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1 Introduction

This paper considers a one-warehouse multi-retailer inventory system (also known
as a distribution system) under periodic review and centralized control. There are N
retailers supplied by shipments from a warehouse (indexed as stock point 0), which in
return orders from an exogenous supplier with ample stock. Retailers face stochastic
and independent demands of the customers. Demands in different periods are i.i.d.,
discrete nonnegative random variables. Excess demand is backlogged and penalty
costs are incurred. Leadtimes of orders (between the supplier and the warehouse), and
shipments (between the warehouse and the retailers) are fixed. Costs consist of linear
holding and penalty costs; there are no fixed costs. The objective is to minimize the
average inventory holding and penalty costs of the system in the long-run.

A cornerstone paper on multi-echelon inventory systems is by Clark and Scarf
(1960). The authors developed a dynamic programming formulation for the inventory
control of an N -stage serial system (serial structures are a special case of distribution
systems where each stage has a single predecessor and successor stage). They showed
that the resulting N dimensional dynamic program (DP) can be analyzed by solving
N single-dimensional DPs recursively (we refer to this result as the decomposition
property). Further, they characterized the optimal policy where each stage follows an
echelon base stock policy. Clark and Scarf (1960) were the first to consider the inven-
tory control problem in a distribution system facing continuous demands. However, it
was not possible to decompose these systems due to the so-called allocation problem:
How to allocate the physical stock at the warehouse among all stock points in the
system in a given period?

The optimal policy for the inventory control of a one-warehouse multi-retailer
inventory system is unknown, and expected to be complex; Doğru (2006) provides
numerical analysis of the optimal policy for a few instances that supports the claim.
However, an assumption, known as the balance assumption, leads to the decomposi-
tion property and the full characterization of the optimal policy. This key assumption
is the relaxation of the physical constraint that the inventory positions of the retailers
just after the shipment decisions are greater than or equal to the inventory positions
prior to these decisions. Other interpretations of the balance assumption are

• allowing negative quantities to be shipped to the retailers,
• permitting immediate return (with no leadtime) of stock at any retailer to the ware-

house at no cost,
• allowing the lateral transhipment (shipments between the retailers) of stock with

the leadtime of the receiving retailer at no cost. (In our setting, lateral transhipment
has a broader meaning. It does not only imply the shipment of on-hand stock from
one retailer to the other, but also includes shipment of stock from one retailer’s
pipeline inventory to the other.)

The balance assumption is essential to obtain structural results and it has been used
extensively in the literature, see Axsäter (2003) and the references therein. Moreover,
to the best of our knowledge, all heuristics developed for one-warehouse multi-retailer
inventory systems under periodic review are based on the balance assumption.
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The one-warehouse multi-retailer inventory system under the balance assumption
(referred to as the relaxed model) is well studied in the literature; see Eppen and
Schrage (1981); Federgruen and Zipkin (1984a,b); Chen and Zheng (1994) and Diks
and de Kok (1998). For the relaxed model, the optimal ordering and allocation policies
have been shown to be echelon base stock policy and myopic allocation, respectively.

In this paper, we specifically analyze the one-warehouse multi-retailer inventory
system with discrete demands. The one-warehouse multi-retailer model has clear-cut
applications in inventory, manufacturing (Rogers and Tsubakitani 1991) and hier-
archial production planning context (Wijngaard 1982 and de Kok 1989). It is also
utilized to study delayed production differentiation (Lee and Tang 1997 and Aviv
and Federgruen 2001). Moreover, the model is related to general kanban systems, but
without a capacity restriction at the warehouse, see de Kok and Fransoo (2003, pp.
653–654). Discrete demand processes are important because they make it possible to
handle positive probability mass at any point in the demand distribution, particularly
at zero. This is highly important in case of intermittent demand. Further, it is relevant
to discrete part manufacture-to-order systems, and inventory systems where a unit is
equivalent to a bulk and indivisible quantity like a container or a pallet. A possible
application area in the former systems is spare parts inventory control where mean
demands are generally low.

Our main contribution is to show that the optimal base stock levels in a one-
warehouse multi-retailer inventory system under the balance assumption (the relaxed
model) satisfy newsvendor inequalities. Newsvendor characterizations show a direct
relation between the probability of no-stockout at a retailer as a consequence of an
optimal base stock level and the cost parameters (holding and penalty costs) in the from
of equalities or inequalities. Newsvendor characterizations are appealing because they

• are easy to explain to nonmathematical oriented people like managers and MBA
students,

• contribute to the understanding of optimal control,
• help intuition development by providing direct relation between cost and optimal

policy parameters.

For example, our newsvendor inequalities show that the warehouse becomes a cross-
docking point if a retailer has zero added value and an infinite support for the demand
distribution. This insight is not obtained directly by the formulas of Chen and Zheng
(1994) nor of Federgruen and Zipkin (1984a). Moreover, we specify the properties of
the allocation functions that lead to the newsvendor characterizations.

Newsvendor characterizations for multi-echelon inventory systems, see van
Houtum (2006) for a review, were first derived by van Houtum and Zijm (1991)
who showed that the optimal base stock levels in a serial system satisfy newsven-
dor equations. Similar characterizations were identified for serial systems with fixed
replenishment intervals by van Houtum et al. (2007). For serial systems where materi-
als flow from one stock point to another in fixed batches (which is a generalization of
Clark and Scarf model where fixed batch quantities equal to one at each stock point),
echelon (R, Q) policies have been proven to be optimal by Chen (2000). Doğru et al.
(2008) identified that the optimal reorder levels satisfy newsvendor characterizations.
Diks and de Kok (1998) showed that the optimal base stock levels in a one-warehouse
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multi-retailer inventory system with continuous demands satisfy newsvendor equa-
tions. Our newsvendor inequalities extend the newsvendor characterizations derived
for continuous demands to discrete demands.

