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Abstract In this paper we study the real-time scheduling of time-sensitive full truck-
load pickup-and-delivery jobs. The problem involves the allocation of jobs to a fixed
set of vehicles which might belong to different collaborating transportation agencies.
A recently proposed solution methodology for this problem is the use of a multi-agent
system where shipper agents offer jobs through sequential auctions and vehicle agents
bid on these jobs. In this paper we consider such a system where both the vehicle
agents and the shipper agents are using profit maximizing look-ahead strategies. Our
main contribution is that we study the interrelation of these strategies and their impact
on the system-wide logistical costs. From our simulation results, we conclude that the
system-wide logistical costs (i) are always reduced by using the look-ahead strategies
instead of a myopic strategy (10–20%) and (ii) the joint effect of two look-ahead strat-
egies is larger than the effect of an individual strategy. To provide an indication of the
savings that might be realized under centralized decision making, we benchmark our
results against an integer programming approach.

Keywords Multi-agent systems · Collaborative planning · Auctions/bidding ·
Transportation

1 Introduction

During the last decade there has been a growing interest in collaborative logistics as
a result of increasing pressure on shippers and carriers to operate more efficiently.
Cooperation among transportation agencies takes place on various organizational and
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institutional levels, and in various forms. These forms range from spot markets to
private fleets. In spot markets, a large number of shippers and carriers exchange loads
and vehicle capacity. In private fleets, a shipper has exclusive and direct control over
a fleet of vehicles. Situated between these extremes are contractual agreement struc-
tures where carriers and/or shippers form a coalition to increase operational efficiency.
Potential costs reductions within these coalitions are commonly estimated around
15% of the total transportation cost (Cruijssen and Salomon 2004; Ergun et al. 2007a;
Schwind et al. 2009).

The focus of this paper is on networks where full truckload shipments (FTL) are
offered to a coalition of independent carriers, with the objective to improve the plan-
ning solution for the entire system, i.e, to reduce the system-wide logistical costs
consisting of travel costs and costs for late deliveries. Given this focus, we distin-
guish several application areas: (i) shippers that form a core carrier program in which
they form partnerships with a few large carriers, (ii) private fleets where individual
vehicles are modeled as autonomous entities (Mes et al. 2008; Böhnlein et al. 2010),
(iii) freight forwarders with profit centers that operate as independent carriers (Gomber
et al. 1997; Krajewska et al. 2008), and (iv) the so-called groupage systems as intro-
duced by Kopfer and Pankratz (1999) which enable the exchange of transportation
requests between independent carriers to achieve an equilibrium between requested
and available transport resources (Krajewska and Kopfer 2006). In the remainder we
refer to these types of possible application areas as collaborative networks.

The common denominator in the aforementioned collaborative networks is the
need for decentralized planning where partners conduct their planning autonomously
and only exchange limited information. A frequently proposed solution concept here
are auction mechanisms and more specifically Multi-Agent Systems (MAS). A MAS
consists of a group of intelligent and autonomous computational entities (agents)
which coordinate their capacities in order to achieve certain (local or global) goals
(Wooldridge 1999). These systems are particularly useful to model autonomous deci-
sion making in transportation logistics. As noted in Hülsmann et al. (2009), this mod-
eling can be done at various levels of detail, ranging from an agent for a fleet of
vehicles to individual vehicle agents, and from freight forwarding agents to agents
representing individual transportation jobs. For the purpose of this paper, we limit
ourselves to shipper agents and vehicle agents. From an abstract point of view, a ship-
per agent is responsible for finding transport capacity for an individual transportation
job at lowest possible costs and a vehicle agent is responsible for acquiring transporta-
tion jobs for a single vehicle and to perform these jobs in an efficient way. Depending
on the application area, the shipper agent might represent a shipper but also a carrier
that wants to outsource (a part of) his transportation requests, and the vehicle agent
might represent an individual truck, an automated guided vehicle, or even a carrier.
The main decisions here are the allocation of transportation jobs to vehicles and the
timing of these jobs. The allocation of jobs is typically done using a sequential auction
procedure where a shipper agent starts an auction for each incoming job and vehicle
agents bid on these jobs.

The idea of an auction-based allocation mechanism raises a problem: since jobs
arrive in real-time, an optimal allocation can only be derived afterwards, i.e., when all
jobs are known. This means that a certain allocation may become unfavorable when
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new jobs appear. To overcome this, the individual agents have to take into account
future job arrivals in their current decision making. In the literature, several look-ahead
policies have been proposed for vehicle agents and shipper agents (see Sect. 2 for an
overview). To the best of our knowledge, the interaction of intelligent behavior of
vehicle agents and shipper agents has never been studied: does the behavior of the
individual agents counteract or strengthen each other in terms of the overall system
performance? This is the focus of the present paper.

We base our look-ahead policies on the results of two earlier papers. In Mes et al.
(2008) two auction strategies for shipper agents are proposed, namely the use of reserve
prices and decommitment penalties. In Mes et al. (2010) pricing and scheduling strat-
egies for vehicle agents are proposed where not only the direct costs of jobs are taken
into account, but also the impact on future opportunities. The policies in both papers
have been designed for individual players operating in spot markets whereas we now
consider collaborative networks. This change of application area causes two difficul-
ties. First, our objective differs: in the spot markets we focus on the revenues of a
single player whereas in collaborative networks we aim to minimize the system-wide
costs. Second, learning might become more difficult: in the spot markets we consider
one player which anticipates to the more or less constant behavior of the other play-
ers. In collaborative networks all players might adapt themselves to each other which
might not converge to a stable behavior. In this paper we study the emergent behavior
within such a MAS. The goal of this paper is to study the interrelation of the individ-
ual strategies and to benchmark their performance to centralized planning where the
individual agencies have to give up their autonomy. Although the latter is not realistic
in practice, it provides an upper bound of the performance that can be reached using
a MAS.

The remainder of this paper is structured as follows. In Sect. 2 we give a brief
overview of the relevant literature and state our contribution. In Sect. 3 we present
our model of the transportation market. We present the various look-ahead policies in
Sect. 4. We present the experimental settings and numerical results in Sects. 5 and 6
respectively. We close with conclusions in Sect. 7.

