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Abstract Permutation flow shop problems (PFSPs) with makespan minimization
that model production lines working in industry often have some special features:
they are typically large-scale and the jobs can be sorted into types so that jobs of
the same type have equal processing time values at each machine. We define the
related R-PFSP, the Permutation with Repetition Flow Shop Problem, which is of
less complexity if the number of types is bounded. Moreover, a subproblem set of
R-PFSPs, the RL-PFSP is considered too, where only those permutations are in the
design space in which subsequent tuples of a certain size contain jobs of the same type.
We construct adequate new MILP models for R-PFSPs and RL-PFSPs and investigate
their effectiveness experimentally. We demonstrate that via our new MILP models
significantly larger problems can be solved than via the classical MILP models.

Keywords Flow shop scheduling · Minimizing makespan ·
Mixed integer programming formulations · Computational comparisons
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1 Introduction

At modern factories production line planning is supported by some optimization tools
to find the best or at least a “good” scheduling of the prescribed set of jobs. The time
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e-mail: hajbat@sze.hu

Z. Horváth
e-mail: horvathz@sze.hu

123



730 T. Hajba, Z. Horváth

available for this planning is often restricted to a given, rather short period and the
problem is large-scale, which makes the optimization hard.

In this paper we consider the same kind of situation: within restricted computational
time we have to find a good plan for production lines. We shall solve the corresponding
permutation flow shop problems (PFSPs) to minimize the makespan (total processing
time) of the given set of jobs.

In the literature, besides many heuristic methods (genetic algorithms, etc.) mixed
integer linear programming (MILP) models and some numerical solvers are applied,
too; see the papers Pan (1997), Stafford (1988), Stafford and Tseng (1990, 2002),
Stafford et al. (2004, 2005), Wagner (1959), and Wilson (1989).

Although the main advantage of this approach compared to heuristics is that the
MILP minimization gives a result with the guaranteed exact optimum, it cannot
complete the computations within the prescribed period. Namely, since the PFSP is
NP-hard when the number of machines is at least 3, we can not expect large-scale
problems to be solvable in reasonable time by using MILP models. Indeed, classical
benchmark problems with 10 machines and 20 jobs (Taillard 1993) can not be solved
via the state-of-the-art MILP models within 1 h of computation on one CPU-core with
the standard GAMS CPLEX.

In this paper we wish to extend the size of the solvable MILP models for the special
problems arising from industry by exploiting their nature. Namely, the jobs can often
be sorted into types so that jobs of the same type have equal processing time values at
each machine. We define the related R-PFSP, the Permutation with Repetition Flow
Shop Problem, which is of less complexity if the number of types T is bounded.
Indeed, the design space for the PSFP has N ! ≈ (N/e)N elements while the same
number for R-PFSP is ≈ T N . In addition, a subproblem set of R-PFSPs is considered
as well where only those permutations are in the design space in which subsequent
tuples of a certain size contain jobs of the same type; in other words these tuples are
called lots, so this problem class is called Permutation with Repetitions in Lots Flow
Shop Problem and is denoted by RL-PFSP.

We construct adequate new MILP models for R-PFSPs and RL-PFSPs and investi-
gate their effectiveness experimentally. We demonstrate that via our new MILP models
significantly larger problems can be solved than via the classical MILP models.

Although both problems are widely used in real-life manufacturing systems, the
R-PFSP has not been investigated in the literature. The RL-PSFP is a special case of
the group scheduling problem and was studied in more general form in several papers
(Schaller et al. 2000; Pinedo 2008; Franca et al. 2005; Salmasi et al. 2010). However,
the MILP models of the RL-PFSP have not received much attention so far and the
empirical analysis of different MILP models for the RL-PFSP was not done in these
papers.

The rest of the paper is organized as follows. We introduce the R-FPSP and the
RL-PFSP in detail in Sect. 2. Then, in Sect. 3, three new MILP models, derived from
the state-of-the-art MILP models for PFSP, are constructed for both problems. We
present the results of numerical experiments devoted to benchmarking the new MILP
models on the new problems in Sect. 4. The aim of the comparison is to investigate the
maximum size of the problems that are solvable by these models. We also investigate
how close the RL-PFSP optimum values are to those of the corresponding R-PFSP,
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which has not been studied in the literature yet. We investigate a real life industrial
problem in Sect. 5. Section 6 contains our conclusions.