Finally, the results are used to develop an efficient computational scheme for the
determination of optimal base stock levels in the relaxed model.

The rest of the paper is organized as follows. In Sect. 2, we introduce the model
and review main results known for one-warehouse multi-retailer inventory systems.
Our results are given in Sect. 3. We first present our results for nondecreasing
optimal allocation functions. Newsvendor inequalities and the algorithm for the
computation of an optimal policy are discussed in Sects. 3.1 and 3.2, respectively. We
conclude briefly in Sect. 4. The proofs omitted in the main body can be found in the
Appendix.

2 Preliminaries and notation

Time is divided into periods of equal length and the following sequence of events
takes place during a period: (i) inventory levels are observed and the current period’s
ordering/shipment decisions are made considering the arrival of the orders/shipments
given before (at the beginning of the period), (ii) orders/shipments arrive following
their respective leadtimes (at the beginning of the period), (iii) demand occurs, (iv)
holding and penalty costs are assessed on the period ending inventory and backorder
levels (at the end of the period).

We go over some basic definitions for the sake of completeness. Echelon stock of
a stock point is the stock on hand at that point plus in transit to or on hand at any
successor stock point minus the backorders of external customers. Echelon inventory
position of a stock point is the echelon stock of that stock point plus all the stock that
is in-transit to that stock point. The basic notation for this study is given in Table 1.

In the remainder of this section, the ordering and allocation decisions and their
impact on the costs will be discussed. Further, the optimal ordering and allocation
policies under the balance assumption will be reviewed. This lays the ground for our
results in Sect. 3. (cf. Section 8.6 in Zipkin 2000).

2.1 Dynamics of the system

The total cost of the system at the end of an arbitrary period t is

h0

(
Î0(t) −

∑
i∈J

Îi (t)

)
+
∑
i∈J

(h0 + hi ) Î +
i (t) +

∑
i∈J

pi Î −
i (t),

where a+ = max{0, a} and a− = − min{0, a} for a ∈ R. Substituting Îi (t) = Î +
i (t)−

Î −
i (t) first, rearranging the terms, and then using the identity Î +

i (t) = Îi (t) + Î −
i (t)

yields
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Table 1 Notation

Z = set of integer numbers. Z
− = {. . ., −2,−1}, Z

+ = {1, 2, . . .}, and Z
+
0 = Z

+ ∪ {0}
t = index for time. Period t is defined as the time interval between epochs t and t + 1 for

t ∈ Z
+
0

N = number of retailers, N ∈ Z
+

i = index for stock points, i = 0 is the warehouse, and i = 1, 2, . . ., N are the retailers

J = set of retailers, J = {1, 2, . . ., N }
hi = additional inventory holding cost parameter for stock point i . At the end of a period:

(i) cost h0 is charged for each unit in stock at the warehouse or in-transit to any retailers,
h0 ≥ 0

(ii) cost h0 + hi is charged for each unit in stock at retailer i, hi ≥ 0 ∀i ∈ J

pi = penalty cost parameter for retailer i . A cost pi is charged for each unit of backlog at the
end of a period at retailer i, pi > 0 ∀i ∈ J

li = leadtime parameter for stock point i, li ∈ Z
+
0 ∀i ∈ J and l0 ∈ Z

+
μi = mean of one-period demand faced by retailer i

μ0 = mean of one-period demand faced by the system, μ0 = ∑N
i=1 μi

Di (t, t + s) = discrete random variable denoting the demand faced by retailer i during the periods
t, t + 1, . . ., t + s for t, s ∈ Z

+
0

D0(t, t + s) = discrete random variable denoting the aggregate demand faced by the system during the
periods t, t + 1, . . ., t + s, D0(t, t + s) = ∑N

i=1 Di (t, t + s) for t, s ∈ Z
+
0

D(l)
i = discrete random variable denoting l-period demand faced by retailer i, l ∈ Z

+

D(l)
0 = discrete random variable denoting l-period aggregate demand faced by the system, l ∈ Z

+

F(l)
i = cumulative distribution function of l-period demand of retailer i defined over Z

+
0

F(l)
0 = cumulative distribution function of l-period demand faced by the system defined over

Z
+
0 , F(l)

0 = F(l)
1 ∗ F(l)

2 ∗ . . . ∗ F(l)
N

Ii (t) = echelon stock of stock point i at the beginning of period t just after the receipt of the
incoming order/shipment

Îi (t) = echelon stock of stock point i at the end of period t

I Pi (t) = echelon inventory position of stock point i at the beginning of period t just after ordering
(if i = 0) or shipment (if i ∈ J )

ˆI Pi (t) = echelon inventory position of stock point i at the end of period t = echelon inventory
position of stock point i at the beginning of period t + 1 just before ordering (if i = 0) or
shipment (if i ∈ J )

h0

(
Î0(t) −

∑
i∈J

Îi (t)

)
+
∑
i∈J

(h0 + hi ) Î +
i (t) +

∑
i∈J

pi Î −
i (t)

= h0 Î0(t) +
∑
i∈J

hi Î +
i (t) +

∑
i∈J

(h0 + pi ) Î −
i (t)

= h0 Î0(t) +
∑
i∈J

hi Îi (t) +
∑
i∈J

(h0 + hi + pi ) Î −
i (t).

We define h0 Î0(t) as the cost attached to the echelon of the warehouse (echelon
of stock point 0) at the end of period t ; this cost is denoted by C0(t). We define
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Fig. 1 The consequences of an order placed with the supplier in period t

hi Îi (t) + (h0 + hi + pi ) Î −
i (t) as the cost attached to the echelon of retailer i at the

end of period t , and denote it by Ci (t).
Consider the following two decisions, which start with an order given to the sup-

plier in period t, t ∈ Z
+
0 : (Fig. 1 illustrates the dependence among these decisions and

the resulting cost-wise consequences.)

