases can be observed for (1) input
biases on the assignment of cost categories in combination with input biases on input
cost objects and (2) input biases on the basis of allocation type 2 as well as for
(3) input biases on the basis of allocation type 2 in combination with input biases on
the basis of allocation type 1. For all three scenarios, the results indicate that the extent
of compensation increases with increasing probabilities of occurrence of the respective
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Table 5 (a) Interaction among biases (b) Compensation among biases

acc type1 t ype2b icoa acc type1 t ype2b

(a) (b)

icoa 0.7631 0.736 0.860 icoa 2.4641 1.120 0.017

0.7212 0.702 0.893 1.8632 0.639 0.008

0.6873 0.696 0.912 1.5803 0.456 0.005

acc 0.731 0.944 acc −0.022 0.120 −0.008

0.744 0.948 −0.036 0.079 −0.012

0.751 0.951 −0.064 0.048 −0.014

t ype1 0.911 t ype1 0.128 1.110 9.628

0.910 0.228 1.400 9.384

0.911 0.336 1.651 9.678

t ype2b 4.561 18.124 0.000

6.865 21.903 −0.003

8.882 25.720 −0.004

Table 5a presents the measure for interaction ρx,y , as introduced in Eq. 14; Table 5b presents the measure
for compensation νx,y , as introduced in Eq. 15, (subscript x represents the biases listed vertically, subscript
y represents the biases listed horizontally). Probabilities of occurrence for both biases: 10.10, 20.20, 30.30
(applies to both tables) a Interval: U [−0.10; 0.00]; b Interval: U [0.00; 0.10]; results are based on 10.000
simulation runs per scenario, confidence intervals for relative errors are ≤ 0.0002 for all scenarios (with
α = 0.001)

biases whereby the highest extent of offsetting among biases can be observed for the
case (1) followed by (2) and (3).

Table 6a–c give additional information on the impact of multiple input biases on
the quality of the provided information, i.e., Table 6a presents the Euclidean Dis-
tances, Table 6b presents the mean absolute relative errors and Table 6c presents the
probabilities for undercosting.

5.3 Sensitivity to costing system sophistication

The results presented in Sects. 5.1 and 5.2 have been tested on robustness to the
parameterization for generating costing systems. Basically, this sensitivity analysis is
based on two measures that express the costing systems’ complexity. The first measure
is referred to as cost center sophistication and captures the relation between direct and
indirect cost centers, i.e., sophcent = |Mdir,dcp|/|Mindir |. The second measure is
referred to as cost category sophistication and captures the relation between direct
and indirect cost categories, i.e., sophcat = |K Adir |/|K Aindir |. In order to test the
robustness of the presented results, simulations with the following ranges for the
sophistication measures were executed:

sophcent , sophcat ∈
{

10

2
; 10

4
; 10

6
; 10

8
; 10

10
; 10

12
; 10

14
; 10

16
; 10

18
; 10

20

}
. (16)
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Table 6 (a) Euclidean distances (b) Mean absolute relative errors (c) Probabilities for undercosting

acc type1 t ype2b acc type1 t ype2b

(a) (b)

icoa 6.6501 4.070 1.953 icoa 1.5361 0.886 0.551

10.9492 6.268 3.854 2.5472 1.434 1.100

14.7813 8.338 5.757 3.4533 1.967 1.650

acc 7.612 6.748 acc 1.664 1.519

12.251 11.223 2.627 2.478

16.554 15.566 3.494 3.360

t ype1 3.606 t ype1 0.733

5.088 1.038

6.221 1.267
(c)

icoa 0.5651 0.762 0.996

0.5992 0.832 1.000

0.6293 0.875 1.000

acc 0.464 0.448

0.461 0.452

0.461 0.460

t ype1 0.501

0.499

0.502

Table 6a presents the Euclidean distances EUC Dx,y (cf. Eq. 12); Table 6b presents the mean absolute
relative error emean

x,y (cf. Eq. 13); Table 6c presents the probability for undercosting p
x,y

(probability for

overcosting px,y = 1 − p
x,y

), subscripts x and y represent biases as listed in the table. Probabilities of

occurrence for both biases: 10.10, 20.20, 30.30 (applies to the all three tables). a Interval: U [−0.10; 0.00];
b Interval: U [0.00; 0.10]; results are based on 10.000 simulation runs per scenario, confidence intervals for
relative errors are ≤ 0.0002 for all scenarios (with α = 0.001)

