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Abstract For an inverse obnoxious center location problem, the edge lengths of the
underlying network have to be changed within given bounds at minimum total cost
such that a predetermined point of the network becomes an obnoxious center loca-
tion under the new edge lengths. The cost is proportional to the increase or decrease,
resp., of the edge length. The total cost is defined as sum of all cost incurred by
length changes. For solving this problem on a network with m edges an algorithm
with running time O(m) is developed.

Keywords Obnoxious center location · Combinatorial optimization · Inverse
optimization · Computational complexity

1 Introduction

Obnoxious facility location problems are basic models in location theory in which cus-
tomers no longer consider the facilities desirable, but attempt to have them as far away
as possible from their own locations. Examples of such facilities include nuclear reac-
tors, military installations, stadiums, garbage dump sites, mega-airports, oil plants and
chemical plants. Although these facilities may pose certain risks or disturbances to the
public, their significance cannot be ignored because they provide essential services
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to the society. Two well-known models in obnoxious location optimization are the
obnoxious center and the obnoxious median problems. Whereas in the obnoxious
median problem the task is to find the best location of one or more obnoxious facilities
such that the sum of the (weighted) distances from customers to the nearest facility
becomes maximum, the obnoxious center problem seeks to determine the best location
of these facilities such that the minimum (weighted) distance between customers and
the closest facility is maximized. For detailed surveys on obnoxious location problems
the reader is referred to Cappanera et al. (2003), Carrizosa and Plastria (1999), Plastria
(1996) and Zanjirani and Hekmatfar (2009).

In contrast to obnoxious location problems, the goal for an inverse obnoxious
location problem is to modify specific parameters (like edge lengths) of a given obnox-
ious location problem in the cheapest possible way subject to certain modification
bounds such that one or more prespecified locations become optimal under the new
parameter values.

In 2007, Gassner (2007) considered the inverse obnoxious 1-median (or 1-maxian)
problem with edge length modifications and proved that this problem is strongly NP-
hard on general graphs and weakly NP-hard on series-parallel graphs. Through a
transformation to a minimum cost circulation problem she solved the original problem
in O(m log m)-time on a tree with m edges. Later, Galavii (2008) investigated the
inverse 1-maxian problem with vertex weight variations on a path and proposed an
O(m)-time solution algorithm. Within the context of desirable models of inverse
median problems, however, see, e.g. Baroughi Bonab et al. (2010, 2011), Burkard et
al. (2004, 2007, 2010) and Gassner (2012).

To the best of our knowledge, inverse obnoxious center location problems have
not been investigated until now. Within the context of desirable models, however,
the NP-hardness of the uniform-cost inverse center location problem with edge
length modification on directed graphs was proved by Cai et al. (1999) in 1999. Later,
Alizadeh and Burkard (2011a,b), Alizadeh et al. (2009) and Yang and Zhang (2008)
developed exact algorithms with different solution strategies for variants of the inverse
absolute and vertex 1-center location problems on tree networks.

In this paper, we consider the inverse obnoxious center location problem with edge
length modification on unweighted networks with m edges and design an algorithm
with time complexity of O(m) for its solution. The paper is organized as follows: In
Sect. 2 we state the obnoxious center location problem and its inverse version on an
unweighted network. Applying the optimality condition for the underlying obnoxious
center problem we derive a generic solution idea for solving the inverse obnoxious
center location problem. In Sect. 3, we develop a linear time solution approach for the
problem under investigation. We close with an outline for further research.

2 The obnoxious center location problem and its inverse model on networks

Let G = (V, E) be an undirected network with vertex set V and edge set E, |E | = m.
Every edge e ∈ E has a positive length �(e). Let d�(u, v) denote the shortest path
distance between two vertices u and v under the edge lengths �. It is said that point
p lies in network G, p ∈ G, if p coincides with a vertex or lies on an edge e = uv
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with endpoints u, v ∈ V . In the latter case point p is fixed by selecting a parameter
θ ∈ (0, 1) such that

d�(u, p) = θ�(e).

The obnoxious center location problem on network G asks for an optimal solution to

maximize min
v∈V

d�(v, p) (1)

subject to p ∈ G.

An optimal solution p∗ of problem (1) is called an obnoxious center location on the
given network G. The obnoxious centers of network G can be obtained in O(m)-time
according to the following basic lemma which is the immediate consequence of the
definition of the obnoxious center of a graph.