2 Literature

In collaborative logistics, carriers and/or shippers may form a coalition in which
they exchange requests from various partners to form more efficient routes in
terms of utilization rates and idle trips. During the last decade, a number of
articles have appeared on this topic. We mention a few examples. Ergun et al.
(2007b) considers the case where shippers collaborate to form efficient tours that
are offered to carriers. Puettmann and Stadtler (2010) introduce a collaborative plan-
ning approach for intermodal freight transportation. Kopfer and Pankratz (1999)
introduced the so-called groupage systems which are defined as a logistic interor-
ganisation system which exchanges information and manages capacity balancing
by the cooperation between several independent carriers. Further studies on these
groupage systems can be found in Krajewska and Kopfer (2006), Hülsmann et al.
(2009). Other examples of horizontal collaboration between carriers can be found in
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Schönberger (2005), Berger and Bierwirth (2010), Liu et al. (2010), Dahl and Derigs
(2011). In the broader field of supply chain management, several collaborative planning
approaches have been developed. For example, Dudek and Stadtler (2005) study nego-
tiation-based collaborative planning between two independent supply chain partners
and Berger and Schröder (2011) study a decentralized approach for collaborative for-
warding of air cargo freight. For an overview on the state-of-the-art of collaborative
planning in supply chains we refer to Stadtler (2009).

An important element of collaborative planning is the mechanism used to exchange
transportation jobs. A frequently proposed solution for this is to use auction
mechanisms. Krajewska and Kopfer (2006) propose a decentralized combinatorial
auction model for the collaboration among independent freight forwarding entities.
Lee et al. (2007) propose a combinatorial auction mechanism for transportation pro-
curement of a shipper from carriers. Schwind et al. (2009) present an exchange mech-
anism for intra-enterprise order exchange among profit centers with the purpose of
reducing total costs of the entire company. A framework for the comparison between
a decentralized auction-based collaborative planning approach and a central planning
approach can be found in Berger and Bierwirth (2010).

To facilitate collaboration between carriers and shippers, an often proposed meth-
odology is the use of a MAS because such a system explicitly addresses the autonomy
and the specific knowledge of the individual agencies. In two early contributions
(Sandholm 1993; Fischer et al. 1996), a network of independent carriers is modeled as
a MAS where carriers are represented by agents that communicate and act on a market
platform. Kopfer and Pankratz (1999) discuss the modeling of groupage systems as
MAS. Gomber et al. (1997) considers a freight forwarder with several independent
profit centers. The profit centers are represented by agents and collaboration takes
place through auction mechanisms. In Hoen and La Poutré (2004) a MAS is pre-
sented for real-time vehicle routing problems with consolidation in a multi-company
setting where cargo is assigned to vehicles using a Vickrey auction. A framework for
the study of carriers’ strategies in an auction marketplace for dynamic full truckload
vehicle routing problems with time-windows can be found in Figliozzi et al. (2003).
A similar problem is considered in Mes et al. (2007) where a comparison is made
between the agent-based approach and centralized optimization methods. Böhnlein
et al. (2010) propose a MAS for synchronizing production and distribution within the
news paper industry. For a literature survey on MAS in the area of transportation (and
traffic) we refer to Chen and Cheng (2010).

As with collaborative planning in general, auction mechanisms are also used in
MAS as a mechanism to enable cooperation between the agents, i.e., to enable the
exchange transportation jobs. In the transportation area, these agents typically rep-
resent resources and/or jobs. Resource agents may strive for utilization and/or profit
maximization whereas job agents may focus on on-time delivery against the lowest
possible costs. The main challenges with auction mechanisms are bid generation, bid
pricing, bid evaluation, and profit sharing. Bid generation deals with the selection
of combinations of items to bid on (see e.g., Lee et al. 2007). Profit sharing deals
with the fair distribution of the additional profit generated through the collaboration
process among the partners (see e.g., Krajewska and Kopfer 2006; Krajewska et al.
2008; Ozener and Ergun 2008). In this paper we do not to focus on bid generation

123



Interaction between intelligent agent strategies 341

and profit sharing, but instead we focus on the impact of the individual bid pricing
and bid evaluation strategies on the additional profits that can be achieved through
collaboration. Below we elaborate on these issues.

For the bid pricing decisions of the vehicle agents, we may rely on solutions for the
dynamic vehicle routing problem (DVRP). Here a number of vehicles has to satisfy
transportation requests that arrive dynamically over time. This requires an online plan-
ning approach in order to include the new jobs in the vehicle schedules. Although many
papers have been devoted to the dynamic vehicle routing problem, there are still some
issues that have not been addressed yet (Ghiani et al. 2003). Especially regarding look-
ahead policies that incorporate the future consequences of certain decisions. Here we
distinguish between two types of look-ahead policies: waiting strategies (i.e., where
to wait and for how long) and scheduling strategies in anticipation of future job arriv-
als. Examples of waiting strategies can be found in Larsen et al. (2004), Ichoua et al.
(2006), Thomas (2007). Examples of look-ahead scheduling strategies can be found
in Mitrović-Minić and Laporte (2004), Yang et al. (2004), Branke et al. (2005). In
this paper we use a combination of look-ahead waiting and scheduling strategies as
introduced in Mes et al. (2010).

For the decision making capabilities of the shipper agents our focus is on auction
strategies. A commonly used auction protocol in MAS is the sequential Vickrey auc-
tion where jobs are allocated one-by-one. The difficulty with such a system is that
subsequent jobs are dependent: serving one job is greatly affected by the opportu-
nity to serve another job. To cope with the interdependencies among jobs, we may
use reserve prices and/or decommitment penalties. As shown in Myerson (1981), the
reserve price increases the expected revenue of the seller by preventing the object
from being sold at a low price. For an extensive literature survey on this topic we refer
to McAfee and McMillan (1987). Decommitment penalties are introduced in Sand-
holm and Lesser (2001). Here an agent can decommit (for whatever reason) simply
by paying a decommitment fee to the other agent. It is shown, through game-theoretic
analysis, that the option to decommit increases the Pareto efficiency of contracts and
can make contracts more beneficial for both parties. In Hoen and La Poutré (2004) the
decommitment concept is applied to a multi-agent transportation setting. They con-
clude that significant increases in profit can be achieved when the agents can decommit
and postpone the transportation of a load to a more suitable time. In this paper we
use a combined policy for the use of reserve prices and decommitment penalties as
introduced in Mes et al. (2008).