The simulations cover single input bias scenarios and all combinations of the two
sophistication measures. Thus, the sensitivity analysis covers 100 different levels of
costing system sophistication whereby 10.000 simulation runs were executed for each
level of costing system sophistication and each type of bias. The analyses are based
on the mean absolute relative errors as introduced in Eq. 13. For each type of input
bias, 100 mean absolute relative errors are calculated. Out of these, the minimum
emean

x,y=0 and the maximum characterization emean
x,y=0 are determined. In order to express

the sensitivity to costing system sophistication, for each input bias x the range δx

between the minimum emean
x,y=0 and the maximum emean

x,y=0 mean absolute relative error is
calculated, i.e., δx = emean

x,y=0 − emean
x,y=0. Ranges below 0.005 are regarded as negligible

while ranges above this threshold indicate input bias x to be sensitive to costing system
sophistication.

The results presented in Table 7 indicate that input biases on the assignment of cost
categories and input biases on the basis of allocation type 1 appear to be sensitive
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Table 7 Sensitivity to costing system sophistication

Type of bias emean
x,y=0 emean

x,y=0 δx

icoa 0.028 0.028 0.000

acc 0.029 0.088 0.059

t ype1 0.013 0.020 0.007

t ype2b 0.000 0.002 0.002

x indicates the different types of biases as listed in the table, bold font indicates a sensitivity. The probability
of occurrence is set to 0.5 for all types of biases, a Interval: U [−0.10; 0.00]; b Interval: U [0.00; 0.10];
results are based on 10.000 simulation runs per level of costing system sophistication, confidence intervals
for relative errors are ≤ 0.0003 for all scenarios (with α = 0.001)

Fig. 2 Input bias on the assignment of cost categories

to the level of costing system sophistication whereby only a slight sensitivity can be
observed for the latter type of bias. Figures 2 and 3 show the mean absolute relative
errors for all different combinations of sophistication measures.

Figure 2 indicates that for input biases on the assignment of cost categories, a strong
sensitivity to cost category sophistication can be observed. The results in Sects. 5.1
and 5.2 are based on a level of cost category sophistication of 1. Thus, increasing the
cost category sophistication would lead to a stronger impact on information quality
while decreasing the cost category sophistication would weaken the impact (at least
until the level of cost category sophistication 10/6).

Figure 3 suggests that input biases on the basis of allocation type 1 are slightly
sensitive to cost center sophistication. The level of cost center sophistication used for
generating the results presented in Sects. 5.1 and 5.2 is 1. Increasing or decreasing
the sophistication measure would lead to just very slight changes in the impact on
information quality and, hence, would only marginally affect the presented results.
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Fig. 3 Input bias on the basis of allocation type 1

6 Discussion and conclusion

There is evidence that individuals act opportunistically in order to serve their own
ends and that firms might suffer a loss in efficiency because of the resulting agency
problems (Sprinkle 2003; Luft 1997). Studies conducted by Baiman and Lewis (1989)
and Harrell and Harrison (1994) suggest that individuals misrepresent their private
information, e.g., enter inaccurate data into the costing system, for even small increases
in personal wealth. If not identified and corrected, poor information quality might
affect the economic health of organizations negatively (Wang and Strong 1996). In
order to react appropriately to distortions in information provided by costing systems,
decision-makers have to know the impact of (multiple) input biases in costing systems
(Labro and Vanhoucke 2007; Leitner 2012, 2013). Contrary to conventional wisdom,
the results presented in this paper indicate that entering multiple input biases into
the costing system does not necessarily affect information quality negatively from a
technical point of view. If the results are applied within organizations, it appears to
be necessary that the impact on the agents’ behavior also needs to be considered, i.e.,
accepting one type of bias might lead to agents’ maximizing their individual utility
by means of increasing the respective probability of occurrence. This indicates that
an ongoing evaluation of the agents’ behavior and the progression of the information
quality appears to be necessary.