2 Definition of the classical PFSP and the novel R-PFSP and RL-PFSP

The PFSP can be defined as follows. A set of n jobs has to be processed on m machines
M1, M2, . . ., Mm . Each job has to be processed first on M1, next on M2 and so on.
A machine can process at most one job at any time and preemption is not allowed. We
assume that there is unlimited buffer between the machines which means that a job
can immediately leave a machine after its processing on that machine is completed.
The schedule of the jobs must be the same on each machine. The goal is to find a
permutation of the jobs which minimizes the completion time (or makespan) of the
last job on the last machine.

In manufacturing problems we often have to schedule a lot of jobs but the jobs are
not all different. We will say that two jobs, j and k are of the same type, we denote
this by T ( j) = T (k), if their processing times are equal on any machines. Let us
denote by T the number of different types and by nt the number of jobs of type t
(1 ≤ t ≤ T ). We will call this problem the Permutation with Repetition Flow Shop
Problem (R-PFSP).

One of the possibilities to reduce the complexity of the minimization is the
reduction of the design space by confining ourselves only to those permutations
π = (π(1), π(2), . . ., π(n)) in which T (π(1)) = T (π(2)) = · · · = T (π(S)),
T (π(S + 1)) = T (π(S + 2)) = · · · = T (π(2S)) and so on, i.e. where the jobs
in each consecutive S-tuples are of the same type. If this holds true for π , we call π a
permutation with lot size S. We call those R-PFSPs, for which the design space is non-
empty and consists of permutations with lot size S, Permutation with Repetition Flow
Shop Problems of lot size S; we denote the set of these problems by RL-PFSP. Thus,
e.g. the classical PFSP is equivalent to a RL-PFSP with S = 1 and T = n. We remark
that both models, R-PFSP and RL-PFSP, are frequently used in production planning.

3 Construction of MILP models for the R-PFSP and the RL-PFSP

3.1 MILP models for the R-PFSP

The classical PFSP has several MILP models, which can be divided into two classes,
namely the models of the “Wagner” family (Wilson model, WST model, TS2 model)
and the models of the “Manne” family (Manne model, Liao-You model).

The models of the Wagner family use the classical assignment problem to describe
a permutation while the models of the Manne family use dichotomous constraints
to describe a permutation. Numerical experiments (Stafford et al. 2004, 2005) show
that the models of the Wagner family outperform the models of the Manne family.
For this reason we construct new models for R-PFSPs based on the Wagner family.
Our models with repetition differ from the original models in the description of a
permutation, namely to describe a permutation in an R-PFSP we only need to give the
types of the corresponding jobs in the order.
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We will use the following notations.

Parameters:

M Number of machines
N Number of jobs
T Number of different types
nt Number of jobs of type t (1 ≤ t ≤ T ;∑

nt = N )

Pri Processing time of the job of type i on machine r

Continuous variables:

Cr j Completion time of the j-th job of the sequence on machine r
Br, j Beginning time of the j-th job of the sequence on machine r
Xr, j Idle time of machine r before the start of the j-th job of the sequence
Yr, j Waiting time of the j-th job of the sequence in the buffer after it finishes

processing on machine r
CMax Makespan.

Binary variable:

Zi j Equals 1, if a job of type i is placed in the j-th place of the order, 0 otherwise.

3.1.1 The R-Wilson model

The first model, based on the work of Wilson (1989), called R-Wilson from now on,
is presented below.