• Ordering decision: Assume that at the beginning of period t the warehouse gives
an order that raises the inventory position of the system to some level y0, i.e.,
I P0(t) = y0. The order materializes at the beginning of period t + l0 and the
echelon stock of the warehouse at that epoch is y0 − D0(t, t + l0 − 1). There are
two consequences of the ordering decision:
– It directly determines the expected value of the cost attached to the echelon of

the warehouse at the end of period t + l0,

E [C0(t + l0)|I P0(t) = y0] = E[h0(y0 − D0(t, t + l0))]
= h0(y0 − (l0 + 1)μ0).

– It limits the shipment quantities to the retailers. In other words, it puts an upper
bound on the level to which one can increase the aggregate echelon inventory
positions of the retailers in period t + l0,

N∑
i=1

I Pi (t + l0) ≤ y0 − D0(t, t + l0 − 1).

• Allocation decision: At the beginning of period t + l0, the system-wide stock is
allocated among all stock points. In other words, the shipment quantities to the
retailers are determined; as a result, the decision of how much stock to retain at the
warehouse is made. At epoch t + l0, the inventory position of retailer i is increased
to some level wi such that

∑
i∈J wi ≤ y0 − D0(t, t + l0 −1) and wi ≥ ˆI Pi (t + l0)

for all i ∈ J . These decisions directly affect the cost of echelon i at the end of

123



Newsvendor characterizations for one-warehouse multi-retailer inventory systems 547

period t + l0 + li , for all i ∈ J . The expected value of the cost attached to echelon
i is

E [Ci (t + l0 + li )|I Pi (t + l0) = wi ]

= E [hi (wi − Di (t + l0, t + l0 + li ))

+ (h0 + hi + pi )(wi − Di (t + l0, t + l0 + li ))
−]

=hi (wi − (li + 1)μi ) + (h0 + hi + pi )E
[
(wi − Di (t + l0, t + l0 + li ))

−] .
We define the expected costs as a consequence of the ordering and allocation deci-

sions that begin with the warehouse’s order given at epoch t as the cycle cost of period
t and denote it by Ccyc(t):

Ccyc(t) = C0(t + l0) +
∑
i∈J

Ci (t + l0 + li ).

Let � and g(π) denote the set of all ordering policies and the average expected cost
of ordering policy π , respectively. The expected long-run average cost of any policy
π ∈ � is simply the average of the expected value of the sum of costs over all cycles:

g(π) = lim
T −→∞

1

T
E

[
T −1∑
t=0

N∑
i=0

Ci (t)

]

= lim
T −→∞

1

T
E

⎡
⎣l0−1∑

t=0

C0(t) +
l0+li −1∑

t=0

∑
i∈J

Ci (t) +
T −1∑
t=0

Ccyc(t) −
T +l0−1∑

t=T

C0(t)

−
T +l0+li −1∑

t=T

∑
i∈J

Ci (t)

⎤
⎦

= lim
T −→∞

1

T

T −1∑
t=0

E[Ccyc(t)].

The last equality requires the existence and the finiteness of the limit. Although this
may not be the case for any given policy, especially for the ones that do not order
enough to satisfy demand, any policy with an underlying Markov process that is uni-
chain meets this requirement. We are interested in such policies. (In the subsequent
sections, we show the optimality of base stock policies under the balance assumption.
The class of base stock policies is well known to satisfy these necessities.) Thus, the
optimization problem that we consider is

min
π∈�

g(π). (1)

The minimization problem given above is intricate since the decisions are highly
interdependent. In the next subsection, we discuss the myopic allocation problem and
the balance assumption, which yields a relaxation for the optimization problem above.
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2.2 The allocation decision

Consider the sequence of decisions and the resulting costs as a result of increasing the
inventory position of the system to y0 at the beginning of period t, t ∈ Z

+
0 . Suppose the

echelon stock of the warehouse at the beginning of period t +l0, y0 − D0(t, t +l0 −1),
is distributed among all stock points such that the sum of the expected holding and
penalty costs of the retailers in the periods the allocated quantities reach their des-
tinations (i.e., period t + l0 + li for retailer i) is minimized. This is called myopic
allocation because the effect of the allocation decisions on the subsequent periods is
not considered. The mathematical formulation of the problem is as follows:

min
wi , ∀i∈J

∑
i∈J

E [Ci (t + l0 + li )|I Pi (t + l0) = wi ] (2)

s.t.
∑
i∈J

wi ≤ y0 − D0(t, t + l0 − 1) (3)

ˆI Pi (t + l0) ≤ wi ∀ i ∈ J (4)

Both constraints serve for the physical balance of the inventories. While (4) assures
that no negative quantity is allocated to the retailers, (3) puts an upper bound on the
sum of the allocated quantities. Although myopic allocation allows the allocation deci-
sions to be made independent of the future allocation and ordering decisions, it still
depends on previous periods’ decisions due to (4). Consider a relaxed version of the
myopic allocation problem where (4) is omitted; we refer to this assumption as the
balance assumption. In the absence of (4), Ccyc(t) depends only on the ordering and
allocation decisions that start with an order given by the warehouse in period t , not
on decisions of other periods. Next, we focus on how to minimize the cycle cost of
period t .

2.3 Single cycle analysis

Consider retailer i ∈ J . Define Gi (yi ) as the expected cost attached to echelon i at
the end of period t + li if the inventory position at the beginning of period t is yi :

Gi (yi ) = E[Ci (t + li )|I Pi (t) = yi ]
= hi (yi − (li + 1)μi ) + (h0 + hi + pi )E[(Di (t, t + li ) − yi )

+].