On the basis of the results presented in Table 4, a ranking of biases can be made
with respect to their impact on information quality in single input bias scenarios. The
results indicate that on the basis of the Euclidean Distance as well as on the basis
of the mean absolute relative error, input biases on the assignment of cost categories
lead to the highest extent of distortion. The least impact on information quality can be
observed for input biases on the basis of allocation type 2. Thus, prioritizing appears
to be smart. Knowledge about the impact of biases on the quality of information
allows for determining whether or not to invest resources in order to eliminate the
respective biases. The decision whether or not to eliminate biases depends on two
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major points. First, the threshold of distortion with respect to information quality.
This threshold depends on the organizations’ respective expectations. Second, the costs
to eliminate or to reduce biases. The threshold of distortion and the costs to reduce
biases are organization-specific. Thus, it cannot be generalized when to accept, reduce
or eliminate biases. These two points in combination with the knowledge about the
impact of biases on information quality can constitute the basis for this decision.

Labro and Vanhoucke (2007) investigated biases in activity-based costing systems
and inter alia found that it is more beneficial to reduce errors in later steps of the
allocation processes. In the case of traditional costing systems, the presented results
indicate that earlier steps of cost allocation have a stronger impact on information
quality. Thus, in order to increase the quality of the information generated by traditional
cost accounting systems in the best possible way, this implies a primary focus on
biases in the earlier steps of cost allocation. In activity-based cost accounting systems,
however, the best possible way to increase the information quality would be to focus
on later steps of cost allocation.

For multiple input bias scenarios, the results presented in Table 5a suggest that two
types of interactions can be observed or the investigated biases: (1) biases interact
almost linearly, and (2) biases interact underproportionally, i.e., they mitigate each
other. For the case of a (1) linear interaction, the decision where (not) to tolerate
biases can be made on the basis of the results presented for single input bias scenarios
(cf. Table 4). For these scenarios, eliminating one bias does not affect the impact of
the remaining type of bias. Thus, in order to increase the information quality in the
best possible way, the type of bias for which a stronger impact on information quality
can be observed should be eliminated with the higher priority. If the type of bias
for which the weaker impact on information quality can be observed is eliminated
first, the information quality increases, however, not in the best possible way. A better
information quality can obviously be achieved by eliminating the bias which involves
the higher extent of output error. e.g., (almost) linear interactions can be observed for
the combination of input biases on the assignment of cost categories and input biases
on the basis of allocation type 2 (cf. Table 5a). In single input bias scenarios, the latter
type of bias has the weaker impact on information quality. Hence, with respect to the
best possible way to increase information quality, the results suggest eliminating input
biases on the assignment of cost categories with the higher priority and accepting the
latter type of bias at least temporarily. Of course, also for multiple input bias scenarios,
the decision on whether or not to invest resources in order to improve the information
quality depends on the respective impact on information quality, the organization-
specific threshold for distortions in accounting information and the cost which are
incurred by reducing or eliminating the respective type of bias.

For scenarios in which biases (2) interact underproportionally, it has to be consid-
ered whether there is an offsetting among biases. If there is no offsetting, the optimal
data quality policy can be derived similar to the case of linear interactions. In partic-
ular, results on single input bias scenarios give the extent of distortion after one type
of bias is eliminated. Thus, the type of bias with the weaker impact on information
quality should be accepted (at least temporarily). As outlined above, if the wrong type
of bias is eliminated first, there is an increase in information quality but not in the
best possible way. E.g., a mitigation (and no offsetting) among biases can be observed

123



A simulation analysis of interactions among intended biases in costing systems 135

for input biases on the assignment of cost categories in combination with input biases
on the basis of allocation type 1 (cf. Table 5a,b). Results concerning single input
bias scenarios suggest that the latter type of bias has the weaker impact on informa-
tion quality (cf. Table 4). This indicates that input biases on the assignment of cost
categories should be eliminated first. However, eliminating input biases on the basis
of allocation type 1 first would induce an increase in information quality whereby
eliminating the other type of bias would be more efficient. On the contrary, if results
indicate an offsetting among biases, eliminating the wrong type of bias first would lead
to a decrease in information quality because the compensating effect is eliminated as
well. An offsetting among biases can be observed for input biases on the assignment
of cost categories in combination with input biases on input cost objects. In this case,
in addition to a suboptimal data quality policy as in the other cases, eliminating the
latter type of bias first would lead to a decrease in information quality. Eliminating the
input bias on the assignment of cost categories first would be the most efficient way
to increase data quality for this scenario.