N∑

j=1

Zi j = ni , 1 ≤ i ≤ T (1)

T∑

i=1

Zi j = 1, 1 ≤ j ≤ N (2)

B1 j +
T∑

i=1

P1i Zi j = B1, j+1 1 ≤ j ≤ N − 1 (3)

B11 = 0 (4)

Br1 +
T∑

i=1

Pri Zi1 = Br+1,1 1 ≤ r ≤ M − 1 (5)

Br j +
T∑

i=1

Pri Zi j ≤ Br+1, j 1 ≤ r ≤ M − 1; 2 ≤ j ≤ N (6)

Br j +
T∑

i=1

Pri Zi j ≤ Br, j+1 2 ≤ r ≤ M; 2 ≤ j ≤ N − 1 (7)

min Cmax = BM N +
T∑

i=1

PMi Zi N (8)
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Equation (1) ensures that there are ni jobs in the sequence that are of type i .
Constraint (2) states that each position in the sequence is filled with exactly one type
of a job. Constraints (3), (4) and (5) state that there is no idle time on the first machine
and the first job does not have to wait on any machine. Constraint (6) says that a job
can start on machine r + 1 only after its finished on machine r . Constraint (7) ensures
that the job in position j + 1 in the sequence can not start on machine r until the job
in the j-th position in the sequence is finished on machine r .

3.1.2 The R-WST model

The second model, based on the formulation of Wagner (1959) with some modification
suggested by Stafford and Tseng (2002), is called R-WST from now on.

N∑

j=1

Zi j = ni , 1 ≤ i ≤ T (9)

T∑

i=1

Zi j = 1, 1 ≤ j ≤ N (10)

Yr1 = 0, 1 ≤ r ≤ M − 1 (11)
T∑

i=1

Pri Zi, j+1 + Xr, j+1 + Yr, j+1 =
T∑

i=1

Pr+1,i Zi, j + Xr+1, j + Yr j

1 ≤ r ≤ M − 1; 1 ≤ j ≤ N − 1 (12)

Xr,1 + Yr,1 +
T∑

i=1

Pri Zi1 = Xr+1,1 1 ≤ r ≤ M − 1 (13)

min Cmax =
T∑

i=1

ni · PMi +
N∑

p=1

X Mp (14)

Again, constraint (9) ensures that there are ni jobs in the sequence that are of type
i and constraint (10) states that each position in the sequence is filled with exactly one
type of a job. Constraint (11) states that the first job in the sequence does not have
to wait on any machine. Constraints (12) and (13) say that the job in the ( j + 1)th
position of the sequence can not begin its processing on machine r until the job in the
j-th position of the sequence has completed its processing on that same machine; and
a job can not start processing on any machine until it has completed its processing on
the previous machine.

3.1.3 The R-TS2 model

Our next model, based on the formulation of Stafford et al. (2005), called R-TS2 from
now on, is presented below.
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N∑

k=1

Zik = ni , 1 ≤ i ≤ T (15)

T∑

l=1

Zl j = 1, 1 ≤ j ≤ N (16)

Cr j +
T∑

i=1

Pri Zi, j+1 ≤ Cr, j+1, 1 ≤ r ≤ M, 1 ≤ j ≤ N − 1 (17)

Cr j +
T∑

i=1

Pr+1,i Zi j ≤ Cr+1, j , 1 ≤ r ≤ M − 1, 1 ≤ j ≤ N (18)

T∑

i=1

P1i Zi1 ≤ C11 (19)

min Cmax = CM N (20)

Equations (15) and (16) are the assignment problem as it was explained in the
R-Wilson model. Constraint (17) says that the job in the ( j + 1)-th position of the
sequence can not finish on any machine until the job in the j-th position of the sequence
is finished on that machine and job in the ( j+1)-th position of the sequence is processed
on that machine. Constraint (18) ensures that a job can not finish on any machine until
it is finished on the previous machine and processed on the given machine. Finally
constraint (19) states that the first job can not finish earlier on the first machine than
its processing time on the first machine.

3.2 MILP models for RL-PFSP

In this case the MILP models of the previous section can be simplified since we only
have to give the sequence of the lots instead of the sequence of the jobs.

We will use the following notation:

Li Number of lots that contain jobs of type i (1 ≤ i ≤ T )
L Total number of lots (L = L1 + L2 + · · · LT )
S Size of a lot (N = L · S)
Zi j Binary variable; Zi j = 1 iff the j-th lot contains jobs of type

i (1 ≤ i ≤ T, 1 ≤ j ≤ L).