It is straightforward to verify that Gi (·) is convex over Z and Gi (yi ) is minimized at
all yi ∈ Y ∗

i = {y∗
i
, y∗

i
+ 1, . . ., y∗

i } where

y∗
i

= min

{
yi

∣∣∣∣F (li +1)
i (yi ) ≥ h0 + pi

h0 + hi + pi

}
, and

y∗
i = min

{
yi

∣∣∣∣F (li +1)
i (yi ) >

h0 + pi

h0 + hi + pi

}
. (5)
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Notice that if y∗
i

satisfies F (li +1)
i (y∗

i
) = h0+pi

h0+hi +pi
, then there are multiple optimal

values. If
{

yi

∣∣∣F (li +1)
i (yi ) >

h0+pi
h0+hi +pi

}
= ∅ then y∗

i = ∞. Moreover, (i) y∗
i = ∞ if

hi = 0, (ii) y∗
i

= ∞ if hi = 0 and F (1)
i has an infinite support.

Let zi : Z → Z, i ∈ J be an allocation function such that zi (a) is the portion of a
allocated to retailer i for a ∈ Z. Assume that the system-wide stock at time t is x ∈
Z, I0(t) = x . The relaxed myopic allocation problem of period t may be rewritten as:

min
zi (x) ∀i∈J

{∑
i∈J

Gi (zi (x))

∣∣∣∣∣
∑
i∈J

zi (x) ≤ x

}
, (6)

where a solution is denoted by {zi (x)}i∈J . Next, we discuss how to characterize an
optimal solution for the relaxed myopic allocation problem in (6).

Define

{z∗
i (x)}i∈J = an optimal solution for (6) for x ∈ Z,

H∗(x) = the optimal objective function value of (6) for x ∈ Z,

H∗(x) = ∑
i∈J Gi (z∗

i (x)).

First, observe that the objective function of (6) consists of N independent compo-
nents that are convex functions. In the absence of the constraint, the problem is sepa-
rable and the minimization of each component solves the problem; i.e., z∗

i (x) ∈ Y ∗
i for

all i ∈ J . In case x ≥ ∑
i∈J y∗

i
, z∗

i (x) = y∗
i

∀i ∈ J constitutes an optimal solution,
but any other z∗

i (x) ∈ Y ∗
i is also possible as long as

∑
i∈J z∗

i (x) ≤ x .
Second, observe that the constraint should be binding for x ≤ ∑

i∈J y∗
i
:

if x ≤
∑
i∈J

y∗
i
, then

∑
i∈J

z∗
i (x) = x . (7)

If
∑

i∈J zi (x) < x , then it is possible to improve the objective function by allocating
one more unit to some retailer j with z j (x) < y∗

j
since �G j (y j ) = G j (y j + 1) −

G j (y j ) < 0 for y j < y∗
j
. This observation can be used to prove the following prop-

erties (see Gross (1956) or Saaty (1970, pp. 184–186) for details). For x <
∑

i∈J y∗
i

and x ∈ Z:

P1. A given solution {z∗
i (x)}i∈J is optimal if and only if:

�Gi (z
∗
i (x)) ≥ �G j (z

∗
j (x) − 1) ∀i, j ∈ J, i �= j. (8)

P2. Given an optimal solution {z∗
i (x)}i∈J for x , an optimal solution {z∗

i (x + 1)}i∈J

for x + 1 is given by

z∗
k (x+1)= z∗

k (x)+1, where k ∈
{

i ∈ J |�Gi (z
∗
i (x))=min

j∈J
�G j (z

∗
j (x))

}
, and

z∗
j (x + 1) = z∗

j (x) ∀ j ∈ J \ {k}.
(9)
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P3. Given an optimal solution {z∗
i (x)}i∈J for x , an optimal solution {z∗

i (x − 1)}i∈J

for x − 1 is given by

z∗
k (x−1)= z∗

k (x)− 1, where k ∈
{
i ∈ J |�Gi (z

∗
i (x)−1)=max

j∈J
�G j (z

∗
j (x)−1)

}
, and

z∗
j (x − 1) = z∗

j (x) ∀ j ∈ J \ {k}.
(10)

Properties P2–P3 simply imply that given an optimal solution for x , an optimal allo-
cation of x + 1 (x − 1) units can be accomplished by taking the optimal solution for x
and giving a retailer k with the smallest �Gk(zk(x)) (largest �Gk(zk(x) − 1)) value
one unit more (less). This greedy procedure is also known as the marginal (incre-
mental) allocation, see Fox (1966). An important implication is that if an optimal
solution of the relaxed myopic allocation problem is known for some x ∈ Z, starting
from this optimal solution, one can find optimal allocation functions by following the
aforementioned greedy procedure.

Property P2 and the fact that the constraint in (6) is binding for x ≤ ∑
i∈J y∗

i
can

be used to show the following properties of the optimal objective function of (6):

(i) �H∗(x) < 0 for x <
∑

i∈J y∗
i
,

(ii) �H∗(x) = 0 for x ≥ ∑
i∈J y∗

i
,

(iii) H∗(x) is convex in x .