The presented results give insights into the impact of specific types of biases on
information quality. On the one hand, this knowledge supports management in gen-
erating more efficient data quality policies. On the other hand, some implications for
the design of costing systems might be derived. Without knowledge about interactions
among biases it is nearly impossible for management to find the best possible way to
increase the quality of the generated information. This is due to a lack of understand-
ing of offsetting effects and mitigations among biases. As indicated by the scenarios
above, the most critical scenarios contain offsetting among biases. While in scenarios
with a mitigation among biases, the presented results allow management to optimize
the course of actions with respect to data quality, for scenarios with a mitigation
among biases the results prevent from data quality policies which lead to a decrease
in information quality. However, in scenarios with a mitigation (and no offsetting),
eliminating one type of bias always leads to an increase in information quality. In these
cases, the results support management in determining whether or not the impact of
the respective bias is among the situation-specific threshold for distortion and, conse-
quently, whether or not actions in order to eliminate the bias should be taken. In cases
with an offsetting among biases, the results prevent management from eliminating
compensational effects among biases and, as a consequence, decreasing information
quality by mistake. With respect to the (temporal) acceptance of biases in organiza-
tions, the agent’s behavior might be affected. Therefore, it appears to be necessary to
also communicate that the type of bias is accepted as long as the respective occurrence
is below a certain level. This level is determined by the impact of the type of bias on
information quality, i.e., biases can only be accepted as long as their effect on infor-
mation quality is below the defined threshold. Otherwise, it can be expected that the
occurrence of the respective bias increases over time, which also leads to an increasing
extent of output error. As inter alia suggested by Merchant and Shields (1993) in the
design of costing systems, some types of biases might be (intendedly) considered in
order to increase accuracy. For traditional costing systems, this particularly applies to
situations in which the results presented above indicate a compensation among biases
so that the acceptance of one type of bias leads to a (partial) offsetting of the impact of
another type of bias on information quality. Of course, each organization has to find
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its specific threshold for distortions in accounting data. Information generated by cost
accounting systems serves different purposes. As the organizations’ expectations on
information quality might vary in different decision-making situations, this threshold
cannot be generalized. e.g., in the context of price-setting decisions or the fixing of
short-term minimum prices, the extent of distortion might be expected to be marginal.
In the context of rather long-term decision-making, the accepted output error might
be relatively larger. However, with an increasing extent of output error the risk for
suboptimal decision-making increases. It is necessary for organizations to be aware
of this risk and, with this in mind, to fix a situation-specific threshold with respect to
information quality. On the basis of this threshold and the presented results, in can be
derived when to accept biases and when to eliminate them. Thus, the presented results
can constitute the basis for individual prioritization of actions or for evaluating efforts
for improving data quality in costing systems from a cost-benefit perspective.

The main benefit of this simulation study is to give guidance in generating efficient
data quality policies. However, there are some limitations at the same time. The sim-
ulations cover full-costing systems and single-product setups. Setups with multiple
products might not only affect the impact of the investigated biases, but might also
lead to other types of biases investigated. Of course, the set of biases under investiga-
tion is not exhaustive. Hence, one avenue for future research might be to extend the
set of biases and investigate their impact on information quality in marginal-costing
systems as well. Furthermore, the simulation model is designed in a way that prob-
abilities, distributions and intervals for biases are exogenously given. The sensitivity
of the presented results to the exogenously given intervals and distributions should be
tested in future research. This might also limit the presented results. In future research,
some more variables could be endogenized into the simulation model. For example,
the decision of which bias to introduce under which circumstances or the magnitude
of bias could be made by agents themselves and the dynamics of the simulation model
could be designed in a more agent-driven way. In addition, investigating the impact of
randomly generated types of biases on information quality and the extensive investi-
gation of different impacts of cost allocation approaches on information quality might
be avenues for future research.
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