Closely related work can be found in Berger and Bierwirth (2010), Dai and Chen
(2011) where horizontal collaboration between carriers is considered and where each
of the carrier agents may act as an auctioneer to outsource transportation requests
while the another carrier agents act as bidders. Dai and Chen (2011) explicitly formu-
lates this as a two decision problem, one for the auctioneer and one for the bidder. By
using simulation, they evaluate collaborative approach with (i) the individual planning
approach (no job exchange) and (ii) a centralized planning approach.

The main contribution of this paper is to study the interaction between carriers
and shippers, each using look-ahead profit maximizing strategies, which has not been
studied before. Most papers focus on models for a single agent type where the behavior
of the counterpart is considered as exogenous. Because we include models for both
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shipper agents and vehicle agents, we can study the emergent behavior of this com-
bined system. Our study differs from Dai and Chen (2011) in the sense that we focus
on the added value of anticipatory behavior of the two agent types. As shown in Sect. 6,
we find that the joint effect of two policies is larger than the effects of the individual
policies. Hence, the intelligence of both agent types strengthens each other rather than
counteract. In addition, we provide a benchmark of the agent-based approach with a
centralized mixed-integer programming approach where the combined multi-vehicle
pickup and delivery problem is solved to optimality (with respect to the system-wide
logistical costs) at each new job arrival. Even though centralization in a multi-actor
environment is seldom feasible in practice, it provides an upper bound on the perfor-
mance that could be achieved by the MAS.

3 Model of the transportation market

Jobs to transport unit loads (full truckload) arrive one-by-one. These jobs are charac-
terized by an origin i , a destination j , a latest pickup time e of the load at the origin,
and a time a at which the job becomes known in the network a ≤ e. To introduce
unbalanced transportation networks, i.e., a network in which some areas are more
popular than others, we divide the network into disjoint regions a priori. We denote
the set of regions by N .

Within the network, all jobs have to be transported by a fixed set of vehicles that
might possibly belong to different collaborating transportation agencies. The overall
goal is to minimize the system-wide costs. We consider two cost components, namely
the driving costs cd (t) as function of the travel time t and the penalty costs cp (t) in
case of tardiness t with respect to the latest pickup time e. The time to transport a load
from node i to node j is given by τ

f
i j (driving full). This includes travel time, and the

handling time to load- and unload the job. The time to drive empty from location i to
location j is given by τ e

i j .
To model the transportation market we use a multi-agent system. We represent

each player by an agent that acts as a decision maker. Here we restrict ourselves to
vehicle agents and shipper agents. The shipper agents submit transportation jobs to
the market according to some stochastic process. Vehicle agents bid on these jobs and
maintain a schedule of the jobs they have won. The vehicle agents and shipper agents
have individual objectives. Objective of the shipper agents is to minimize the costs for
transportation given by the sum of all prices paid to the vehicles for transporting their
loads. Objective of the vehicle agents is to maximize their profits given by the income
from all transportation jobs minus the costs for doing these jobs. Yet, the objective of
the collaboration is to minimize the system-wide costs as defined before.

To match transportation jobs with vehicle capacity we use auctions. Auction
protocols that are specifically designed to deal with complementary goods are, for
example, simultaneous auctions (or parallel auctions) where bidders participate in
multiple auctions at the same time and combinatorial auctions where bidders may bid
on combinations of items. However, combinatorial auctions involve many inherently
difficult problems. As mentioned in Song and Regan (2005), we face the bid construc-
tion problem, where bidders have to compute bids over different job combinations; and
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the winner determination problem, where jobs have to be allocated among a group of
bidders. In addition, we face the profit sharing problem (Krajewska and Kopfer 2006)
and these procedures might not be directly applicable in situations where jobs arrive
at different points in time. In this paper we choose for sequential reverse Vickrey
auctions, i.e, for each job we use a single auction round in which the lowest bidder
wins the auction at the price of the second-lowest bid. The Vickrey auction has been
widely used for MAS because (i) it requires a single bidding round and (ii) it forces
bidders—under some mild conditions, see Vickrey (1961)—to bid their true valua-
tion of the object, thereby avoiding many bidding problems (e.g. speculation on profit
margins). However, this property no longer holds in sequential auctions where the
valuation of bundles of items, acquired in separate auctions, differs from the sum of
the valuations of individual items. This certainly is the case in sequential transporta-
tion procurement auctions, where bundles form efficient routes consisting of multiple
pickup and/or delivery locations. To cope with the interdependencies between jobs
we focus on the use of look-ahead strategies for bid pricing and bid evaluation. For
clarity of exposition, we make the following assumptions:

• All jobs have to be transported eventually.
• The total transportation capacity is sufficient to handle all jobs in the long run.
• A job in process cannot be interrupted (no preemption); i.e., a vehicle may not

temporarily drop a load in order to handle a more profitable job and return later on.
• The handling times and travel times are deterministic.

Further, given our focus on bid pricing and bid evaluation, we take the profit sharing
phase for granted and abstract from organizational aspects by ignoring the ownership
of vehicles (basically assuming each carrier has one vehicle) and by introducing a
single shipper agent that receives and auctions all jobs.

4 Auction and bidding strategies

A job is allocated to a vehicle whenever the shipper decides which vehicle agent will
win the auction, if any. After the arrival of new jobs, it may appear that the job assign-
ment is not optimal anymore, i.e., we have a misallocation. Especially when jobs are
complementary (e.g. transportation jobs that can be served sequentially by the same
vehicle) or substitutable (e.g. transportation jobs that are available at the same time),
a certain allocation may become unfavorable when new jobs appear. To improve the
allocation of jobs, we take the sequential transportation procurement auction as given,
and focus on strategies for the participants. We consider the following options:

1. Delaying commitments: the shipper agent may delay commitments by refusing
the current lowest bid based on a reserve price and to start a new auction for the
same job later on.

2. Breaking commitments: the vehicle agents are allowed to reject an accepted job
in favor of another job. The shipper reconsiders the decommitted job by starting
a new auction for this job.

3. Valuation of opportunities: the vehicle agents include opportunity costs in their
bids.
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For delaying commitments, a shipper uses reserve prices in the auctions. When all
bids are higher than the reserve price, the shipper rejects them and starts a new auc-
tion later on. This way, shippers avoid misallocations by postponing commitments for
which they expect to make a better allocation in the future. So if the shipper has plenty
of time to auction a certain job, it will not agree with a relatively high bid. When the
time for dispatch comes nearer, the price it is willing to accept will rise. We call this
a dynamic threshold policy.