(See Doğru 2006 for the details.) These properties give the shape of the optimal objec-
tive function of the relaxed myopic allocation problem (6) as a function of the amount
to allocate. H∗(x) is convex, strictly decreasing in the region

(− ∞,
∑N

i=1 y∗
i

)
, and

constant over
[∑N

i=1 y∗
i
,+∞)

.
Under the balance assumption, the expected cycle cost of period t is

Gcyc(y0, z) : = E

[
C0(t + l0) +

∑
i∈J

Ci (t + l0 + li )

∣∣∣∣∣ I P0(t) = y0, z

]

= G0(y0) +
∞∑

x=0

∑
i∈J

Gi (zi (y0 − x))Pr
{

D(l0)
0 = x

}
, (11)

for a given I P0(t) = y0 and z, y0 ∈ Z and t ∈ Z
+
0 , where

z = set of allocation functions, i.e., {zi }i∈J ,
G0(y0) = expected value of the cost attached to the echelon of the ware-

house at the end of period t+l0 given I P0(t) = y0 for y0 ∈ Z, and
t ∈ Z

+
0 , i.e., G0(y0) = E [C0(t + l0)|I P0(t) = y0] = h0[y0 −

(l0 + 1)μ0].
Let z∗ be a set of optimal allocation functions, i.e., {z∗

i }i∈J such that z∗
i (x) is optimal

∀x ∈ Z and ∀i ∈ J . It can be shown that regardless of the ordering decision made at
the beginning of the cycle, utilizing z∗ for allocation leads to expected cycle costs as
good as any other set of allocation functions:

Gcyc(y0, z∗) ≤ Gcyc(y0, z) ∀y0 ∈ Z.
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Moreover, Gcyc(y0, z∗) is convex in y0, and is minimized at all y0 ∈ Y ∗
0 such that

Y ∗
0 = {y∗

0
, y∗

0
+ 1, . . ., y∗

0} where y∗
0

= min
{

y0|�Gcyc(y0, z∗) ≥ 0
}
,

(12)
y∗

0 = min
{

y0|�Gcyc(y0, z∗) > 0
}
.

Denote a base stock policy by a tuple (y0, z), where y0 is the target echelon inventory
position of the warehouse, and {zi (x)}i∈J are the (state-dependent) target inventory
positions of the retailers if the system-wide on-hand stock (state) is x . The decisions
are made so that, at the beginning of each period t :

• the echelon inventory position of the warehouse is increased up to y0, i.e.,
I P0(t)= y0,

• the inventory position of retailer i is raised to zi (I0(t)), i.e., I Pi (t)= zi (I0(t)) ∀i ∈
J .

Using the convexity of the expected cycle cost function Gcyc(·, z∗), it can be shown
that a base stock policy (y0, z∗) with y0 ∈ Y ∗

0 minimizes the average expected cost
of a one-warehouse multi-retailer inventory system in an infinite horizon under the
balance assumption (see Federgruen and Zipkin 1984b; Doğru 2006).

Remark 1 The balance assumption leads to a relaxation of the original model; thus,
Gcyc(y∗

0
, z∗) is a lower bound on the long-run expected average cost of the original

model. Hence, Gcyc(y∗
0
, z∗) is a proxy for the true optimal cost. Further, the optimal

policy for the relaxed model can be used to construct a heuristic, see Sect. 3.2 for
details.

3 Newsvendor characterizations

This section presents our main results for optimal allocation functions and newsvendor
inequalities. The existence of nondecreasing optimal allocation functions is essential
for the derivation of the newsvendor inequality in Sect. 3.1; hence we begin with our
result on this. First, we define

ẑ∗ = set of nondecreasing optimal allocation functions, i.e., {ẑi
∗}i∈J

such that ẑi
∗
(x) is optimal and �ẑi

∗
(x) = ẑi

∗
(x +1)− ẑi

∗
(x) ≥

0 ∀x ∈ Z and ∀i ∈ J ,
z̃∗ = set of nondecreasing optimal allocation functions with the addi-

tional property that for all i ∈ J with |Y ∗
i | > 1, z̃∗

i (x) ∈ Y ∗
i \{y∗

i }
for x >

∑
i∈J y∗

i
.

Theorem 1 There exist nondecreasing optimal allocation functions ẑ∗.

Proof Distinguish two cases: (i)
∑

i∈J y∗
i

is finite, (ii)
∑

i∈J y∗
i

is infinite. In case (i),
z∗

i (
∑

i∈J y∗
i
) = y∗

i
∀i ∈ J due to the fact that the constraint is binding if the quantity

to allocate is less than or equal to
∑

i∈J y∗
i
, see (7). Starting from this optimal solution,

optimal solutions for x <
∑

i∈J y∗
i

can be obtained using property P3 in (10), which
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leads to z∗
i (x + 1) − z∗

i (x) = �z∗
i (x) ∈ {0, 1} for all i ∈ J . For x >

∑
i∈J y∗

i
, take

z∗
i (x) = y∗

i
∀i ∈ J ; as a result �z∗

i (x) = 0 for all i ∈ J . In case (ii), an optimal
solution {z∗

i (x)}i∈J for (6) can be determined for some given x ∈ Z by Lagrange
relaxation (see Everett 1963). Based on {z∗

i (x)}i∈J , optimal solutions for x + 1 and
x − 1 can be constructed utilizing properties P2 and P3 in (9) and (10), respectively.
Continuing in this manner, z∗

i (x) is determined for all x ∈ Z and i ∈ J such that
�z∗

i (x) ∈ {0, 1}. �

Theorem 1 shows the existence of nondecreasing optimal allocation functions, but
not all optimal allocation functions have to be nondecreasing. Consider the case with
three identical retailers, i.e., three retailers with identical leadtimes, cost parameters
and demand distributions. Define z̄∗(x) := (z∗

1(x), z∗
2(x), z∗

3(x)). There are three
optimal alternatives for allocating 4 units: z̄∗(4) ∈ {(2, 1, 1), (1, 2, 1), (1, 1, 2)}. For
x = 5, z̄∗(5) ∈ {(2, 2, 1), (1, 2, 2), (2, 1, 2)}. Given z∗(4) = (2, 1, 1), if one utilizes
property P2, see (9), then z∗(5) is (2, 2, 1) or (2, 1, 2), which leads to nondecreasing
optimal allocation functions at x = 4. Consider the following optimal allocations:
z∗(4) = (2, 1, 1) and z∗(5) = (1, 2, 2). Observe that �z∗

1(4) = −1.
The following corollary follows directly from the proof of Theorem 1.