3.2.1 The RL-Wilson model

L∑

j=1

Zi j = Li 1 ≤ i ≤ T (21)

T∑

i=1

Zi j = 1 1 ≤ j ≤ L (22)
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B1,S( j−1)+k +
T∑

i=1

P1i Zi j = B1,S( j−1)+k+1

1 ≤ j ≤ L; 1 ≤ k ≤ S; jk < N (23)

B11 = 0 (24)

Br1 +
T∑

i=1

Pri Zi1 = Br+1,1 1 ≤ r ≤ M − 1 (25)

Br,S( j−1)+k +
T∑

i=1

Pri Zi j ≤ Br+1,S( j−1)+k

1 ≤ r ≤ M − 1; 1 ≤ j ≤ L; 1 ≤ k ≤ S; 1 < jk (26)

Br,S( j−1)+k +
T∑

i=1

Pri Zi j ≤ Br,S( j−1)+k+1

2 ≤ r ≤ M; 1 ≤ j ≤ L; 1 ≤ k ≤ S, 2 ≤ jk < N (27)

min Cmax = BM N +
T∑

i=1

PMi Zi L (28)

Constraint (21) ensures that there are Li lots that contain jobs of type i . Constraint
(22) states that each position in the sequence of the lots is filled with exactly one type
of a lot. The remaining constraints state the same as in the R-Wilson model. We only
have to be careful with the index numbers; the job in the (S( j − 1) + k)th position of
the sequence (where 1 ≤ k ≤ S) is contained in a lot that is in the j-th position of the
sequence of the lots.

3.2.2 The RL-WST model

L∑

j=1

Zi j = Li 1 ≤ i ≤ T (29)

T∑

i=1

Zi j = 1 1 ≤ j ≤ L (30)

Yr1 = 0 1 ≤ r ≤ M − 1 (31)
T∑

i=1

Pri Zi j =
T∑

i=1

Pr+1,i Zi j − Xr,S( j−1)+k+1 − Yr,S( j−1)+k+1

+Xr+1,S( j−1)+k + Yr,S( j−1)+k

1 ≤ r ≤ M − 1; 1 ≤ j ≤ L; 1 ≤ k ≤ S − 1 (32)
T∑

i=1

Pri Zi, j+1 =
T∑

i=1

Pr+1,i Zi, j − Xr, j S+1 − Yr, j S+1 + Xr+1,Sj + Yr,Sj

1 ≤ r ≤ M − 1; 1 ≤ j ≤ L − 1 (33)
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Xr+1,1 = Xr,1 + Yr,1 +
T∑

i=1

Pri Zi1 1 ≤ r ≤ M − 1 (34)

min Cmax =
T∑

i=1

ni · PMi +
N∑

p=1

X Mp (35)

Equations (29) and (30) state that there are Li lots that contain jobs of type i and
each position in the sequence of the lots is filled with exactly one type of a lot. The other
constraints are the modifications of the constraints of the R-WST model described in
the previous section. The main difference is that equality (12) of the R-WST model
has to be decomposed into two equalities (32) and (33) depending on whether the job
in the (S( j − 1) + k)th position of the sequence is the last job of a lot (i.e. k = S) or
not.

3.2.3 The RL-TS2 model

L∑

j=1

Zi j = Li , 1 ≤ i ≤ T (36)

T∑

i=1

Zi j = 1, 1 ≤ j ≤ L (37)

Cr,S( j−1)+k +
T∑

i=1

Pri Zi j ≤ Cr,S( j−1)+k+1

1 ≤ r ≤ M; 1 ≤ j ≤ L; 1 ≤ k ≤ S − 1 (38)

Cr, j S +
T∑

i=1

Pri Zi, j+1 ≤ Cr, j S+1, 1 ≤ r ≤ M; 1 ≤ j < L (39)

Cr,S( j−1)+k +
T∑

i=1

Pr+1,i Zi j ≤ Cr+1,S( j−1)+k)

1 ≤ r ≤ M − 1; 1 ≤ j ≤ L , 1 ≤ k ≤ S (40)
T∑

i=1

P1i Zi1 ≤ C11 (41)

min Cmax = CM N (42)

Equations (36) and (37) are the classical assignment problem of the lots. The other
constraints are the modifications of the constraints of the R-TS2 model. As it was
explained in the RL-WST model inequality (17) is decomposed into two inequalities
(39) and (40).
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Table 1 Size complexity of the models

