
CEJOR (2013) 21:125–139
DOI 10.1007/s10100-011-0217-4

ORIGINAL PAPER

Comparing the minimum completion times
of two longest-first scheduling-heuristics

Rico Walter

Published online: 7 July 2011
© Springer-Verlag 2011

Abstract For the basic problem of non-preemptively scheduling n independent
jobs on m identical parallel machines so that the minimum (or earliest) machine
completion time is maximized, we compare the performance relationship between
two well-known longest-first heuristics—the LPT- (longest processing time) and the
RLPT-heuristic (restricted LPT). We provide insights into the solution structure of
these two sequencing heuristics and prove that the minimum completion time of
the LPT-schedule is at least as long as the minimum completion time of the RLPT-
schedule. Furthermore, we show that the minimum completion time of the RLPT-
heuristic always remains within a factor of 1/m of the optimal minimum completion
time. The paper finishes with a comprehensive experimental study of the probabilistic
behavior of RLPT-schedules compared to LPT-schedules in the two-machine case.

Keywords Scheduling · Identical parallel machines · Heuristics ·
Minimum completion time · Worst-case analysis

1 Introduction

1.1 Problem description and notation

This paper deals with a fundamental problem in scheduling theory that is formally
described as follows. We consider m ≥ 2 identical parallel machines and a set
J = {J1, . . . , Jn} of n independent jobs, i.e., no precedence constraints exist between
any two jobs. Each job has to be processed without interruption by exactly one machine;

R. Walter (B)
Fakultät für Wirtschaftswissenschaften, Lehrstuhl für ABWL/Management Science,
Friedrich-Schiller-Universität Jena, Carl-Zeiß-Straße 3, 07743 Jena, Germany
e-mail: rico.walter@uni-jena.de

123

126 R. Walter

regardless which one. Job J j has a non-negative processing time (or length) t j which
does not depend on the machine by which the job is processed. We assume the jobs
to be labeled so that t1 ≥ · · · ≥ tn ≥ 0. Furthermore, without loss of generality we
assume n to be a multiple of m, and we assume tn−m+1 > 0. This brings some techni-
cal benefits for the theoretical analyses presented in the Sects. 2 and 3. For economy
of notation, we usually omit jobs of length 0 in the examples, and we often identify
the jobs by their index.

The goal of the scheduling scenario is to assign the jobs to the machines so that the
minimum completion time of the machines is maximized (without introducing idle
times). A feasible assignment is called schedule. In other words, the goal is to partition
the set of jobs into m subsets so that the smallest subset sum is maximized. A subset
sum is simply the sum of the job processing times in the subset and corresponds
to a machine completion time. We let Ci denote the completion time of machine i .
The minimum completion time is denoted by Cmin = mini=1,...,m{C1, . . . , Cm}, the
maximum completion time (also known as makespan) is denoted by Cmax, and we
denote the difference between the maximum and the minimum completion time by
C�. Thereby, the superscript ∗ refers to an optimal schedule while expressions with
superscript H refer to a schedule generated by a heuristic H .

Concerning the analysis presented in the following sections it is useful to divide J
into n/m ranks, with jobs Jrm+1, . . . , Jrm+m in rank r + 1, r = 0, 1, . . . , n/m − 1.

1.2 Related objective functions

The problem of maximizing the minimum completion time belongs to the class of
covering problems as the jobs should “cover” the longest possible time interval that
is common to all machines. It has applications in the sequencing of maintenance
actions for modular gas turbine aircraft engines (see Friesen and Deuermeyer 1981)
or more generally in the assignment of spare parts to machines for repeated repair.
Regional allocation of investments is another application of this problem as mentioned
by Haouari and Jemmali (2008).

Maximizing the minimum completion time is in some sense dual—but in gen-
eral not equivalent—to the well-known problem of minimizing the makespan which
belongs to the class of packing problems. Here, the jobs should be “packed” into
the smallest possible time interval on all machines. Both objective functions indi-
rectly aim at practice-oriented balanced schedules. While the Cmax-criterion attempts
to level the total workload by concentrating on the longest running machine(s), with
the Cmin-criterion the key focus is on the shortest running machine(s). Balanced solu-
tions are often sought if the machines are operated by workers among which the
total workload should be distributed almost equally or if the machines should be uti-
lized almost equally. In this context, the problem of minimizing C� comprises both
Cmin-maximization and Cmax-minimization and it even seems to be a more direct mea-
sure of “near-equality” (see Coffman and Langston 1984). However, we concentrate
our investigations on the Cmin-maximization problem and extend our main result (see
Theorem 2.1) to the problem of minimizing C�. Both problems are by far not as well
studied as the makespan minimization problem.

123

Comparing the minimum completion times 127

Fig. 1 Exemplary LPT- and
RLPT-schedule

t

M1

M2

3

1 1 1

LPT

t

M1

M2

3

1 1

1

RLPT

An illustrative and small example revealing the non-equivalence of the three
objectives in case of more than two machines is the following job-system con-
sisting of seven jobs with positive processing times given by the vector T =
(46, 39, 27, 26, 16, 13, 10). Assuming m = 3, the (uniquely) optimal partitions are

• {{J1, J7}, {J2, J4}, {J3, J5, J6}} concerning Cmin,
• {{J1, J5}, {J2, J6, J7}, {J3, J4}} concerning Cmax,
• {{J1, J6}, {J2, J5}, {J3, J4, J7}} concerning C�.