The idea of breaking commitments is that the shipper allows a vehicle to decommit
from an agreement against a certain penalty. These penalties are chosen such, that
whenever a vehicle decommits a job, they cover the expected extra costs for finding a
new vehicle. This way, potential misallocations can be corrected. After a vehicle has
decommitted a job, the shipper re-auctions the job in order to find a new vehicle that
is willing to do this job. We call this a decommitment policy. Note that such a policy is
only reasonable in case of collaborative networks, because shippers operating in spot
markets certainly would add a risk premium to the decommitment penalties.

In the third option, vehicle agents try to avoid misallocations by not only taking into
account the direct impact of doing a certain job, but also its impact on the expected
future revenue. This impact on future revenues is captured using the concept of oppor-
tunity costs. The opportunity costs are affected by job characteristics, such as the des-
tination of the new job, but also by the order and timing of jobs in a schedule. These
opportunity costs play a role in the bid pricing decisions of vehicles, but also in their
scheduling decisions.

We implement the market-based multi-agent system as follows. When a job arrives
at the shipper, it starts an auction by sending an announcement with job requirements
to all vehicles. In return, each vehicle calculates a bid considering the marginal costs of
doing this job and its impact on future opportunities (Sect. 4.1). Next, the shipper has
to decide whether to accept the lowest bid (Sect. 4.2). A shipper may decide to reject
all bids and start a new auction later on. Otherwise, the winning vehicle is informed
and all vehicles receive information on the lowest bid, which can be extended to cases
with less information transparency as shown in Mes et al. (2010).

If the shipper allows decommitment, it also calculates the time-dependent decom-
mitment penalty for the new job and sends this to the winning vehicle (Sect. 4.3).
The winning vehicle implements the schedule change. If the winning vehicle decided
to decommit from another job, then this decommitment is announced to the shipper,
which in turn immediately starts a new auction for this job. After each auction, both the
shipper and the vehicles store information of the lowest bid together with the job char-
acteristics. They use this information to periodically update their beliefs about other
players (see Sect. 4.1–4.3). A general impression of the situation is given in Fig. 1.

In the next sections (Sect. 4.1–4.3) we describe the three policies in more detail and
present some small modifications to adapt these policies to collaborative networks.

4.1 Opportunity valuation policy

In this section we briefly describe the opportunity valuation policy as introduced in
Mes et al. (2010). Also, we present a minor modification to this policy to apply it to
collaborative networks.
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Fig. 1 Transportation procurement market

To support job sequencing decisions and bid pricing decisions, vehicles maintain
a job schedule. Vehicles are not restricted by the scheduled pickup times, but can
simply decide to insert new jobs or to wait at some location after delivery of a job.
The vehicles use an insertion heuristic, see Campbell and Savelsbergh (2004). Here a
vehicle contemplates the insertion of a new job at any position in the current schedule
without altering the order of execution for the other jobs.

At each point in time, a vehicle v has a job schedule �v , i.e., a list of jobs with
scheduled pickup times. These pickup times are scheduled as early as possible, taking
into account the required times for empty moves. In the remainder we denote (i) the
number of jobs in a schedule by M , (ii) the destination region of the last job in the
schedule � by schedule destination d(�), and (iii) the time until the expected arrival
time at the schedule destination by length of a schedule l(�).

To capture the impact of a schedule on future opportunities, we use an end-value
V (i, t) which provides an indication of the attractiveness of a schedule destination i .
Specifically, V (i, t) gives the expected profit during a period t after arrival at schedule
destination i . The end-values are calculated using Stochastic Dynamic Programming.
The information required consists of the job arrival patterns and the distribution of the
lowest bid for various job characteristics. This information can be collected from the
auctions. For more details on this we refer to Mes et al. (2010).

The end-values are used by the vehicle agents (i) to calculate a bid price for a new
job, (ii) to choose an appropriate insertion position for a new job, and (iii) to support
so-called pro-active move decisions, i.e, moving empty in anticipation of future job
requests. Below we elaborate on these decisions.

Consider vehicle v with M jobs in its current schedule �v . If M = 0, there is
only one way to schedule a new job. If M > 0, a new job can be scheduled in M
possible ways, since the first job cannot be interrupted. We write �m

vϕ for schedule
alternative m, where the new job ϕ is inserted after job m. The direct costs for vehicle
v for inserting a new job ϕ after the mth job in its current schedule are given by (i)
the costs for the expected additional travel time �T m

vϕ and (ii) the expected additional
tardiness �Dm

vϕ . Besides these direct costs, a vehicle also faces opportunity costs. The
opportunity costs of schedule alternative �m

vϕ of vehicle v within a given planning
horizon T are given by the difference in end-value of the schedule alternative �m

vϕ

compared to the current schedule �v . These opportunity costs are given by

OC
(
�m

vϕ

) = V (d (�v) , T − l (�v)) − V
(
d

(
�m

vϕ

)
, T − l

(
�m

vϕ

))
.

The bid price of vehicle v, for inserting a new job ϕ in its current schedule �v , is
given by the direct costs of the cheapest insertion plus the opportunity costs
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b (v, ϕ) = min
m=1,...,M

{
cd (

�T m
vϕ

) + cp (
�Dm

vϕ

) + OC
(
�m

vϕ

)}
.

We denote the schedule �m
vϕ with the lowest costs by �∗

vϕ . A vehicle agent updates
its schedule when (i) an auction for a new job ϕ is won and (ii) the first loaded move in
a schedule has been completed. In the first case, the vehicle agent replaces its current
schedule �v with �∗

vϕ . In the second case, the vehicle agent has to decide upon its next
move. Here we assume that if the vehicle schedule is not empty, it will drive immedi-
ately to the origin of the next job. Otherwise, the vehicle agent has to decide whether
to stay or to move pro-actively to another node in anticipation of future demand. For a
given node i , the decision to move to node δ will result in an empty move with travel
time τ e

iδ and costs cd
(
τ e

iδ

)
. The pro-active move decision is then given by the node δ

that maximizes the revenue within the remaining planning horizon T −τ e
iδ after arrival

at node δ, minus the cost for this empty move

δ (i) = arg max
δ∈N

{
−cd (

τ e
iδ

) + V
(
δ, T − τ e

iδ

)}
.

Note that more complicated decisions are involved when vehicles not always start
the next job as early as possible. Extending the start of the next job might be beneficial
in anticipation of new job arrivals (see e.g., Ichoua et al. 2006; Thomas 2007; Mes
et al. 2010).