Model Binary variables Real variables Constraints

Wilson N 2 M N 2M N − M + N + 1

WST N 2 2M N − N + 1 M N + M + N + 1

TS2 N 2 M N + 1 2M N − M + N + 1

R-Wilson N T M N 2M N − M + T + 1

R-WST N T 2M N − N + 1 M N + M + T + 1

R-TS2 N T M N + 1 2M N − M + T + 1

RL-Wilson N T/S M N 2M N − M − N + N/S + T + 1

RL-WST N T/S 2M N − N + 1 M N + M − N + N/S + T + 1

RL-TS2 N T/S M N + 1 2M N − M − N + N/S + T + 1

N number of jobs, M number of machines, T number of types, S lot site

3.3 Size complexity of the models

The size complexity of the original MILP models, their R-versions and their
RL-versions are presented in Table 1. It can be seen that the main difference between
the original models and their versions is the number of binary variables. The repeated
models contain T/N times less binary variables than the original models while the
models with lot size S contain T/N S times less binary variables than the original
models.

4 Numerical experiments

To compare the presented MILP models an experimental design was constructed and
executed. The performance measure is the computer solution time (CPU) required to
solve the problems. The models were tested on different sized problems; we considered
five randomly generated instances for each size. As suggested in Taillard (1993) the
processing times were random integers drawn from the uniform distribution in the
range (1, 100).

The formulations were written in GAMS modeling language and solved using
CPLEX 12.3 on an Intel Xeon E31225 3.1 GHz personal computer equipped with
4 GB. The CPLEX options employed were mixed integer programming, an optimality
stopping criterion of zero and a time limit of 3,600 s.

4.1 Experiment 1: Comparison of models for the R-PFSP

A 20 cell experimental design, M ∈ {6, 7, 8, 9, 10} by T ∈ {6, 7, 8, 9}, 5 jobs from
each type, five replications per cell, was used to compare the repeated models. The
R-Wilson model solved all 100 problems, the R-TS2 solved 99 problems while the
R-WST model solved 98 problems within the time limit. Overall, the R-Wilson model
required less computer time than did the R-WST model in 52 of the 100 problems,
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Table 2 Original models versus their repeated versions

M T Wilson WST TS2 R-Wilson R-WST R-TS2

6 6 9.87 16.95 6.95 2.52 3.64 3.41

7 53.29 84.69 99.88 6.62 7.46 9.12

8 179.90 * 76.08 5.52 13.55 6.38

9 5.06 3.49 1.30 0.51 0.60 1.05

7 6 226.06 589.96 332.02 30.64 32.00 36.24

7 25.00 301.21 3.27 3.15 35.79 17.70

8 * 232.82 62.20 11.98 11.66 11.80

9 19.69 42.54 42.83 4.75 3.34 4.98

8 6 1,101.60 1,126.17 * 16.32 46.85 22.75

7 * * 754.234 52.82 48.87 81.78

8 * * * 77.56 249.94 54.21

9 * * * 1,576.09 * *

9 6 * * * 62.61 55.89 88.84

7 134.40 734.16 121.12 9.80 35.10 47.62

8 52.11 255.44 226.87 16.837 60.40 24.85

9 401.70 1,251.24 629.57 34.30 61.40 41.89

10 6 * * * 75.43 38.09 70.50

7 * * * 1,529.00 2,065.65 901.03

8 * * * 1,080.83 2,205.17 447.04

9 * * * 612.75 2,843.65 1,061.36

Solution times (in seconds) for solving problems by the MILP models

T number of types, M number of machines

Number of jobs N = 5T

* The problem was not solved to proven optimality in 1 h run time

and for the R-TS2 model it was 65. The R-WST model required less solution time
than the R-TS2 model in 57 of the 100 problems.

Combining all cells a distribution-free two-way test based on the Friedman rank
sums test (Hollander and Wolfe 1973) was used to test the null hypothesis that the
ranks of the 3 models are equal. When the null hypothesis was rejected an all pair
comparison procedure was used to determine significant differences between all pairs.
The test showed that for Experiment 1 the R-Wilson model is significantly faster than
both the R-WST model (p = 0.0001) and the R-TS2 model (p = 0.0002), and there
is no significance difference between the R-WST and the R-TS2.