1.3 The heuristics LPT and RLPT

We put emphasis on the comparison of two well-known longest-first sequencing heu-
ristics, the LPT- (longest processing time) and the RLPT-heuristic (restricted longest
processing time) which are briefly described next.

The LPT-heuristic sorts all jobs in non-increasing order according to the processing
times. Then, each job is assigned sequentially to the next machine available. Ties are
broken arbitrarily.

In comparison, the RLPT-heuristic assigns the jobs rank by rank in order of
increasing ranks. Jobs within a rank are assigned in non-increasing order according
to the processing times to distinct machines as the machines become available after
executing all previous ranks. Thus, with the RLPT-heuristic the assignment of the jobs
of a certain rank is related to the current machine completion times after the execution
of all previous ranks. This is the main difference compared to the LPT-heuristic where
each job is assigned to the machine with minimum completion time so far, i.e., after
the assignment of all previous jobs. So, even within a rank jobs do not have to be
assigned to distinct machines in the LPT-schedule, as in Fig. 1.

1.4 Previous work and intention of the paper

As mentioned before, literature related to the Cmin-maximization problem is rather
sparse compared to the multitude of contributions to the classical makespan minimi-
zation problem. Most of the literature on Cmin-maximization is devoted to the analysis
of heuristics and approximation algorithms, since the underlying problem is known to
be NP-hard. So, Deuermeyer et al. (1982) showed that the minimum completion time
of the LPT-schedule is never less than 3/4 times the optimal minimum completion
time. This bound is asymptotically tight when m tends to infinity. Csirik et al. (1992)
tightened the analysis for any fixed m and proved that the minimum completion time of
the LPT-schedule is at least (3m−1)/(4m−2) times the optimal minimum completion

123

128 R. Walter

time. Furthermore, Woeginger (1997) derived the first polynomial-time approximation
scheme for the problem under consideration. On-line versions of the problem have
been treated by Azar and Epstein (1997) as well as He and Tan (2002). In a more
recent publication, Haouari and Jemmali (2008) proposed an efficient exact branch-
and-bound algorithm based on tight upper and lower bounds and a symmetry-breaking
branching scheme.

The paper on hand provides new insights into the solution structure of the two
sequencing heuristics LPT and RLPT and a fundamental result concerning the per-
formance relationship between these heuristics is established. We prove that the mini-
mum completion time of the LPT-schedule is not worse than the minimum completion
time of the RLPT-schedule. This result contributes substantially to an earlier one by
Coffman and Sethi (1976) on the performance of LPT and RLPT for the makespan
minimization problem. Furthermore, we contribute to the worst-case analysis of heu-
ristics by proving that the minimum completion time of the RLPT-heuristic always
remains within a factor of 1/m of the optimal minimum completion time.

For this purpose, the remainder of the paper is organized as follows. Section 2
contains the detailed proof of the main result on the relationship between the mini-
mum completion time of LPT- and RLPT-schedules. In Sect. 3 we take a look at the
worst-case performance of the RLPT-heuristic. Then, Sect. 4 presents our experimen-
tal results on different questions with regard to the average case performance of the
two sequencing heuristics under consideration. Concluding remarks within Sect. 5
finish the paper.

2 Comparison of the minimum completion times

This section presents a detailed comparison of the minimum completion times of
LPT- and RLPT-schedules and provides new structural insights into the corresponding
schedules, as well. Therefore, it is useful to introduce the term profile of a schedule
which provides a measure finer than the minimum completion time and allows a com-
parison of (partial) schedules after each rank. So, let the multiset {h1(g), . . . , hm(g)}
give the times at which the machines finish execution of jobs in rank g in schedule
SH . Then, the ordered m-tuple h(g) = (h1(g), . . . , hm(g)) so that hi (g) ≤ hi+1(g)

for all i is called profile after rank g of the (partial) schedule SH . It is important to
note that hi (g) and hi (g + 1) may correspond to different machines. Moreover, note
that h1(n/m) = C H

min and hm(n/m) = C H
max. The main result of our research is the

proof of the following theorem.

Theorem 2.1 The minimum completion time of the LPT-schedule is at least as long
as the minimum completion time of the RLPT-schedule, i.e., C L PT

min ≥ C RL PT
min .

In order to prove this theorem we prove an even stronger statement on the schedule
structure of the two heuristics. Therefore, consider the next theorem.

Theorem 2.2 Let l(g) and r(g) denote the LPT- and the RLPT-profile after rank g,
respectively. Then, for all machines i with li (g) < r1(g) + tgm it must be true that
li (g) ≥ ri (g).

123

Comparing the minimum completion times 129

Note that we are particularly interested in the comparison of l1(g) and r1(g) for
g = n/m but as well as after all previous ranks. However, it is not enough to consider
only the first element in each of the two profiles because the first element of a profile
may correspond to different machines from rank to rank. For this reason, a deeper
knowledge about the machine completion times after each rank is inevitable which
is provided by Theorem 2.2. This theorem ensures that in case l1(g) < r1(g) + tgm

it must be true that l1(g) ≥ r1(g), and in the other case l1(g) ≥ r1(g) + tgm we can
directly conclude that l1(g) ≥ r1(g) because all processing times are non-negative.

The proof of Theorem 2.2 will be rather technical. So, to facilitate understanding
we illustrate all of the (sub-)cases appearing in the proof by examples afterwards.