The opportunity valuation policy has originally been designed for spot markets
where we are dealing with a large number of vehicles each applying their own policy.
In collaborative networks, all vehicles include opportunity costs in their bid pricing and
scheduling decisions. As a consequence, the performance of each individual player is
influenced by (i) other vehicle agents charging opportunity costs and (ii) the shipper
agent that employs reserve prices or allows decommitment of jobs. When all players
use exactly the same end-values the system might become unstable with ever increas-
ing prices. To illustrate this, suppose all players update their end-values at the same
time periodically. As mentioned earlier, the end-values describe the expected profit
of a vehicle within a certain period depending on its schedule destination. The profit
of a vehicle is given by the prices of the jobs it won minus the transportation and
penalty costs for serving these jobs. Given the Vickrey auction, the price of a job is
given by the second lowest bid which includes opportunity costs. Since the opportunity
costs will typically (and at least on average) be greater then zero, the expected profits
of the vehicles increases. Because profits increase, the end-values in the next period
will also increase. Hence the opportunity costs vehicle charge in their bid prices also
increases. As a result, the prices for jobs increase with each periodic update of the
end-values.

To prevent the increase in bid prices, we slightly modify the opportunity valuation
policy for the use in collaborative networks. The expected rewards are calculated sim-
ilarly as before by taking the difference between the lowest and second lowest bid.
However, because both bids include opportunity costs, we subtract the opportunity
costs from the expected rewards.
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4.2 Dynamic threshold policy

In this section we briefly describe the dynamic threshold policy as introduced in Mes
et al. (2008). Also, we present a minor modification to this policy to apply it to col-
laborative networks.

By using the dynamic threshold policy, a shipper has the opportunity to auction a job
multiple times. We assume that the time between subsequent auction rounds is fixed
and equal to R. After each auction, the shipper agent has to decide whether to accept
the lowest bid. This decision can be supported by a threshold value α (n, d, b) which
is given by the expected price a shipper has to pay in the auction rounds n +1, . . . , N ,
given that it rejects the current lowest bid b for a job with distance d. We added the
current bid b in the state space, because sequential bids for the same jobs are corre-
lated. For R relatively small, the vehicle schedules at the next auction round will not
be that different and the same probably holds for the lowest bid.

The optimal policy is to accept the current bid b in auction round n for a job with
distance d, only when this value b is below a threshold value α (n, d, b). To calculate
the threshold values we introduce a probability density function Pn,d (b) of the lowest
bid b at auction round n for a job with distance d. Here we discretize the possible bid
prices in K classes. We further introduce Bn as the stochastic variable for the lowest
bid at auction round n, qu being the probability that the lowest bid is updated between
two auction rounds, and φ being the slope of the linear regression between pairs of
lowest bids in subsequent auction rounds. We use this slope to include correlations in
price deviations (difference between the expected lowest bid and realized lowest bid)
in subsequent auctions rounds.

We calculate the threshold values backwards, starting from the last auction round N
having a threshold value αN = ∞, i.e., in the last auction round we accept the lowest
bid. As in Mes et al. (2008), the recursive relation for the threshold values is given by

α (n, d, b) = (
1 − qu)

min {b, α (n + 1, d, b)}

+qu
K∑

k=0

Pn+1,d (k) min {k + φ [b − E [Bn]] ,

α (n + 1, d, k + φ [b − E [Bn]])} .

To calculate the threshold values, the shipper has to learn the values of Pn,d (b) , qu ,
and φ. Learning is based on historical observations of the lowest bid, see Mes et al.
(2008) for details. The use of historical observations assumes a more or less stable sys-
tem. This will not be the case in collaborative networks where players adapt themselves
to others. As a result, the system might not converge to a stable situation, just like we
saw with the opportunity valuation policy (see Sect. 4.1). To see whether the behavior
of all players converges to some stable level, and if so, how long this takes, we intro-
duce learning periods. The idea of a learning period is that players do not change their
behavior during this period. At the end of such a period, players use the observations
from this period to update their policies (i.e., recalculate Pn,d (b) , qu, φ) which they
use throughout the next learning period.
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Besides using multiple learning periods, we make one additional modification.
Because we consider unbalanced networks where some regions are more popular than
others, we have to include the origin region i and destination region j in the threshold
values αi j (n, d, b). To calculate the threshold values, the shipper estimates the prob-
ability density function Pn,d (b) using multiple linear regression. Hence, we also have
to include the origin and destination region in the regression functions. We simply do
this, by adding |N | − 1 indicator functions for both the origin and destination region.

4.3 Decommitment policy

In this section we briefly describe the decommitment policy as introduced in Mes et al.
(2008). At the end of this section we present a minor modification to this policy to
apply it to collaborative networks.

By using the decommitment policy, the shipper agent allows vehicles to decommit
from an agreement (a job) against a predetermined time-dependent penalty. This
penalty for a given job, as a function of the remaining time until the latest pickup
time, is calculated by the shipper directly at the start of an auction for this job and
is announced to the vehicles together with the other job characteristics. Whenever a
vehicle decommits, (i) it will not receive the agreed price for the decommitted job,
(ii) it has to pay the shipper the time-dependent decommitment penalty, and (iii) the
shipper immediately starts a new auction for this job.

The decommitment penalty equals the expected extra costs for a shipper to find a
new carrier (so we assume risk neutral shippers). The decommitment penalty Ds,t is
given by the expected lowest bid at the decommitment time t minus the expected low-
est bid at the initial commitment time s: Ds,t = E [Bt ] − E [Bs]. However, when the
shipper uses the decommitment policy in combination with the dynamic threshold pol-
icy, the decommitment penalties Ds,t are given by the difference in threshold prices
between the initial commitment time s and the decommitment time t . We modify
threshold values by letting them depend on the remaining time t instead of on the
auction round n. This is a minor modification which can be done rather easily, see
Mes et al. (2008). The decommitment penalties are then given by: Ds,t = α (t, d, b)−
α (s, d, b).

To adjust the decommitment policy to collaborative networks we perform the same
modifications as with the dynamic threshold policy, i.e., we include the origin and
destination region in the threshold values and we use multiple learning periods.