Corollary 1 There exist optimal allocation functions z̃∗.

Proof The additional property in the definition of z̃∗ simply tells that for all the retailers
with multiple optima minimizing Gi (·) (i.e., for all i ∈ J with |Y ∗

i | > 1), z∗
i (x) �= y∗

i
for all x >

∑
i∈J y∗

i
. In fact, the optimal allocation functions constructed in the proof

of Theorem 1 do have the additional property. �

Remark 2 There are two causes for an imbalance situation in a one-warehouse multi-
retailer inventory system. On one hand, the retailers might face disproportionate
demands in the previous period and the amount of stock at the warehouse (at the
beginning of the current period) is not enough to preclude the allocation of a nega-
tive quantity to at least one retailer. On the other hand, imbalance may emanate from
decreasing allocation functions. Recall the example of three identical retailers. For
some period t ∈ Z

+
0 , assume that: (i) at the beginning of period t , the amount of

stock to allocate is 4, (ii) the amount of stock the warehouse will receive in period
t + 1 is 1, (iii) z̄∗(4) = (2, 1, 1), z̄∗(5) = (1, 2, 2). If no demand occurs at any of the
retailers in period t, then an imbalance occurs in period t + 1 due to decreasing z∗

1(x)

for x = 5. This kind of imbalance can be prevented by using a base stock policy with
nondecreasing allocation functions: (y0, ẑ∗) with y0 ∈ Y ∗

0 .

3.1 Newsvendor inequalities

The optimality of base stock policies is discussed in Sect. 2. In this subsection, we iden-
tify necessary conditions for an optimal warehouse base stock level, which constitute
newsvendor inequalities. Define
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τ(y0) =
(

y0 −∑
i∈J y∗

i
+ 1

)+
for y0 ∈ Z,

Pi (y0, z) = probability of no-stockout at retailer i in period t + l0 + li given
z, and I P0(t) = y0 for y0 ∈ Z and t ∈ Z

+
0 , i.e.,

Pi (y0, z) =
∞∑

x=0

F (li +1)
i (zi (y0 − x))Pr

{
D(l0)

0 = x
}
. (13)

Recall from Corollary 1 that there exist nondecreasing allocation functions with the
additional property: z̃∗. Next, we derive upper and lower bounds on �Gcyc(y0, z̃∗).

Lemma 1 For all i ∈ J , and y0 ∈ Z:

�Gcyc(y0, z̃∗) ≥
[
(h0 + pi ) − (h0 + hi + pi )F (li +1)

i (y∗
i
)
]

F (l0)
0 (τ (y0) − 1) − pi

+(h0 + hi + pi )

⎡
⎣Pi (y0, z̃∗)

−
∞∑

x=τ(y0)

Pr
{

D(li +1)
i = z̃∗

i (y0 − x)
}

Pr
{

D(l0)
0 = x

}⎤⎦ ,

�Gcyc(y0, z̃∗) ≤
[
(h0 + pi ) − (h0 + hi + pi )F (li +1)

i (y∗
i
)
]

F (l0)
0 (τ (y0) − 1) − pi

+(h0 + hi + pi )Pi (y0, z̃∗).

Proof See the Appendix. �
If material availability is always guaranteed by the warehouse then the optimal base

stock levels at the retailers are such that the no-stockout probability at each retailer
i ∈ J is at least h0+pi

h0+hi +pi
, see (5). This constitute the newsvendor characterizations for

the retailers. Utilizing this result, similar newsvendor inequalities can also be derived
for an optimal warehouse base stock level.

Theorem 2 For each y0 ∈ Y ∗
0 :

Pi (y0, z̃∗) ≥ pi

h0 + hi + pi

+
[

F (li +1)
i (y∗

i
) − h0 + pi

h0 + hi + pi

]
F (l0)

0 (τ (y0) − 1) ∀i ∈ J,

(14)

Pi (y∗
0

− 1, z̃∗) <
pi

h0 + hi + pi
+
[

F (li +1)
i (y∗

i
) − h0 + pi

h0 + hi + pi

]
F (l0)

0 (τ (y∗
0
) − 2)

+
∞∑

x=τ(y∗
0
)−1

Pr
{

D(li +1)
i = z̃∗

i (y∗
0
−1 − x)

}
Pr
{

D(l0)
0 = x

}
∀i ∈ J.
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Proof These inequalities follow directly from the properties that �Gcyc(y∗
0
, z̃∗) ≥ 0

and �Gcyc(y∗
0

− 1, z̃∗) < 0, and the result of Lemma 1. �
Theorem 2 implies that an optimal base stock level of the warehouse leads to a

no-stockout probability at each retailer i ∈ J , which is at least pi
h0+hi +pi

. Note that

F (l0)
0 (τ (y0) − 1) in (14) corresponds to the probability that retailers can reach inven-

tory positions y∗
i

via shipments from the warehouse (i.e., there is no shortage at the

warehouse). F (li +1)
i (y∗

i
)− h0+pi

h0+hi +pi
is the overshoot from the target newsvendor level

for retailer i due to discreteness. In case of continuous demand, there is no over-
shoot; moreover, the newsvendor inequalities for the retailers and (14) can be satisfied
with equality. Thus, (14) can be streamlined as Pi (y∗

0 , z̃∗) = pi
h0+hi +pi

for all i ∈ J
(cf. Diks and de Kok 1998).