Proof of Theorem 2.2 The proof works by induction in the number of ranks.

Base of Induction: g = 1

The LPT-heuristic assigns each job of rank 1 to a different machine. Hence, the
LPT-schedule and the RLPT-schedule are identical after the assignment of rank 1, i.e.,
l(1) = r(1).

Step of Induction: g → g + 1

Suppose that after rank g for all machines i with li (g) < r1(g) + tgm it is true that
li (g) ≥ ri (g) and rank g +1 is being assigned next. Let 0 ≤ k ≤ m jobs of rank g +1,
i.e., the jobs gm + 1, . . . , gm + k (in case that k ≥ 1), begin before r1(g) + tgm in
the LPT-schedule. As jobs even within a rank do not have to be assigned to distinct
machines in the LPT-schedule, these k jobs will be assigned to the first h ≤ k elements
of the l(g)-profile. The remaining 0 ≤ m − k ≤ m jobs of rank g + 1 begin at or after
r1(g) + tgm in the LPT-schedule. So each of the machines that process at least one of
the m − k shortest jobs of rank g + 1 cannot finish earlier than r1(g) + tgm + t(g+1)m

in the l(g + 1)-profile.
In contrast to the LPT-heuristic, jobs within a rank have to be assigned to distinct

machines in the RLPT-schedule. Hence, in the r(g + 1)-profile there exists a machine
with current completion time r1(g) + tgm+1. Either this machine has minimum com-
pletion time after rank g + 1 or there exists another machine which finishes even
earlier. So, we have r1(g + 1) ≤ r1(g) + tgm+1 ≤ r1(g) + tgm . Moreover, we can
deduce r1(g) + tgm + t(g+1)m ≥ r1(g + 1) + t(g+1)m .

The following inequality-chains elucidate the situation in the l(g)-profile that is
presupposed:

r1(g) + tgm ≤ l1(g) ≤ · · · ≤ lm(g) (case k = 0)

and

l1(g) ≤ · · · ≤ lh(g) < r1(g) + tgm ≤ lh+1(g) ≤ · · · ≤ lm(g) (case k ≥ 1).

The inductive hypothesis ensures li (g) ≥ ri (g) for all i = 1, . . . , h.

Case 1: There exists a machine in the LPT-schedule that processes at least two of the
m − k shortest jobs of rank g + 1.

123

130 R. Walter

From the previous part we know that each machine that processes one of the m − k
shortest jobs of rank g+1 cannot finish earlier than r1(g+1)+ t(g+1)m in the l(g+1)-
profile. Hence, if such a machine processes more than one of the m − k shortest jobs,
then none of the m machines finishes before r1(g +1)+ t(g+1)m in the l(g +1)-profile
as with the LPT-heuristic jobs are always assigned sequentially to the next machine
available. This yields r1(g + 1) + t(g+1)m ≤ l1(g + 1).

Case 2: None of the machines in the LPT-schedule processes more than one of the
m − k shortest jobs of rank g + 1.

Here, we distinguish the following two main subcases k = h and k > h(≥ 1). Each
of these two subcases will be subdivided further.

Subcase 1: k = h.

In case k = h = 0, we have r1(g) + tgm ≤ l1(g) ≤ · · · ≤ lm(g) which means that no
job of rank g+1 starts before r1(g)+ tgm in the LPT-schedule and no machine finishes
earlier than r1(g + 1) + t(g+1)m in the l(g + 1)-profile. Moreover, each machine pro-
cesses exactly one job of the current rank, i.e., element i of the l(g)-profile processes
job gm + i for i = 1, . . . , m because in Case 2 none of the machines processes more
than one of the m − k = m shortest jobs of rank g + 1. Recall that each rank consists
of exactly m jobs.
In case k = h > 0, we have l1(g) ≤ · · · ≤ lh(g) < r1(g) + tgm ≤ lh+1(g) ≤
· · · ≤ lm(g) and we know that element i of the l(g)-profile processes job gm + i
for i = 1, . . . , h because the h(= k) longest jobs of rank g + 1 are assigned to
the first h elements of the l(g)-profile. From the inductive hypothesis we know that
li (g) + tgm+i ≥ ri (g) + tgm+i for i = 1, . . . , h. As mentioned earlier, the m − k
machines that process exactly one of the m −k shortest jobs of the current rank cannot
finish earlier than r1(g + 1) + t(g+1)m .
Provided that the last m − k elements of the l(g)-profile each process exactly one
of the m − k shortest jobs of the current rank, only the corresponding machines to
the first h elements in the l(g)-profile can finish earlier than r1(g + 1) + t(g+1)m in
the l(g + 1)-profile. Due to the inductive hypothesis, for each of these h machines
there exists a distinct machine in the r(g + 1)-profile which finishes not later. Thus,
inequality li (g + 1) ≥ ri (g + 1) holds for all i with li (g + 1) < r1(g + 1) + t(g+1)m .