5 Experimental settings

The goal of this simulation study is to evaluate the impact of combinations of shipper’s
and vehicles’ look-ahead strategies on the system-wide logistical costs. To use the local
look-ahead strategies, the agents have to learn the behavior of others. In this study,
we want to distinguish the effects of learning from the interrelation of the policies
themselves. To do this, each simulation run consist of a learning phase where agents
learn from their environment and a steady state phase where agents use the informa-
tion gathered from the learning phase. During the learning phase, learning takes place
periodically (i) by estimation of all required parameters using observations from the
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Table 1 Origin probabilities
Degree of balance Origin probabilities

for node/region i (i = 1, . . . , 4)

Balanced 1
4 (1 + (i − 1) ∗ 0.0)

Slightly unbalanced 1
7 (1 + (i − 1) ∗ 0.5)

Unbalanced 1
10 (1 + (i − 1) ∗ 1.0)

past period and (ii) by updating the policies in accordance with this. We set the length
of a learning period to 10 days, which is sufficient to allow a reasonable amount of
observations for various job characteristics. To study the interrelation of the policies,
we only consider data from the steady state phase and regard the learning phase as a
warm-up period.

We consider a transportation area where locations are distributed within a 100 ×
100 km square area with Euclidean distances. To distinguish between more and less
attractive locations, we divide the area into four equal-sized square regions. The regions
are numbered consecutively per row, starting in the upper left corner and ending in the
lower right corner. To adjust the transportation flow, we set for each region an origin
probability, which is the probability that this region becomes the origin of a new job.
For a given job, we first draw an origin region using the given origin probabilities and
next draw a destination region randomly from the remaining regions. Within a given
origin/destination region, we draw an (x, y) coordinate randomly from the square area.
The different origin probabilities are shown in Table 1.

We use 10 vehicles, each having a travel speed of 50 km/h. The travel costs and
penalty costs are 1 and 10 per minute respectively. The loading- and unloading times
are 5 min each. For the dynamic programming recursions on the end-values, we dis-
cretize time into periods of 1 min and use a planning horizon T of 12,000 min (≈ 192
times the travel time between two random points in the transportation area). Jobs arrive
according to a Poisson process.

For the vehicle agents we consider the following policies:

MY Myopic policy: the vehicle agents do not use opportunity costs in their bid
pricing and scheduling decisions, i.e., they use the equations from Sect. 4.1
with OC (�) = 0 for all schedules � and they do not make pro-active moves.

OV Opportunity valuation policy: the vehicle agents do use opportunity costs in
their bid pricing and scheduling decisions, and also make pro-active moves.

For the shipper agent we consider the following policies:

MY Myopic policy: the shipper agent always accepts the lowest bid and does not
allow decommitment.

DEC Decommitment policy: the shipper agent allows decommitment of jobs.
RES Dynamic threshold policy: the shipper agent uses reserve prices.

For the shipper agent, we decided not to consider the combination of DEC and RES
given it results in a relative minor improvement at the expense of a major increase in
computation time, see Mes et al. (2008). Given the policies mentioned above, we end
up with 2 × 3 = 6 possible agent-based control structures (combination of individual
policies). We denote a control structure by A/B where A refers to the policy used by
all the vehicle agents and B to the policy used by the shipper agent.
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A problem with online planning is that we generally compare different heuristics
without having any benchmark for the effectiveness in terms of total relevant costs. To
have an indication of the quality of our multi-agent approach, we would like to have
a reasonable lower bound for the minimum costs. One option is to perform central
optimization afterwards when all jobs are known. This is the optimal solution, but we
use more information than is available during online execution. Therefore, this lower
bound is usually far off the performance of online heuristics; so this is not a realistic
bound. The option we consider here is central re-optimization of the problem each
time new information arrives. Although it is not guaranteed that we find the mini-
mum costs in this way, it gives a reasonable estimate of the performance that could
be achieved based on the information we actually have under central planning. Spe-
cifically, we consider a reoptimization policy where the offline multi-vehicle pickup
and delivery problem is solved at each new job arrival. Obviously, this policy is not
practical for (i) real-time planning purposes of problems of realistic size and (ii) sit-
uations in which we are dealing with multiple collaborative transportation agencies
that want to maintain a certain level of autonomy. As a benchmark, we use a slightly
modified version of the mixed-integer programming formulation given in Yang et al.
(2004). In this formulation, the problem is modeled as an assignment problem with
timing constraints. The assignment problem consists of finding a least-cost set of cycles
describing the order in which each truck should serve the jobs. We slightly modified
the formulation in the sense that all jobs have to be carried out and have to be accepted
immediately once they are known. We denote the benchmarking policy by BENCH.

As experimental factors we choose the following: control policy, degree of balance,
time-window length, and time between jobs. We decided not to vary the number of
vehicles, travel speed, handing times, and network size, since their impact on the vehi-
cle capacity (i.e., the average amount of jobs that can be transported per time unit)
is already captured by the factor time between jobs. We also fix the travel costs and
penalty costs per time unit, but we do provide insight into the different cost com-
ponents by showing the realized service levels and transportation costs. The ranges
of the experimental factors are shown in Table 2. A full factorial experiment with
respect to these factors would require 7 × 3 × 4 × 4 = 336 experiments. For clarity
of exposition, and to reduce computation time, we consider (i) all combinations of the
factors Control, Degree of balance, and Time-window length; with as fixed settings a
time between jobs of 800 s and (ii) all combinations of the factors Policies, Degree of
balance, and Time between jobs; with as fixed settings a time-window length of 600 m.
As a consequence, we consider 2×7×3×4 = 168 experiments. In the learning phase
we only consider the unbalanced network with a time-window length of 600 m and a
time between jobs of 800 s. In the remainder we refer to this setting of time-windows
and time between jobs as default configuration.

As primary performance indicator we consider the average costs per job which
consists of empty travel costs and penalty costs. The loaded travel costs are excluded
because they do not depend on the decisions to be taken. In addition, we consider
the relative savings of a certain policy which are defined as the relative difference in
average costs of this policy compared to the average costs of the myopic policy. In
mathematical form this would be
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Table 2 Experimental factors

Factor Values

Control (vehicle/shipper) MY/MY, MY/DEC, MY/RES
OV/MY, OV/DEC, OV/RES, BENCH

Degree of balance Balanced, slightly unbalanced, unbalanced
Time-window length ( min) 300, 400, 500, 600
Time between jobs (s) 700, 800, 900, 1,000

relative savings=100×
(

average costs of myopic policy − average costs of policy

average costs of myopic policy

)
.