Then the hardest problem of each cell was solved with the original Wilson, WST
and TS2 models, too. The results are shown in Table 2. It can be observed that (except
one case) the repeated models solved the problems much faster than did the original
ones. On the other hand the repeated models could solve larger problems (in terms of
M) than the original models; repeated models could solve problems up to M = 10
machines and N = 45 jobs while the original models could solve problems only up
to M = 7 machines and N = 45 jobs.
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Table 3 Solution times (in seconds) for problems in Experiment 2

T Model Mean Median

ni = 2 ni = 3 ni = 4 ni = 2 ni = 3 ni = 4

7 R-Wil 3.74 9.83 159.90 4.37 3.78 5.89

R-WST 4.63 15.82 529.01 4.86 5.32 25.98

R-TS2 5.42 9.19 426.61 3.76 5.34 14.18

8 R-Wil 5.42 317.24 508.21 3.41 49.28 0.70

R-WST 17.89 516.03 * 6.79 177.07 0.78

R-TS2 5.60 247.22 558.43 3.76 150.81 1.05

9 R-Wil 273.48 * 26.05 *

R-WST 421.71 * 51.22 *

R-TS2 233.19 * 26.00 *

10 R-Wil 100.02 47.86

R-WST 330.40 192.56

R-TS2 133.96 109.44

11 R-Wil * *

R-WST * *

R-TS2 * *

Number of machines M = 10; five problems per cell
T number of types, ni number of jobs of type i (n1 = n2 = · · · = nT )
Number of jobs N = T · ni
* At least one problem was not solved to proven optimality in 1 h run time

4.2 Experiment 2: Increasing the number of types or the number
of jobs of the same type

The goal of Experiment 2 was to investigate the problem sizes solvable by the repeated
models in terms of increasing N . The number of jobs was increased in two different
ways: on one hand for a fixed type number T the number of jobs of the same type ni

was increased and on the other hand for a fixed ni the number of types T was increased
until CPLEX could solve all problems in a cell. The number of machines was 10 in
all instances. The results are summarized in Table 3.

For T = 7 each model solved all problems up to ni = 4 (i.e. 28 jobs overall). For
T = 8 the R-Wilson and R-TS2 models solved all problems up to ni = 4 (i.e. 32 jobs
overall) while the R-WST model failed to solve one instance optimally in this cell.
For T = 9, 10 each model could solve problems with two jobs from each type, but
they all failed to solve all problems with ni = 3. For T = 11 none of the models were
able to solve all problems with ni = 2.

On average the R-WST model required the most computer time in all eight cells
and the R-WST model had the most median solution time in six of the eight cells. On
average the R-Wilson model required less computer time than did the R-TS2 model in
five cells and the R-Wilson model had less median solution time than did the R-TS2
model in five cells. These results suggests that for M = 10 the R-Wilson model is the
fastest followed by the R-TS2 and the R-WST.
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Table 4 Solution times (in seconds) for problems in Experiment 3

T Model M

Mean Median

9 10 11 12 9 10 11 12

6 R-Wilson 2.51 5.35 14.33 * 0.96 7.16 6.77 25.24

R-WST 2.71 7.19 25.62 * 0.89 8.73 14.13 53.32

R-TS2 4.23 5.60 18.78 * 0.88 8.01 7.69 26.14

8 R-Wilson 139.16 314.65 307.52 6.89 15.16 136.58

R-WST 289.34 737.53 * 6.07 22.40 193.97

R-TS2 168.59 373.70 286.18 5.22 13.49 224.06

Number of jobs N = 24, five problems per cell

T number of types, M number of machines

Each type has the same number of jobs

* At least one problem was not solved to proven optimality in 1 h run time

Using the Friedman rank sums test as employed in experiment 1 the results show
that when all cells are combined then both the R-Wilson and the R-TS2 models are
significantly faster than the R-WST model (p < 0.0001), and there is no significant
difference between the R-Wilson and the R-TS2 models.