In the other case, at least one of the first h elements in the l(g)-profile processes one of
the m − k shortest jobs. So, assume that h̄ ≤ min{h, m − h} of the first h elements in
the l(g)-profile process exactly one of the shortest m − k jobs. This means that the last
h̄ elements in the l(g)-profile do not process any job of the current rank. Further, after
having assigned gm + h jobs assume that lh1(g) + tgm+h1 (h1 ∈ {1, . . . , h}) is the
longest current completion time of all h̄ machines of the LPT-schedule that process
exactly one of the longest h(= k) jobs and one of the shortest m −h jobs of the current
rank. Then, we can conclude lh1(g)+tgm+h1 ≤ lm−h̄+1(g). We also know that only the
h − h̄ elements out of the first h elements in the l(g)-profile which process exactly one
job of the current rank and the last h̄ elements in the l(g)-profile which do not process
any job of the current rank can finish earlier than r1(g + 1) + t(g+1)m in the l(g + 1)-
profile. Again, for each of these at most h machines there exists a distinct machine in

123

Comparing the minimum completion times 131

the r(g + 1)-profile which finishes not later. Thus, inequality li (g + 1) ≥ ri (g + 1)

holds for all i with li (g + 1) < r1(g + 1) + t(g+1)m .

Subcase 2: k > h.

In this case, at least one of the first h ≥ 1 elements in the l(g)-profile processes more
than one of the k longest jobs of the current rank. This means that at least the last k −h
elements of the l(g)-profile do not process any job of the current rank.
Assume that gm + k̄ (2 ≤ k̄ ≤ h + 1 ≤ k) is the first job of the current rank that is
not assigned to element lk̄(g). So, after the assignment of gm + k̄ − 1 jobs we have
the current completion times

li (g) + tgm+i (i = 1, . . . , k̄ − 1)

and li (g) (i = k̄, . . . , m)

in the LPT-schedule and

ri (g) + tgm+i (i = 1, . . . , k̄ − 1)

and ri (g) (i = k̄, . . . , m)

in the RLPT-schedule. As the first h elements in the l(g)-profile fulfill the condition
li (g) < r1(g) + tgm (i = 1, . . . , h), the inductive hypothesis ensures

li (g) + tgm+i ≥ ri (g) + tgm+i

for i = 1, . . . , k̄ − 1.
Job gm + k̄ is assigned to one of the first (k̄ − 1) elements in the l(g)-profile, i.e.,

min
1≤i≤k̄−1

{li (g) + tgm+i } < lk̄(g).

In particular, we know

r1(g + 1) ≤ min
1≤i≤k̄−1

{ri (g) + tgm+i } ≤ min
1≤i≤k̄−1

{li (g) + tgm+i }.

By this, we can directly conclude that none of the machines that process at least one of
the jobs gm+ k̄, . . . , (g+1)m can finish earlier than r1(g+1)+t(g+1)m in the l(g+1)-
profile. Thus, if a machine processes at least two of the jobs gm + k̄, . . . , (g + 1)m,
then none of the m machines finishes before r1(g +1)+ t(g+1)m in the l(g +1)-profile.
In the other case, i.e., the jobs gm + k̄, . . . , (g +1)m are assigned to distinct machines
-which is only possible if inequality k ≤ 2(k̄ − 1) ≤ 2h holds-, at most the elements
out of the first k̄ − 1 elements in the l(g)-profile that process exactly one job of the
current rank and the last k − h elements in the l(g)-profile which do not process any
job of the current rank can finish earlier than r1(g+1)+ t(g+1)m in the l(g+1)-profile.
These are at most (k̄ − 1 − (k − h)) + (k − h) = k̄ − 1 ≤ h machines. For each
of them in the l(g + 1)-profile there exists a distinct machine in the r(g + 1)-profile

123

132 R. Walter

which finishes not later. This is correct since li (g) + tgm+i ≥ ri (g) + tgm+i for all
i ∈ {1, . . . , k̄ − 1} and lm−k+h+1(g) ≥ lk̄(g) > mini=1,...,k̄−1{li (g) + tgm+i }. Thus,
we get li (g + 1) ≥ ri (g + 1) for all i with li (g + 1) < r1(g + 1) + t(g+1)m .
This completes the proof of Theorem 2.2. ��

All in all, the proof of Theorem 2.2 consists of six cases, subcases, and the further
subdivisions. Each of them is contained in one of the three subsequent examples which
are meant for a better understanding.

Example 2.3 Consider m = 4 machines and n = 20 jobs, i.e., the jobs are divided
into five ranks, with processing times given by T1 = (100, 90, 50, 42; 38, 35, 30, 30;
24, 20, 20, 16; 16, 12, 6, 6; 6, 6, 4, 3). Clearly, the profiles l(1) and r(1) are identical.
So, we have l(1) = r(1) = (42, 50, 90, 100) and r1(1) + t4 = 42 + 42 = 84. Hence,
h = 2 and -due to the processing times of jobs in rank 2- k = 3 as well as k̄ = 3
which belongs to Subcase 2 of Case 2. Furthermore, the jobs 7 and 8 are assigned to
distinct machines in the LPT-schedule. This leads to l(2) = (90, 100, 110, 115) -note
that l1(2) and l1(1) correspond to different machines-, r(2) = (80, 85, 120, 130), and
r1(2) + t8 = 110. So, h = k = 2, i.e., Subcase 1 of Case 2, and h̄ = 1 which
means that the first element of l(2) processes exactly one of the m − k = 2 short-
est jobs of rank 3. We receive l(3) = (115, 120, 130, 130) -note that l1(3), l1(2),
and l1(1) correspond to three different machines-, r(3) = (104, 105, 140, 146), and
r1(3) + t12 = 120. Now, we get h = k = 1 and the last m − k = 3 elements of the
l(3)-profile each process exactly one of the three shortest jobs of rank 4. This yields
l(4) = (131, 132, 136, 136), r(4) = (117, 120, 146, 152) -now, r1(4) and r1(3) cor-
respond to different machines-, and r1(4)+t16 = 123. Hence, h = k = 0, i.e., no job of
rank 5 starts before 123 in the LPT-schedule, and we get l(5) = (137, 138, 139, 140)

and r(5) = (123, 126, 150, 155).