For our simulations, we use a replication/deletion approach, see Law (2007), where
each experiment consists of a number of replications (each with different seeds) and a
warm-up period. The warm-up period consists of a number of learning periods times
the length of a learning period (10 days). The length of each simulation run, excluding
the warm-up period, is 100 days. For all experiments, we use 5 replications, which
appear to be sufficient for a confidence level of 95% with a relative error of 5% with
respect to the average costs per job.

6 Numerical results

First we present the results from the learning period (Sect. 6.1) after which we present
the steady state performance of the various policies (Sect. 6.2).

6.1 Learning behavior

Here we evaluate the impact of the number of learning periods (1–9) on the aver-
age costs per job, see Fig. 2. Obviously, the policies MY/MY and BENCH do not
require learning. The individual policies OV and DEC (policies MY/DEC, OV/MY,
and OV/DEC) do not need many learning periods, i.e., one period seems to be enough.
The major advantage of this is that they are suitable for nonstationary environments.
For the individual policy RES (policies MY/RES and OV/RES) we see that it takes
some time to come up with reasonable relative savings; with one learning period
we even see that the average costs per job increase compared to the myopic policy
MY/MY. For the remainder of this section we use a warm-up period consisting of 5
learning periods. From Fig. 2 we see that this number is sufficient for most policies to
converge to a relatively stable performance.

6.2 Steady state comparison of policies

Here we evaluate the interrelation of the shipper’s and vehicles’ look-ahead strategies.
We use the experimental factors as shown in Table 2. All figures in this section display
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Fig. 3 Simulation results for balanced networks

the costs of the agent-based policies relative to the performance of the myopic policy
given in percentages. For the unbalanced network we also show performance data with
respect to the absolute costs and some additional performance indicators. These data
can be found in the “Appendix”.

First we consider the balanced network. Given that the opportunity valuation policy
only benefits from imbalance in a network, we omit the policies OV/MY, OV/DEC,
and OV/RES. The results for the remaining policies can be found in Fig. 3.

From this figure we draw the following conclusions. First, the relative savings of all
policies increase with increasing time-window length. This means that with increasing
time-window length, the differences between the myopic policy and the other poli-
cies are getting larger. The shippers’ policies RES and DEC benefit from increasing
time-windows because there is simply more time to delay (RES) or break (DEC) com-
mitments. The benchmarking policy also takes advantage of increasing time-windows
since there will be an increasing probability that the policy will find a better set of
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Fig. 4 Simulation results for slightly unbalanced networks

vehicle schedules compared with the myopic policy (see “Appendix”, Table 3 for the
unbalanced network).

We further see that the relative savings of MY/DEC and BENCH decrease with
increasing time between jobs (decreasing number of jobs). The reason for this is the
following. The advantage of MY/DEC and BENCH over the myopic policy is that
they allow exchange of jobs between vehicle schedules (by means of swapping jobs
or completely reassigning all jobs). However, with increasing time between jobs, the
average schedule length of the vehicle will become shorter. So, there will be less to
gain by exchanging jobs. The relative savings of MY/RES increase with increasing
time between jobs since the probability of late delivery decreases, which is really an
issue with this policy (see “Appendix”, Table 4 for the unbalanced network). Also,
with increasing time between jobs, the probability of finding better vehicle schedules
in future auction rounds (the principle behind MY/RES) will increase.

A final observation here is that the gap between the agent-based policies and our
benchmark remains relatively large. We come back to this issue at the end of this
section.

Next we consider the case of slightly unbalanced networks, see Fig. 4. The travel
distances (empty as well as loaded) are getting longer with increasing imbalance. As
a consequence, it will be harder to deliver all jobs on time. This has a similar effect
as the decreasing time-between jobs in the balanced case. This explains why within
the slightly unbalanced networks the relative savings of the MY/DEC and BENCH
are higher most of the time whereas the savings for the policy MY/RES are lower in
most cases. We further see that performances of OV/MY and MY/DEC are close to
each other. Finally, the combination of shipper’s and vehicles’ strategies (OV/RES and
OV/DEC) always increases the performance. The best combination of local policies
here is OV/DEC.

Next we consider the case of unbalanced networks. The results can be found in
Fig. 5. By introducing more imbalance, it becomes even harder to deliver all jobs on
time. Using a similar argumentation as given above, the relative savings of MY/DEC
and BENCH in the unbalanced network become slightly higher and the relative savings
of MY/RES slightly lower. However, the differences between the unbalanced and the
slightly unbalanced case are smaller than the differences between the slightly unbal-
anced and balanced case. The reason for this is that within the unbalanced network,
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Fig. 5 Simulation results for unbalanced networks

the majority of transport takes place within one region. This region can be regarded as
balanced because the origin and destination coordinates are drawn randomly within
this region.

We further see that the gap between the best agent-based policy and our benchmark
becomes smaller; especially with increasing time between jobs. Again we see that
from the local policies, the combination OV/DEC performs best in most cases. Only
in the situation with relative low job arrival intensity (time between jobs of 1,000), the
policy OV/RES performs best.

Finally, we observe a peculiarity: the relative savings of our benchmark decreases
with increasing time-window length, something which was not the case in the balanced
and slightly unbalanced case. The reason for this is that with increasing imbalance,
more capacity will be lost on empty movements. As a result, it becomes relatively
more difficult for the myopic policy MY/MY, compared with the policy BENCH, to
achieve a high service level with short time-windows. Therefore, the policy MY/MY
will benefit relatively more from an increase in time-windows. Hence, the relative
savings for BENCH, compared to those of MY/MY, decreases as can be seen from
Table 3 in the “Appendix”.

To summarize the results, we have seen that combinations of vehicle and shipper
strategies always improve the performance compared to one of the individual policies.
In almost all cases, the combination of the opportunity valuation policy and the decom-
mitment policy (OV/DEC) works best. Only in settings with long time-windows or
few jobs, the combination of the opportunity valuation policy and the dynamic thresh-
old policy comes in favor. In almost all cases the relative savings of these policies lie
between 10 and 20%.

The results of the local policies seem promising, but there is still a gap with our
benchmark. For example, in the unbalanced networks, the policy OV/DEC (the best
combination of local policies) is only able to achieve, on average, 53% of the savings
from our benchmark. There are two extenuating circumstances here. First, the prob-
lem under consideration is relative simple and clean in the sense that only one type of
decision is involved (assigning jobs to certain positions in truck schedules) and only
one type of uncertainty is involved (the job arrival process). In earlier work, see Mes
et al. (2007), where we considered a problem involving many more decision types
and also uncertainty in handling and travel times, we drew an opposite conclusion
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in favor of the local policies. Second, the benchmarking policy requires considerably
more computation time compared to the local policies, and these computation times
will explode with increasing problem size. For this reason we only considered rela-
tively small problem sizes. With more realistic problem sizes, the multi-agent approach
would still be able to perform real-time whereas the central approach would require
approximations or has to be replaced by heuristic procedures. Some details regarding
the computation times can be found in the “Appendix”.