Lemma 2.1 (optimality criterion)
For an unweighted network G, the midpoint of a longest edge is an obnoxious center
location.

In contrast to the classical obnoxious center problem (1), the inverse obnox-
ious center location problem on a network is stated as follows: Let a network
G = (V, E), |E | = m, with positive edge lengths �(e), e ∈ E , be given. Let s
be a prespecified interior point (i.e., s /∈ V ) on a specific edge es of G which divides
es into two edge-segments es

1 and es
2 satisfying

�(es
1) + �(es

2) = �(es),

es
1 ∩ es

2 = {s}.

Without loss of generality, assume that

�(es
2) ≤ �(es

1).

We want to modify the edge (and edge-segment) lengths in the cheapest possible way
such that the prespecified point s becomes an obnoxious center location under the
modified edge lengths. Let

Ê = {es
1, es

2} ∪ E\{es}.
Suppose that we incur the nonnegative cost c+(e) if length �(e), e ∈ Ê , is increased
by one unit and we incur the nonnegative cost c−(e) if length �(e) is reduced by one
unit. Moreover, assume that we are not allowed to modify the edge lengths arbitrarily.
Therefore, let u+(e) and u−(e) be the maximum permissible amounts by which length
�(e), e ∈ Ê, can be increased and reduced, respectively. We can now formally state the
inverse obnoxious center location problem (IOCP for short) on network G as follows:

Modify the lengths �(e), e ∈ E ∪ {es
1, es

2}, to �̃(e) such that the following three
statements (i), (ii) and (iii) are satisfied:
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(i) The prespecified point s becomes an obnoxious center location on network G
with respect to new lengths �̃.

(ii) The cost function

∑

e∈Ê

(
c+(e) max{0, �̃(e) − �(e)} + c−(e) max{0, �(e) − �̃(e)}

)

for changing the edge lengths on G is minimized.
(iii) The new edge (or edge-segment) lengths lie within the given modification

bounds
−u−(e) ≤ �̃(e) − �(e) ≤ u+(e) for all e ∈ Ê .

According to Lemma 2.1, the generic solution idea for solving IOCP is as follows:
Either increase or reduce the lengths �(e), e ∈ Ê , at minimum total cost subject to
the given modification bounds u−(e) and u+(e) such that the equalities

�̃(es) = max{�̃(e) : e ∈ Ê}, (2)

�̃(es
1) = �̃(es

2) (3)

are satisfied with respect to the new edge lengths �̃(e). In the sequel we denote the
amounts by which the edge length �(e) is increased and reduced by x(e) and y(e),
respectively.

3 The solution algorithm

In this section we develop a solution algorithm with linear time complexity for IOCP
on the underlying network G.

If es is a longest edge of network G and further the equality �(es
1) = �(es

2) holds,
then the prespecified point s is the wanted obnoxious center location on the given
network G according to Lemma 2.1 and the problem has been solved. Otherwise, we
have to modify the edge lengths at minimum total cost such that (2) and (3) hold.

Since all cost coefficients for modifying edge lengths are positive and es should
become a longest edge, it does not make sense to decrease the length of es

2 as this
would incur additional cost decreasing the length of other edges. The same argument
shows that increasing the length of any edge e ∈ E\{es} would imply an additional
cost. This means that for solving IOCP on the given network G, the length �(es

2) has
to be increased (or stays as it is) and lengths �(e), e �= es , have to be reduced (or stay
as they are). But an optimal modification of the problem may either reduce or increase
the length �(es

1). Hence we have to take into consideration both of these cases.

• Case 1 Assume that length �(es
1) is increased in an optimal solution of IOCP.

In this case, both lengths �(es
1) and �(es

2) are to be increased and the other lengths
�(e), e �= es , may be reduced until es becomes a longest edge of network G, both
edge-segments es

1 and es
2 reach equal lengths, and the sum of modification cost is

minimum.
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If the inequality
�(es

1) − �(es
2) ≤ u+(es

2) (4)

is violated, then the problem is infeasible. Hence, we assume that inequality (4) holds
in the current Case 1. Let

1

2
z = (

�(es
1) + x(es

1)
)

be the modified length of es
1. It is obvious that z must satisfy the inequality

�(es
1) ≤ z ≤ max{2�(es

1) , �(e) for all e ∈ Ê}.

Now we set

w+(es
2) = u+(es

2) − �(es
1) + �(es

2).