Example 2.4 Now, consider m = 4 machines and n = 8 jobs and let the process-
ing times be given by T2 = (20, 18, 14, 6; 6, 4, 3, 2). Then, we get l(1) = r(1) =
(6, 14, 18, 20), r1(1) + t4 = 12, and h = 1, k = 2, k̄ = 2. Moreover, element 1
of the l(1)-profile processes two of the jobs 6,7,8, namely job 6 and job 8. Hence,
none of the m = 4 machines finishes before r1(2) + t8 = 14 in the l(2)-profile.
The respective profiles after the assignment of rank 2 are l(2) = (17, 18, 18, 20) and
r(2) = (12, 18, 21, 22).

Example 2.5 Eventually, consider m = 4 machines and n = 12 jobs and let the
processing times be given by T3 = (55, 46, 25, 20; 20, 18, 15, 7; 7, 1, 1, 1). As this
example is meant to illustrate Case 1 of the proof of Theorem 2.2, we directly start with
the profiles after the assignment of rank 2 which are as follows: l(2) = (46, 50, 55, 55)

and r(2) = (40, 43, 61, 62). Since r1(2) + t8 = 47 we get h = k = 1. However, ele-
ment 2 of the l(2)-profile processes all m − k = 3 shortest jobs of rank 3 (Case 1).
Hence, none of the m = 4 machines finishes before r1(3)+t12 = 45 in the l(3)-profile.
The respective profiles are l(3) = (53, 53, 55, 55) and r(2) = (44, 47, 62, 63).

The following corollary contains an additional structural information on (partial)
LPT- and RLPT-schedules that can be deduced from the proof of Theorem 2.2.

123

Comparing the minimum completion times 133

Corollary 2.6 The number of machines i that fulfill li (g) < r1(g) + tgm is
monotonically decreasing in the number of assigned ranks.

The next corollary is a direct consequence of Theorem 2.1 and the result C L PT
max ≤

C RL PT
max by Coffman and Sethi (1976).

Corollary 2.7 The C�-value of the LPT-schedule is at most as large as the C�-value
of the RLPT-schedule, i.e., C L PT

� ≤ C RL PT
� .

To sum up, we can state that the LPT-heuristic generates schedules which are more
balanced (in the sense of Sect. 1.2) than RLPT-schedules. An even stronger conclu-
sion is that the RLPT-heuristic is dominated by the LPT-heuristic concerning any of
the three objective functions Cmax, Cmin and C�. This means that the application of
the RLPT-heuristic to any job-system of the underlying problem cannot lead to better
results than the LPT-heuristic yields. Nevertheless, the RLPT-heuristic is an applica-
ble procedure whenever cardinality-balanced schedules, i.e., each machine processes
n/m jobs, are required. For those scenarios, the LPT-heuristic may generate infeasible
solutions. The interest in cardinality-balanced schedules arises from practical sched-
uling problems such as the allocation of component types to VLSI-chip manufacturing
machines (see Tsai 1992). For this reason we will take a look at the worst-case as well as
the probabilistic performance of the RLPT-heuristic -albeit still for the unconstrained
problem- in the subsequent sections.

3 Worst-case analysis of the RLPT-heuristic

In this section we are concerned with the determination of the worst-case ratios
C RL PT

min /C∗
min and C RL PT

min /C L PT
min .

Theorem 3.1 The performance bounds

C RL PT
min

C∗
min

>
1

m
and

C RL PT
min

C L PT
min

>
1

m

are asymptotically tight for any fixed number m ≥ 2 of machines but cannot be reached
exactly.

Note that the same bound applies when RLPT-scheduling is compared to LPT-
scheduling instead of optimal scheduling.

We do not intend to prove Theorem 3.1 in every detail. We rather give a sketch of the
proof and present a family of instances for any fixed number m ≥ 2 that approaches
the bound. The main idea of the proof is to compare the RLPT-heuristic with the
SPT-heuristic (shortest processing time) which sorts all jobs in non-decreasing order
according to the processing times and assigns each job sequentially to the next machine
available. This leads to a simple but nice structure of SPT-schedules.

Lemma 3.2 Whenever the SPT-heuristic assigns a job to a machine, then this machine
has maximum completion time so far afterwards.

123

134 R. Walter

This result is quite obvious, so the proof is omitted. Clearly, Lemma 3.2 can be
used to determine all machine completion times in an SPT-schedule. Furthermore, it
is worth mentioning that there always exists an SPT-schedule in which jobs of the
same rank are assigned to distinct machines.

Corollary 3.3 The completion time of the i-th longest running machine in an SPT-
schedule is given by ti + tm+i + · · · + tn−m+i .

With the previous corollary we can directly conclude Corollary 3.4.

Corollary 3.4 The minimum completion time of the RLPT-schedule is at least as long
as the minimum completion time of the SPT-schedule, i.e., C RL PT

min ≥ C S PT
min .