7 Conclusions

In this paper we studied the interaction between vehicle agents and shipper agents in
a market-based multi-agent system for full truckload transportation. Shipper agents
offer the transport jobs through sequential auctions. A set of vehicle agents compete
with each other to serve these jobs. For the shipper agent we considered two auction
strategies, namely a dynamic threshold policy and a decommitment policy. For the
vehicle agents we considered opportunity valuation policies where not only the direct
costs of jobs are taken into account, but also the impact on future opportunities. We
used simulation to evaluate the benefits of the different strategies and to study their
interrelation. Our main conclusions are the following:

• The combination of vehicle and shipper strategies performs better than the
individual policies. On average we observe a reduction of 10–20% in the costs
for tardiness and repositioning of the vehicles.

• The combination of the opportunity valuation policy and the decommitment policy
works best in almost all cases and requires relatively limited computation time.
The combination of the opportunity valuation policy with the dynamic threshold
policy comes in favor in settings with long time-windows or fewer jobs.

• The performance of the individual policies depends a lot on the network structure
and job characteristics. The opportunity valuation policies of the vehicles benefit
from the imbalance in the network where some regions are more popular than
others. These policies are therefore especially suitable for unbalanced networks.
The dynamic threshold policy and decommitment policy of the shipper benefit from
fluctuations in bid prices due to the possibilities of combining jobs. The decommit-
ment policy is especially suitable for balanced networks. The dynamic threshold
policy is especially suitable for settings with long time-windows or fewer jobs.

• There is still a gap between the agent-based policies and our benchmarking policy
which reoptimizes the multi-vehicle pickup and delivery problem at each new job
arrival. For example, in the unbalanced network, the control OV/DEC achieves on
average 53% of the savings from our benchmark. However, the benchmarking pol-
icy might simply not always be applicable due to its computational complexity and
because it ignores the autonomy of the different actors. To use the benchmarking
policy, we only considered small problem instances in this paper; larger instances
certainly would require approximations or other solution methodologies. Further-
more, the agent-based approach might come in favor with increasing uncertainty
as shown in Mes et al. (2007).
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The gap between the agent-based policies and our benchmark gives rise to further
research. Specifically we focus on two issues. First, the improvement of the local
policies by using approximate dynamic programming where we try to learn the value
functions without using a detailed model of the environment’s dynamics. Second, the
integration of the concepts opportunity costs, threshold values, and decommitment
penalties, in a mathematical programming approach that is used on a central level.

Appendix

In this section we show additional performance data with respect to the unbalanced
network. As performance indicators we consider the average costs per job (Costs),
the percentage of the total driving distance that is driven loaded (DL), and the service
level (SL) defined by the percentage of jobs that are delivered on time. The results for
varying time-window length (TW) can be found in Table 3 and the results for varying
time between jobs (TBJ) in Table 4.

For our experiments we used the simulation software Plant Simulation 8.2 and an
Intel Pentium 4 processor at 3.4 GHz. To speed up the simulations, we programmed the
dynamic threshold policy in Delphi 7 as a dynamic link library which we included in
our simulation environment. We solved the mixed-integer programming formulation
using CPLEX 11. The average computation times per job for the decentralized policies
under the default configuration range from 0.019 s in case of MY/MY and 3.974 s in

Table 3 Simulation results for varying TW for unbalanced networks

TW 300 400 500 600

Policy Costs DL SL Costs DL SL Costs DL SL Costs DL SL

MY/MY 37.5 66.5 95.8 32.4 67.0 97.4 31.3 67.5 97.3 30.6 67.8 97.9
MY/DEC 33.3 67.2 97.9 29.2 68.2 98.8 28.4 68.7 99.0 27.8 69.1 99.2
MY/RES 42.0 67.0 93.2 34.5 68.0 95.9 32.9 68.7 94.7 31.8 69.1 94.7
OV/MY 30.6 68.1 97.5 28.5 68.9 98.3 28.0 69.3 98.7 27.4 69.8 98.7
OV/DEC 30.0 68.5 98.5 27.6 69.5 99.1 26.4 70.3 99.4 26.0 70.6 99.4
OV/RES 35.8 68.5 94.7 29.8 69.7 96.3 28.1 70.4 96.4 26.8 70.7 96.7
BENCH 24.7 71.8 99.6 22.6 73.2 99.7 22.0 74.0 99.8 21.5 74.5 99.9

Table 4 Simulation results for varying TBJ for unbalanced networks

TBJ 700 800 900 1,000

Policy Costs DL SL Costs DL SL Costs DL SL Costs DL SL

MY/MY 32.8 67.7 96.5 30.6 67.8 97.9 30.6 67.7 98.4 30.5 67.7 98.0
MY/DEC 30.8 68.4 97.5 27.8 69.1 99.2 27.6 69.2 99.3 28.1 68.7 99.4
MY/RES 40.0 68.1 93.7 31.8 69.1 94.7 28.9 69.3 95.9 28.0 69.2 96.7
OV/MY 28.9 69.2 97.5 27.4 69.8 98.7 27.2 69.9 98.9 27.3 69.8 99.2
OV/DEC 27.5 70.1 98.3 26.0 70.6 99.4 26.1 70.4 99.6 26.4 70.1 99.7
OV/RES 29.7 70.2 96.8 26.8 70.7 96.7 26.0 70.6 97.2 25.9 70.5 97.9
BENCH 22.8 73.3 99.7 21.5 74.5 99.9 22.0 74.1 99.9 22.5 73.5 99.9
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case of OV/RES. The policy RES requires relatively more computation time because
the shipper has to calculate the dynamic threshold recursion at each auction whereas
with OV and DEC some computations can be done offline. The computation time for
OV/DEC, the best agent-based policy on average, is 0.249 s and for BENCH this is
22.048 s. Keeping in mind that these differences in computation times will increase
with increasing problem size, the achievement of the agent-based policy of typically
50% of the savings from the benchmark policy can be regarded as impressive.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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