Corollary 2 Pi (y0, z̃∗) ≥ pi
h0+hi +pi

∀i ∈ J, ∀y0 ∈ Y ∗
0 .

Proof Result follows directly from (14) and the definition of y∗
i
. �

The newsvendor inequalities derived in Theorem 2 allow us to see the following
direct relations between the holding cost parameters and the base stock levels under
an optimal policy.

Corollary 3 If there exists a retailer i ∈ J with hi = 0 and an infinite support for its
demand distribution F (1)

i , then the warehouse becomes a cross-docking point under
an optimal policy.

Proof Note that y∗
i

= ∞, see (5). Thus, in each period, all available stock at the
warehouse is allocated to the retailers under an optimal policy. �
Lemma 2 (i) If h0 = 0 then the inventory position of retailer i can always be

increased to at least y∗
i

for all i ∈ J under an optimal policy (y0, z̃∗) with
y0 ∈ Y ∗

0 .
(i i) If h0 = 0 and there is at least one retailer i ∈ J with an infinite support for its

demand distribution F (1)
i , then y∗

0
= ∞ under an optimal policy (y0, z̃∗), y0 ∈

Y ∗
0 = {∞}. Thus, infinite stock is kept at the warehouse.

Proof See the Appendix. �
For N = 1, the model reduces to a two-echelon serial system facing discrete

demand. The newsvendor inequalities discussed in this subsection coincide with the
results of Doğru (2006) if the fixed order quantities in their model are one, i.e., Q1 =
Q2 = 1.

3.2 Computational issues

The results so far can be used to develop an efficient optimization scheme.
The general line is reminiscent of the technique developed for serial systems by
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Clark and Scarf (1960). First, y∗
i
∀i ∈ J are calculated utilizing (5). Second, following

the arguments in the proof of Theorem 1 and using properties P2 and P3, see (9) and
(10), z̃∗ is determined. Finally, a simple search procedure is used to find y∗

0
; the details

are as follows. Consider a retailer i ∈ J , preferably one with |Y ∗
i | > 1. Start the search

at y0 for which Pi (y0, z̃∗) ≥ pi
h0+hi +pi

for the first time. Unless �Gcyc(y0, z̃∗) ≥ 0,
increase y0 by a suitable step size (depending on the distribution of demand at retailer
i) until �Gcyc(y0, z̃∗) ≥ 0. Initiate a bisection procedure and terminate it when y∗

0
is

determined. Once y∗
0
, and z̃∗ are obtained the values are substituted into (11), which

gives the optimal long-run average cost of the one-warehouse multi-retailer inventory
system under the balance assumption.

The optimal solution for the relaxed model may be infeasible due to negative ship-
ment quantities. If the optimal base stock levels of the lower bound model are coupled
with myopic allocation without the balance assumption, given in (2)–(4), it leads to a
feasible heuristic policy. It is not easy to determine the average expected cost of this
policy analytically, but simulation can be used to estimate it.

The balance assumption is the relaxation of a set of constraints in the original model,
hence, it yields a lower bound model, which can be solved exactly, see Sect. 2.3. This
gives us a lower bound for the optimal cost of the original model, which is Gcyc(y0, z̃∗).
An upper bound for the true optimal cost is obtained by simulating the optimal policy
for the relaxed problem with a slightly modified allocation rule, which is discussed
above. Doğru et al. (2010) use the relative gap between the upper and lower bound as
a measure to assess the impact of the balance assumption. Their extensive numerical
experiments identify which parameter settings yield to small gaps; a small gap implies
that both the lower bound is tight and the performance of the heuristic policy is close
to the optimal. They also identify many practically relevant settings under which the
balance assumption yields large gaps. For these instances, either the lower bound is
poor or the LB heuristic policy is far from optimal, or both.

4 Conclusion

This paper considers a one-warehouse multi-retailer inventory system facing discrete
demands. Under the balance assumption, we show that the optimal base stock
levels satisfy newsvendor characterizations. These characterizations are appealing
because they are easy to explain to nonmathematical oriented people like man-
agers and MBA students, and help intuition development by providing direct
relation between cost and optimal policy parameters. Finally, the results are
used to develop an efficient computational scheme for the determination of opti-
mal base stock levels. We believe that newsvendor characterizations can be
derived for more multi-echelon structures, and this will be a direction for further
research.
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Appendix

Proof of Lemma 1 For all y0 ∈ Z:

�Gcyc(y0, z∗) = �G0(y0) +
∞∑

x=0

�H∗(y0 − x)Pr
{

D(l0)
0 = x

}

= h0 +
∞∑

x=0

�H∗(y0 − x)Pr
{

D(l0)
0 = x

}
.

= h0 +
∞∑

x=τ(y0)

�H∗(y0 − x)Pr
{

D(l0)
0 = x

}

= h0 +
∞∑

x=τ(y0)

⎡
⎣∑

j∈J

G j (z̃
∗
j (y0 + 1 − x))

−
∑
j∈J

G j (z̃
∗
j (y0 − x))

⎤
⎦ Pr

{
D(l0)

0 = x
}

= h0 +
∞∑

x=τ(y0)

min
j∈J

{
�G j (z̃

∗
j (y0 − x))

}
Pr
{

D(l0)
0 = x

}
. (15)

Note that for x ≥ τ(y0), x ∈ Z:

�Gi (z̃
∗
i (y0−x)−1)≤min

j∈J

{
�G j (z̃ j

∗(y0−x))
}≤�Gi (z̃

∗
i (y0−x)) ∀i ∈ J. (16)

While the upper bound in (16) is obvious, lower bound follows from property P1 given
in (8). Substituting (16) into (15) yields

h0 +
∞∑

x=τ(y0)

�Gi (z̃
∗
i (y0 − x) − 1)Pr

{
D(l0)