Proof of Corollary 3.4 The proof is quite simple, too. As jobs of the same rank have
to be assigned to distinct machines in the RLPT-schedule we can conclude that

C RL PT
min ≥ tm + t2m + · · · + tn = C S PT

min

whereas the equality is due to Corollary 3.3. This completes the proof of Corollary 3.4.
��

Hence, we can conclude C RL PT
min /C∗

min ≥ C S PT
min /C∗

min. As Woeginger (1997)
showed that the List-Scheduling algorithm has a performance ratio of 1/m concerning
Cmin-maximization, we can deduce C S PT

min /C∗
min ≥ 1/m. It is readily verified that this

bound is tight. So far, we can conclude C RL PT
min /C L PT

min ≥ C RL PT
min /C∗

min ≥ 1/m.
Next, we present a family of job-systems for any fixed number m ≥ 2 so that the

minimum completion times of the RLPT-schedules approach the 1/m-bound. There-
fore, assume d ∈ N and consider the following job-system:

t1 = · · · = tm−1 = dm,

tm = · · · tdm+m−1 = 1.

Then, we get C∗
min = dm = C L PT

min , whereas the minimum completion time of the
RLPT-schedule is C RL PT

min = d + 1. Hence,

C RL PT
min

C∗
min

= C RL PT
min

C L PT
min

= d + 1

dm
= 1

m
+ 1

dm
−→
d→∞

1

m
.

It remains to show that the bounds cannot be reached exactly. As mentioned before,
we do not intend to prove this in all its particulars. The main idea of this last part of
the proof is to consider the set of job-systems for which the SPT-heuristic generates
schedules with a minimum completion time of exactly 1/m of the optimal minimum
completion time. In these cases, the processing times have to fulfill the following
properties:

(i) The n − m + 1 shortest processing times must sum up to at most tm−1, i.e.,∑n
j=m t j ≤ tm−1.

123

Comparing the minimum completion times 135

(ii) The number of jobs n must be larger than m and

t1 ≥ t2 ≥ · · · ≥ tm−1 >

> tm = · · · = t2m−1 ≥
...

≥ tn−m = · · · = tn−1 >

> tn = 0.

Then, it is rather straightforward to verify that for any of those job-systems
inequality C RL PT

min > C S PT
min holds.

4 Experimental study and results

As mentioned at the end of Sect. 2, scheduling scenarios exist that require cardinality-
balanced schedules. In contrast to the RLPT-heuristic, the LPT-heuristic is inapplicable
in such scenarios. To gain a little more insight into the coherences between RLPT-
and LPT-schedules we conducted an experimental study in case of m = 2 machines.
Thereby, we determined how often

(i) the RLPT-heuristic does not generate a worse schedule than the LPT-heuristic,
(ii) the RLPT-heuristic does not generate a worse (partial) schedule than the LPT-

heuristic after the assignment of n − k ≥ 4 jobs.

In case that the LPT-schedule is better than the RLPT-schedule we also determined to
which extent the minimum completion times differ on average as well as on maximum.

In our experiments we assumed the processing times to be independent samples,
uniformly distributed in the unit interval [0, 1]. For each (n, k)-combination studied
we generated 107 independent instances. We tested different values for n in the range
from 4 to 501 as well as seven different values for k depending on the parity of n, i.e.,
k ∈ {0, 2, 4, 6, 8, 10, 12} in case n is even and k ∈ {1, 3, 5, 7, 9, 11, 13} in case n is
odd. We shall also remark that n denotes the number of jobs with positive processing
times in this section, and n needs not to be a multiple of m.

In Table 1, results rounded to four decimal places of the comparison of LPT- and
RLPT-schedules are included. Thereby, the line labeled “EQU” refers to the relative
number of instances for which the minimum completion time of the RLPT-schedule
equals the minimum completion time of the LPT-schedule. In case that the minimum
completion times differ, we computed the average ratio of C RL PT

min to C L PT
min (labeled

AVG) and we saved the minimal ratio (labeled MIN), as well.
The results of our simulations reveal that depending on the parity of n but not on

the concrete number of jobs, in 75 or 87.5% of cases equality C RL PT
min = C L PT

min holds.
In other words, the omission of the cardinality-balance constraint leads only in 25
or 12.5% of cases to a better LPT-schedule. However, the average ratio of the mini-
mum completion time of the RLPT-schedule to the minimum completion time of the
LPT-schedule quickly approaches 1 as the number of jobs increases. In other words,
the average relative difference -measured as (1 − AV G)- between the two minimum

123

136 R. Walter

Table 1 Comparison of LPT- and RLPT-schedules

n 4 5 6 7 10 11 12 13 50 51

EQU 0.7499 0.8749 0.7500 0.8750 0.7500 0.8751 0.7500 0.8751 0.7499 0.8749

AVG 0.8982 0.9040 0.9462 0.9504 0.9825 0.9824 0.9882 0.9879 0.9993 0.9993

MIN 0.6668 0.6692 0.6050 0.6147 0.6360 0.6535 0.6587 0.6948 0.9917 0.9920

n 52 53 100 101 102 103 250 251 500 501

EQU 0.7499 0.8750 0.7499 0.8749 0.7498 0.8751 0.7501 0.8751 0.7499 0.8751

AVG 0.9994 0.9993 0.9998 0.9998 0.9998 0.9998 1.0000 1.0000 1.0000 1.0000

MIN 0.9919 0.9925 0.9973 0.9978 0.9977 0.9979 0.9996 0.9996 0.9999 0.9999

completion times is negligible. The same is true if we take a look at the maximal rela-
tive difference (or minimal ratio) instead. Nevertheless, for small numbers of jobs we
experimentally found instances that yield a ratio of approximately 0.6. Recall from
Sect. 3 that the ratio of C RL PT