As soon as length �(es
2) is increased to length �(es

1) in a first step, the solution of IOCP
in the current case is reduced to the solution of the nonlinear program

minimize f (z) =
(

2∑

i=1

c+(es
i )

)(
1

2
z − �(es

1)

)
+

∑

e: �(e)≥z

c−(e) (�(e) − z)

subject to
1

2
z − �(es

1) ≤ min{u+(es
1), u+(es

2)}, (P1)

�(e) − z ≤ u−(e) for all e ∈ Ê with �(e) ≥ z,

2�(es
1) ≤ z ≤ max{2�(es

1) , �(e) ; e ∈ Ê}.

Let z∗ be the optimal solution of the nonlinear program (P1). Then the optimal solution
to IOCP is obtained by

x∗(e) =
{

1
2 z∗ − �(e) e = es

1, es
2,

0 otherwise,

y∗(e) =
{

�(e) − z∗ for all e with �(e) ≥ z∗,
0 otherwise,

where the total cost incurred for changing the edge lengths of network G is

C1 = f (z∗) + c+(es
2)

(
�(es

1) − �(es
2)

)
.

In the following we show that an optimal solution z∗ of the nonlinear programming
problem (P1) can be obtained in O(m)-time. Observe that the objective function f (z)
can be rewritten as
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f (z) = z

⎛

⎝A −
∑

e: �(e)≥z

c−(e)

⎞

⎠ +
∑

e: �(e)≥z

c−(e)�(e) − B.

with

A = 1

2

2∑

i=1

c+(es
i ) and B =

(
2∑

i=1

c+(es
i )

)
�(es

1).

In particular, the function ∑

e: �(e)≥z

c−(e)(�(e) − z)

is continuous as in every break point the left limit equals to the right limit. This yields
immediately:

Lemma 3.1 The objective function f (z) is piecewise linear and convex.

Now define
α1 = max{�(e) − �−(e) : e ∈ E, e �= es}

and

α2 =
2∑

i=1

(
�(es

i ) + �+(es
i )

)
.

Let � = [a, b] denote the feasible solution set of (P1) if we replace the constraints

�(e) − z ≤ u−(e) for all e ∈ Ê with �(e) ≥ z

in (P1) by α1 ≤ z ≤ α2. It can easily be observed that the problem of minimizing
function f (z) subject to z ∈ � and the optimization model (P1) have the same optimal
solutions. Therefore, according to Lemma 3.1, function f (z) admits an optimal solu-
tion either at one of the boundary points a and b of � or at a break point z = �(e∗)
such that

�(e∗) ≥ 2�(es
1),

and

1

2

2∑

i=1

c+(es
i ) −

∑

e:
�(e)≥�(e∗)

c−(e) ≤ 0,

1

2

2∑

i=1

c+(es
i ) −

∑

e:
�(e)>�(e∗)

c−(e) ≥ 0.

The break point �(e∗) can be determined by a combination of the linear time
algorithm for finding the median of a finite set with a binary search approach (Procedure
B-P).
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Procedure B-P (Finds the break point z = �(e∗) with minimum value f (z))

1. Set H = 0 and let

I = {e ∈ Ê : �(e) > 2�(es
1)}.

2. If all elements e ∈ I have the same length �(e), then an optimal solution of (P1)

is attained either for z = a or z = b. Terminate the procedure.
3. Find (recursively) the median μ of set {�(e) : e ∈ I}. Moreover, let

Q = {e ∈ I : �(e) = μ},
R = {e ∈ I : �(e) > μ},
L = {e ∈ I : �(e) < μ}.

4. Compute

γ1 = 1

2

2∑

i=1

c+(es
i ) −

∑

e∈R∪Q

c−(e) − H,

γ2 = 1

2

2∑

i=1

c+(es
i ) −

∑

e∈R

c−(e) − H,

If the inequalities γ1 ≤ 0 and γ2 ≥ 0 are satisfied, then the break point �(e∗) = μ

is obtained and stop. Otherwise select an edge e0 ∈ Q. If γ1 ≤ 0 and γ2 ≤ 0, then
set I = R ∪ {e0} and go to Step 2, else update

H = H +
∑

e∈R∪Q\{e0}
c−(e),

set I = L ∪ {e0} and go to Step 2.

Lemma 3.2 Procedure B-P runs in O(m)-time.

Proof Let us denote by T (m) the worst-case running time for m elements. The median
of a set of m elements can be determined in O(m)-time (see e.g. Cormen et al. 2001).