It is also interesting to compare the results in cell T = 9; ni = 2 with the results in
cell T = 7; ni = 3. Each model required far less average and median computer time
in cell T = 7; ni = 3 than in cell T = 9; ni = 2; although cell T = 9; ni = 2 has
less jobs (18) than the other cell (21). One reason of this anomaly is that the number
of binary variables has a great impact on computer solution time and although cell
T = 9; ni = 2 has less jobs than the other cell but it has more binary variables (171)
than the other cell (147). This also suggests that larger (in terms of N ) problems with
small values of T (i.e. with few types) can be solved by the repeated models.

4.3 Experiment 3: Increasing the number of machines

The goal of Experiment 3 was to investigate the problem sizes solvable by the repeated
models in terms of increasing M . In each cell the number of jobs is 24; the number of
the different types T is 6 and 8. The results are summarized in Table 4.

In the case of T = 6 each model could solve all the problems up to M = 11 but
they failed to solve all the problems in 1 h for M = 12. In the case of T = 8 the
R-Wilson and the R-TS2 model solved all problems up to M = 11 while the R-WST
model failed to solve all the problems for M = 11.

On average the R-Wilson model required less computer time in five of the six cells
than the R-WST model and less than the R-TS2 model in five cells. The R-TS2 model
required less computer time in all cells than the R-WST model.

Using the Friedman-rank sums test as in the previous experiments the results show
that the R-Wilson model is faster than both the R-WST (p < 0.0001) and the R-
TS2 (p = 0.01) models while the R-TS2 model is faster than the R-WST model
(p = 0.0166).
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Table 5 Experiment 4: Models with lot size

S Model ni = 4 ni = 8 ni = 12 ni = 16 ni = 24

Part A. Mean solution time

2 RL-Wilson 19.61 82.27 50.28 *

RL-WST 32.09 25.31 532.21 *

RL-TS2 22.31 32.10 107.12 *

4 RL-Wilson 2.77 43.28 107.81 *

RL-WST 2.58 116.49 292.78 *

RL-TS2 2.49 47.06 137.35 *

8 RL-Wilson 3.54 256.26 262.53

RL-WST 4.16 * *

RL-TS2 4.45 7.41 585.49

Part B. Median solution time

2 RL-Wilson 11.22 4.41 1.48 8.77

RL-WST 14.42 4.63 0.91 4.85

RL-TS2 15.23 4.14 1.64 24.20

4 RL-Wilson 3.00 7.40 1.41 3.25

RL-WST 1.54 4.28 1.76 5.45

RL-TS2 1.91 3.85 4.67 3.84

8 RL-Wilson 4.34 11.18 9.11

RL-WST 2.88 4.45 3.59

RL-TS2 4.16 4.20 28.37

Part C. Means of the relative difference of C S
max from C1

max (in %)

2 1.18 0.05 0.1 *

4 7.23 1.14 0.3 *

8 4.34 1.67 0.44

Number of machines M = 10, number of types T = 8

S lot size , ni number of jobs of type i , (n1 = n2 = · · · = nT )

Number of jobs N = T · ni

* At least one problem was not solved to proven optimality in 1 h run time

It can be seen from the results that for a fixed M all three models solved the problems
with T = 6 much faster than the problems with T = 8. In fact this can be expected
from the size complexity of the models (see Table 1) since for fixed M and N the
models of problems with less types have less binary variables.

4.4 Experiment 4: Comparison of the models with lot size

The models with lot size are compared in several instances. In this experiment we
considered instances with M = 10, T = 8, ni ∈ {4, 8, 12, 16, 24} and S ∈ {2, 4, 8}.
The results are shown in Table 5.

First observe that each model with lot size 2 and 4 solved all the problems up to
ni = 12 (i.e. 96 jobs overall). The RL-Wilson and the RL-TS2 models with lot size 8
solved all the problems up to ni = 24 (i.e. 192 jobs overall) while the RL-WST model
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with lot size 8 could not solve one problem for ni = 16, 24. Experiment 2 showed
that for M = 10 and T = 8 the repeated models without lot size (i.e. with S = 1)
solved the problems only up to ni = 4. This means that using models with lot size
greater than one larger problems become solvable.