min to C L PT
min is bounded below by 0.5 in case of two

machines.
In a second part of our experimental studies we asked for the probability that the

partial RLPT-schedule, i.e., after the assignment of a subset of the n jobs, is not worse
than the partial LPT-schedule so far. This question comes along with the following
one: The assignment of which job j̄ leads to a worse partial RLPT-schedule than the
respective partial LPT-schedule for the first time, i.e., C RL PT

min (j̄) < C L PT
min (j̄) and

C RL PT
min (j) = C L PT

min (j) for all previous jobs j = 1, . . . , j̄ − 1. Clearly, j̄ does not
exist in every instance but, if it does so, it is rather straightforward to show that j̄ is
even and j̄ ≥ 4 in case of m = 2 identical machines. The idea is to consider the min-
imum completion times of the two partial schedules after the assignment of an even
number of jobs. Assume C RL PT

min (2 j) = C L PT
min (2 j) for some j ∈ {1, . . . , n/2 − 1}.

Note, that this is equivalent to C RL PT
� (2 j) = C L PT

� (2 j). Then, two cases have to be
distinguished depending on the relation between C RL PT

� (2 j) and the processing time
t2 j+1 of the next job. The first case, i.e., C RL PT

� (2 j) ≤ t2 j+1, obviously cannot lead
to different minimum completion times of the two schedules after the assignment of
the jobs 2 j + 1 and 2 j + 2 as the two jobs are assigned to distinct machines even in
the LPT-schedule. In the other case, i.e., C RL PT

� (2 j) > t2 j+1, job 2 j + 2 is assigned
to the same machine as job 2 j + 1 is assigned to in the LPT-schedule. This yields
C RL PT

min (2 j +2) ≤ C L PT
min (2 j +2) where equality holds only in case t2 j+2 = 0. Using

the fact that equality C RL PT
min (2 j) = C L PT

min (2 j) holds for the starting parameter j = 1,
it follows immediately that after the assignment of an odd number of jobs the mini-
mum completion times of the partial RLPT- and LPT-schedule cannot differ for the first
time. Hence, j̄ has to be even and t j̄ > 0. Note that C RL PT

� (2 j) > t2 j+1 for some j

constitutes a necessary condition for C RL PT
min (n) < C L PT

min (n) in the two-machine case.
Consider the exemplary job-system of Fig. 1, then we have C L PT

� (2) =
C RL PT

� (2) = 2 > t3 = 1 and j̄ = 4. We shall also remark that rare cases
exist where RLPT, after C RL PT

min (j) < C L PT
min (j) for some intermediate j < n,

returns to C RL PT
min (n) = C L PT

max (n) at the end. For instance, this is the case if we
add an additional job with length t5 = 1 to the job-system of Fig. 1. This yields
C RL PT

min (5) = C L PT
min (5) = 3 whereas C RL PT

min (4) < C L PT
min (4).

123

Comparing the minimum completion times 137

Table 2 Comparison of partial LPT- and RLPT-schedules

n 16

k 0 2 4 6 8 10 12

EQU 0.75000 0.93745 0.98432 0.99608 0.99903 0.99975 0.99994

REF 0.75000 0.93750 0.98438 0.99609 0.99902 0.99976 0.99994

n 17

k 1 3 5 7 9 11 13

EQU 0.87506 0.96876 0.99213 0.99803 0.99950 0.99988 0.99997

REF 0.87500 0.96875 0.99219 0.99805 0.99951 0.99988 0.99997

n 50

k 0 2 4 6 8 10 12

EQU 0.75005 0.93750 0.98436 0.99611 0.99902 0.99975 0.99995

n 51

k 1 3 5 7 9 11 13

EQU 0.87502 0.96875 0.99216 0.99805 0.99953 0.99988 0.99997

n 100

k 0 2 4 6 8 10 12

EQU 0.75022 0.93752 0.98440 0.99605 0.99903 0.99976 0.99994

n 101

k 1 3 5 7 9 11 13

EQU 0.87491 0.96872 0.99220 0.99806 0.99951 0.99987 0.99997

Table 2 contains our experimental results concerning the comparison of partial
LPT- and RLPT-schedules. Thereby, the line labeled “EQU” refers to the relative
number of instances for which the minimum completion time of the partial RLPT-
schedule equals the minimum completion time of the partial LPT-schedule after the
assignment of (n − k) jobs. Due to the previous result on the parity of j̄ we only con-
sidered (n, k)-constellations such that the difference n − k is at least four and even.
This time, the results are rounded to five decimal places with regard to Conjecture 4.1.
For the same reason, we added the line labeled “REF” twice which represents the
rounded values of 1 − 1/2k+2 and serves as a comparison of the experimental results.

Again, the results indicate that the probabilistic performance of partial RLPT-
schedules in comparison to partial LPT-schedules depends strongly on the parity of n
for a given k. Moreover, the probability that C RL PT

min (n − k) equals C L PT
min (n − k) is

quickly approaching 1.0 with increasing k.
To sum up, our experimental results incorporate interesting relations between

LPT- and RLPT-schedules in case of two machines which led us to the following
conjecture.