0 = x
}

≤ �Gcyc(y0, z̃∗) ≤ h0

+
∞∑

x=τ(y0)

�Gi (z̃
∗
i (y0 − x))Pr

{
D(l0)

0 = x
}
,

for all i ∈ J . The lower bound may be rewritten in terms of Pi (y0, z̃∗), which is
defined in (13):

h0 +
∞∑

x=τ(y0)

�Gi (z̃
∗
i (y0 − x) − 1)Pr

{
D(l0)

0 = x
}

=h0+
∞∑

x=τ(y0)

[
(h0+hi + pi )F (li +1)

i (z̃∗
i (y0−x)−1)−(h0+ pi )

]
Pr
{

D(l0)
0 = x

}
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= (h0 + pi )F (l0)
0 (τ (y0) − 1) − pi

+
∞∑

x=τ(y0)

[
(h0 + hi + pi )F (li +1)

i (z̃∗
i (y0 − x) − 1)

]
Pr
{

D(l0)
0 = x

}

= (h0 + pi )F (l0)
0 (τ (y0) − 1) − pi

+(h0 + hi + pi )

∞∑
x=τ(y0)

(
F (li +1)

i (z̃∗
i (y0 − x))

−Pr
{

D(li +1)
i = z̃∗

i (y0 − x)
})

Pr
{

D(l0)
0 = x

}
= (h0 + pi )F (l0)

0 (τ (y0) − 1) − pi

+ (h0 + hi + pi )

⎡
⎣Pi (y0, z̃∗) −

τ(y0)−1∑
x=0

F (li +1)
i (z̃∗

i (y0 − x))Pr
{

D(l0)
0 = x

}

−
∞∑

x=τ(y0)

Pr
{

D(li +1)
i = z̃∗

i (y0 − x)
}

Pr
{

D(l0)
0 = x

}⎤⎦ .

Recall from (5) that F (li +1)
i (yi ) = F (li +1)

i (y∗
i
) for yi ∈ Y ∗

i \ {y∗
i }. Hence, the expres-

sion
∑τ(y0)−1

x=0 F (li +1)
i (z̃∗

i (y0 −x))Pr
{

D(l0)
0 = x

}
reduces to F (li +1)

i (y∗
i
)F (l0)

0 (τ (y0)−
1) and rearranging the terms yields

h0 +
∞∑

x=τ(y0)

�Gi (z̃
∗
i (y0 − x) − 1)Pr

{
D(l0)

0 = x
}

=
[
(h0 + pi ) − (h0 + hi + pi )F (li +1)

i (y∗
i
)
]

F (l0)
0 (τ (y0) − 1) − pi

+ (h0 + hi + pi )

⎡
⎣Pi (y0, z̃∗)−

∞∑
x=τ(y0)

Pr
{

D(li +1)
i = z̃∗

i (y0 − x)
}

Pr
{

D(l0)
0 = x

}⎤⎦.

Similarly, the upper bound can be expressed in terms of Pi (y0, z̃∗):

h0 +
∞∑

x=τ(y0)

�Gi (z̃
∗
i (y0 − x))Pr

{
D(l0)

0 = x
}

=
[
(h0 + pi ) − (h0 + hi + pi )F (li +1)

i (y∗
i
)
]

F (l0)
0 (τ (y0) − 1) − pi

+(h0 + hi + pi )Pi (y0, z̃∗). �

123



558 M. K. Doğru et al.

Proof of Lemma 2 (i) Choose retailer i ∈ J such that z̃∗
i (
∑

i∈J y∗
i
− 1) = y∗

i
− 1.

From (13) and (14), for each y0 ∈ Y ∗
0 :

Pi (y0, z̃∗) =
τ(y0)−1∑

x=0

F (li +1)
i (z̃∗

i (y0 − x))Pr
{

D(l0)
0 = x

}

+
∞∑

x=τ(y0)

F (li +1)
i (z̃∗

i (y0 − x))Pr
{

D(l0)
0 = x

}

≥ pi

hi + pi
+
(

F (li +1)
i (y∗

i
) − pi

hi + pi

)
F (l0)

0 (τ (y0) − 1),

which can be rewritten as

∞∑
x=τ(y0)

F(li +1)
i (z̃∗

i (y0 − x))Pr
{

D(l0)
0 = x

}
≥ pi

hi + pi

(
1−F(l0)

0 (τ (y0) − 1)
)

(17)

using the property that F (li +1)
i (z̃∗

i (x)) = F (li +1)
i (y∗

i
) for x ≥ ∑

i∈J y∗
i
, x ∈ Z.

Further, the inequality in (17) may be rewritten as

∞∑
x=τ(y0)

F(li +1)
i (z̃∗

i (y0 − x))Pr
{

D(l0)
0 = x

}
≥

∞∑
x=τ(y0)

pi

hi + pi
Pr
{

D(l0)
0 = x

}
. (18)

From z̃∗
i (
∑

i∈J y∗
i
− 1) = y∗

i
− 1 and (5), F (li +1)

i (z̃∗
i (y0 − x)) <

pi
hi +pi

for x ≥
τ(y0). Thus, the inequality in (18) can only be satisfied if Pr

{
D(l0)

0 ≥ τ(y0)
}

=
0, i.e., F (l0)

0 (τ (y0) − 1) = 1. This implies that y0 ∈ Y ∗
0 is greater than or equal

to any possible realization of D(l0)
0 plus

∑
i∈J y∗

i
.

(ii) An infinite support for F (1)
i , i ∈ J , implies that there is also an infinite support

for F (1)
0 . From part (i), F (l0)

0 (τ (y0) − 1) = 1 for y0 ∈ Y ∗
0 can only be attained

if y∗
0

= ∞. �
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