Moreover, in each iteration of the procedure we drop O(
⌈ |I|

2

⌉
) elements of the current

set I at Step 2. Therefore, we obtain

T (m) = T
(⌈m

2

⌉)
+ O(m)

which implies the time complexity T (m) = O(m) for the procedure. 	

As the feasible solution interval � = [a, b] is also derived in O(m)-time, we

conclude
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Corollary 3.3 In Case 1 the nonlinear programming problem (P1) can be solved in
O(m)-time.

• Case 2 Assume that length �(es
1) is reduced in an optimal solution of IOCP.

In this case, length �(es
2) may be increased and the lengths �(es

1) as well as �(e), e �=
es , may be reduced until es becomes a longest edge of network G, both edge-segments
es

1 and es
2 reach equal lengths, and the sum of the modification cost is minimum.

Let G ′ = (V, E ′) be a network which is obtained from the underlying network
G = (V, E) if we replace edge es by two new edges e′, e′′ with corresponding lengths

�(e′) = 2�(es
2) and �(e′′) = 2�(es

1).

Moreover, for these new edges we define

u+(e′) = 2u+(es
2), u−(e′′) = 2u−(es

1)

and the cost coefficients

c+(e′) = 1

2
c+(es

2), c−(e′′) = 1

2
c−(es

1)

and c−(e′) = c+(e′′) = 0.
Now we get

Lemma 3.4 Under the assumption that length �(es
1) is reduced in an optimal solution

of IOCP, there exists a one-to-one correspondence with the same incurred total cost
between the feasible solutions of IOCP on the given network G and the feasible solu-
tions of the problem to modify the edge lengths in G ′ such that e′ becomes a longest
edge in G ′.

Now let us consider IOCP on the network G ′. Since all cost coefficients for the
modification of edge lengths are positive, it suffices to increase �(e′) and to reduce
lengths �(e), e ∈ E ′, e �= e′, at minimum total cost until e′ becomes a longest edge of
network G ′. Let z = �(e′)+ x(e′) be the modified length of edge e′. Thus the solution
of IOCP on the network G ′ is reduced to the solution of the nonlinear programming
model

minimize g(z) = c+(e′)
(
z − �(e′)

) +
∑

e∈E ′:
�(e)≥z

c−(e) (�(e) − z)

subject to z − �(e′) ≤ u+(e′), (P2)

�(e) − z ≤ u−(e) for all e ∈ E ′ with �(e) ≥ z.

Note that the objective function g(z) is piecewise linear and convex and can be
rewrittenas
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g(z) = z

⎛

⎝c+(e′) −
∑

e∈E ′: �(e)≥z

c−(e)

⎞

⎠ +
∑

e∈E ′:
�(e)≥z

c−(e)�(e) − c+(e′)�(e′).

The structure of the nonlinear program (P2) is similar to the structure of (P1). Hence,
we can obtain the optimal solution z∗ and the optimal objective value g(z∗) of (P2) in
O(m)-time in an analogous way as for (P1). From an optimal solution z∗ of problem
(P2) we can derive an optimal solution of IOCP on network G by

x∗(e) =
{

1
2

(
z∗ − �(e′)

)
e = es

2,

0 otherwise,

y∗(e) =

⎧
⎪⎨

⎪⎩

1
2

(
�(e′′) − z∗) e = es

1,

�(e) − z∗ for all e ∈ E with �(e) ≥ z∗, e �= es,

0 otherwise.

The incurred total cost is given by

C2 = g(z∗).

Based on the considerations above, the solution algorithm for IOCP on the given
network G can be summarized as follows: obtain the optimal objective values C1 and
C2 of problems (P1) and (P2). The minimum of these values and the corresponding
solution yields an optimal solution to IOCP on network G.

Altogether we get

Theorem 3.5 The inverse obnoxious center location problem can be solved in O(m)-
time on a network G with m edges.

4 Conclusion and further research

In this paper we derived a linear algorithm for solving obnoxious center problems on
graphs. We assumed that the objective function value is proportional to the sum of
edge length modifications. In practice the cost for an edge length modification may
depend on the specific edge. This more realistic problem would lead to a weighted
sum objective function for the inverse problem. Also other types of objective functions
like minimizing the maximum edge length modification are conceivable.

A related model is the budget-constraint improvement model: given the obnoxious
center of a graph and a budget B, modify the edge lengths such that the objective
function value increases as much as possible subject to the constraints that the edge
modifications (which incur costs) can be performed within the budget B.
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