123

138 R. Walter

Conjecture 4.1 Assume the processing times to be independent samples, uniformly
distributed in the unit interval [0, 1] and assume m = 2 and n ≥ 4. Then,

(i) the probability Pr{C RL PT
min = C L PT

min } that the RLPT- and the LPT-schedule have
the same minimum completion time is

Pr{C RL PT
min = C L PT

min } =
{

3
4 if 2 | n,

7
8 if 2 � n.

(ii) the probability Pr{C RL PT
min (n −k) = C L PT

min (n −k)} that the RLPT- and the LPT-
schedule have the same (current) minimum completion time after the assignment
of the (n − k) longest jobs is

Pr{C RL PT
min (n − k) = C L PT

min (n − k)} = 1 − 1

2k+2

in case n and k are of same parity and (n − k) ≥ 4.

Note that the two cases k = 0 (and n even) as well as k = 1 (and n odd) of the
second part are consistent with the first part. Although we do not have a theoretical
proof of Conjecture 4.1 so far, we are able to prove the second part in the special
event that n − k = 4, which further supports this conjecture drawn from our experi-
mental results. In this special case we are asked to determine the probability that the
longest processing time is shorter than the sum of the second and the third longest
processing time which ensures C RL PT

min (4) = C L PT
min (4). Using some information on

the joint density function of three order statistics, the proof consists merely in a rather
straightforward calculation of the following integral:

1∫

x3=0

1∫

x2=x3

1∫

x1=x2

f3,2,1:n(x3,x2,x1)11(x1<x2+x3)dx1dx2dx3 =
1∫

0

1∫

x3

min{1,x2+x3}∫

x2

n!
(n−3)! xn−3

3 dx1dx2dx3

where

f3,2,1:n(x3, x2, x1) = n!
(n − 3)! xn−3

3 , (0 ≤ x3 < x2 < x1 ≤ 1),

is the joint density function (see Arnold et al. (1992), pp. 25–26) of the third largest,
the second largest and the largest order statistic with respect to our stochastic model.
It is not difficult to verify that the value of the triple integral is 1 − 1/2n−2.

5 Conclusions

The paper on hand contributes to the basic scheduling problem of maximizing the
minimum completion time of a set of independent jobs on identical parallel machines
by an in-depth analysis of the solution-structure of two well-known longest first

123

Comparing the minimum completion times 139

sequencing heuristics (LPT and RLPT). It is proved that the RLPT-heuristic is outper-
formed and dominated by the LPT-heuristic in terms of Cmin-maximization. However,
at least in case of two machines experimental results show that the relative difference
of the respective minimum completion times is negligible despite a theoretical worst
case performance of 1/m.

Unlike LPT, the RLPT-heuristic always generates cardinality-balanced schedules
and is therefore a feasible procedure for the constrained version of the problem dis-
cussed in this paper. Here, an interesting direction for future research is to transfer the
results on the worst-case performance of the RLPT-heuristic from the unconstrained
problem to the constrained one. Thereby, two basic versions of the constrained prob-
lem are conceivable: cardinality-balance has to be fulfilled after the assignment of
each rank or -in a weaker sense- only after the last rank.

Acknowledgments The author would like to thank the anonymous referees for their valuable suggestions
which considerably helped to improve the presentation of results in this paper.

References

Arnold BC, Balakrishnan N, Nagaraja HN (1992) A first course in order statistics. Wiley, New York
Azar Y, Epstein L (1997) On-line machine covering. Lect Notes Comput Sci 1284:23–36
Coffman EG Jr, Langston MA (1984) A performance guarantee for the greedy set-partitioning algorithm.

Acta Informatica 21:409–415
Coffman EG Jr, Sethi R (1976) Algorithms minimizing mean flow time: schedule-length properties. Acta

Informatica 6:1–14
Csirik J, Kellerer H, Woeginger G (1992) The exact LPT-bound for maximizing the minimum completion

time. Oper Res Lett 11:281–287
Deuermeyer BL, Friesen DK, Langston MA (1982) Scheduling to maximize the minimum processor finish

time in a multiprocessor system. SIAM J Algebraic Discret Methods 3:190–196
Friesen DK, Deuermeyer BL (1981) Analysis of greedy solutions for a replacement part sequencing prob-

lem. Math Oper Res 6:74–87
Haouari M, Jemmali M (2008) Maximizing the minimum completion time on parallel machines. 4OR Q J

Oper Res 6:375–392
He Y, Tan ZY (2002) Ordinal on-line scheduling for maximizing the minimum machine completion time.

J Comb Optim 6:199–206
Tsai L-H (1992) Asymptotic analysis of an algorithm for balanced parallel processor scheduling. SIAM J

Comput 21:59–64
Woeginger GJ (1997) A polynomial-time approximation scheme for maximizing the minimum machine

completion time. Oper Res Lett 20:149–154

123

	Comparing the minimum completion times of two longest-first scheduling-heuristics
	Abstract
	1 Introduction
	1.1 Problem description and notation
	1.2 Related objective functions
	1.3 The heuristics LPT and RLPT
	1.4 Previous work and intention of the paper

	2 Comparison of the minimum completion times
	3 Worst-case analysis of the RLPT-heuristic
	4 Experimental study and results
	5 Conclusions
	Acknowledgments
	References