Combining all the cells the Friedman ranked-sums test shows that there is no signif-
icant difference between the models (p = 0.133). However, if we confine ourselves
to the 8 hardest problems (in which each model required more than 50 seconds of
solution time) the situation is quite different. The RL-Wilson model was the fastest in
7 of the 8 problems while the RL-WST model was the slowest in 6 of the 8 problems.

We also compared the optimal values of the problems solved by using models with
lot size and models without lot size (i.e. S > 1 and S = 1). For each cell Part C of
Table 5 contains the average values of

(C S
max − C1

max

C1
max

− 1
)

· 100

which is the relative difference of C S
max and C1

max where C S
max and C1

max denote the
optimal value of the problem with lot size S and lot size 1 respectively. The results
suggest that fixing S and increasing ni the optimal value of C S

max is getting closer
and closer to C1

max . For example in the cell S = 8, ni = 24, on average the C8
max

values were within 0.44 % of the C1
max values. In fact C8

max was equal to C1
max in 3

of 5 instances of this cell. This shows that for larger problems containing many jobs
of the same type one can compute a good approximation of the problem by solving it
with a model with lot size greater than one.

5 Case study

Our three repeated MILP models were also tested on a PFSP problem arising from
real industrial production line scheduling in automotive industry (Jósvai 2009). The
engine production line consisted of three segments including the final control segment.
There were some automated processing machines distributed among the other, manual
processing machines. In total N = 227 jobs with T = 12 different types had to be
processed on M = 57 machines. The number of the jobs of one type, ni varied between
6 and 39. Processing time values distributed in a wide range, typically much larger in
the last controlling segment. The makespan condition was a proper objective since the
final goal was to make a plan of the processing for a prescribed number of jobs that
fit into the total allowed time for production.

All three repeated models were able to solve the problem. The R-Wilson, the R-TS2
and the R-WST required 219.6, 278.5 and 1,517.4 s, respectively, to find the optimal
solution, which is a remarkable result, namely that large scale industrial problems
could be solved by using the new MILP models introduced in this paper. This optimum
resulted 20 min shorter production time for the jobs than the best plan made manually.

We remark that industrial-like test problems were generated randomly with parame-
ters with similar ranges. The repeated MILP methods did not solve all these problems
within a reasonable time, so it would be useful to find conditions that cause fast con-
vergence of exact methods on large scale data.

123



New effective MILP models 743

6 Conclusions

In this paper we introduced two new families of problems derived from the classical
PFSP, namely the R-PFSP and the RL-PFSP. The R and RL problem sets arise from
industrial production line modeling problems where many jobs are repeated. This
means that several jobs have the same processing time on all machines, which reflects
the typical situation that during one planning period in a factory we have to produce
products of some types and of each type we have to produce several items. To be able
to solve problems as large as possible with MILP models, we defined three new MILP
models for each repeated problem.

To benchmark the new methods, four experiments were conducted to compare the
MILP models. The major conclusions from the numerical experiments reported in this
paper are as follows.

1. Permutation flow shop problems containing repeated jobs can be solved signifi-
cantly faster with the proposed repeated MILP models than with the previously
known MILP models. Thus the repeated models could solve lager problems than
the original models (M = 10, N = 45 vs. M = 7, N = 45, or M = 8, N = 45
vs. M = 8, N = 30).

2. The R-Wilson model performed significantly better on the Friedman test than the
R-WST and the R-TS2 models on problem sizes M = 6, 7, 8, 9, 10 and T =
6, 7, 8, 9, ni = 5, i.e. N = 30, 35, 40, 45.

3. The R-Wilson and the R-TS2 models performed better than the R-WST model on
problem sizes M = 10, T = 7, 8, 9, 10, ni = 2, 3, 4.

4. MILP models with lot size can solve much larger problems in reasonable time than
models without lot size. For example, the RL-Wilson model with lot size S = 8
can solve problems up to M = 10 machines and N = 192 jobs in 1 h. Moreover,
in 3 of the 5 instances S = 8 gave the same optimum as S = 1. That is there was
no loss of accuracy when turning from S = 1 to S = 8. (The optimum for S = 1
was computed on 4 cores in larger computational time).
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