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A b s t r a c t  In this paper, we argue that vehicle routing solutions are often 
tactical decisions, that  should not be changed too often or too much. For 
marketing or other reasons, vehicle routing solutions should be stable, i.e. a 
new solution (when e.g. new customers require service) should be as similar 
as possible to a solution already in use. Simultaneously however, this new 
solution should still have a good quality in the traditional sense (e.g. small 
total travel cost). In this paper, we develop a way to measure the difference 
between two vehicle routing solutions. We use this distance measure to 
create a metaheuristic approach that will find solutions that are "close" (in 
the solution space) to a given baseline solution and at the same time have a 
high quality in the sense that their total distance traveled is small. By using 
this approach, the dispatcher is offered a choice of Pareto-optimal solutions, 
allowing him to make a trade-off between changing his existing solution and 
allowing a longer travel distance. Some experiments are performed to show 
the effectiveness of the approach. 

K e y  words :  Vehicle routing, Route stability, Bi-objective optimization, 
Distance measure 

1 Introduction 

In the research literature, the vehicle routing problem (VRP) is generally 
treated as a purely operational decision. It is supposed that  any change 
in the problem data will trigger re-optimization of the problem and that  
the new solution--of which the quality is guaranteed by the optimization 
procedure--will be implemented, regardless of the solution previously in use. 
For many reasons, these assumptions are unwarranted in a large number of 
practical situations. 

First, when small data changes occur, a dispatcher will usually not start 
from scratch and calculate an entirely new solution, but instead will attempt 
to "repair" the existing solution using some simple procedure. In general, 
this will result in a new solution that is fairly similar to the current one. 
Even when a complete re-optimization of the vehicle routing problem is 
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practically feasible however, it might still be undesirable to generate a new 
solution that  is completely different from the one that  is implemented. 

�9 Many companies nowadays a t tempt  to build strategic relationships 
with their customers. This can imply tha t  the same driver visits the 
same customers at approximately the same time each period (e.g. each 
day or each week). 

�9 A frequent changing of the routes might create confusion among the 
drivers who have to execute them. This could lead to more errors and 
consequently higher costs. 

�9 Dispatchers that  are used to driving approximately the same routes 
each period, are more familiar with the specific characteristics of each 
route. This enables them e.g. to make last-minute changes to the 
routes in a more intelligent way. 

As this  discussion points out, a certain stability or robustness in the so- 
lution space is desirable for many practical routing situations. A dispatcher 
should be able to find solutions that  are "close" to a given baseline solution 
and simultaneously have a high solution quality (e.g. a small total  travel 
cost). The problem of solution stabili ty (also called solution robustness 
[21]) is relatively new. Some of the problems mentioned above have been 
pointed out by Bertsimas and Simchi-Levi [2]. Ribeiro and Lorenzo [201 
find that  in real-life problems, "marketing objectives" like the relationship 
between drivers and the customers they serve, are often more important  
than cost considerations. Thangiah et al. [25] find that  in the routing of 
school buses, there is a preference for routes to remain the same throughout 
an entire semester. 

The concept of route stability, which can be considered as robustness in 
the solution space, is i l lustrated in figure 1. An extra  customer is added 
to an existing baseline solution in figure 1 and the problem is re-optimized. 
The solution in figure 1 is similar to the baseline solution. The solution 
in figure 1 is much less similar. Visually, it is easily verifiable that  the 
difference (or distance) between solution 1 and 1 is much larger than tha t  
between solution 1 and 1. In many cases, there will be a preference of the 
dispatcher to use solution 1, even though its quality (e.g. total  distance) 
might be lower than tha t  of solution 1. However, this preference is usually 
not absolute in the sense that  solution 1 will be preferred when its quality 
is much bet ter  than  that  of 1. 

Finding vehicle routing solutions tha t  are "close" to a given baseline so- 
Lution requires a distance measure to calculate the difference (or similarity) 
between two given solutions. Such a distance measure, based on the edit 
distance, is developed in section 3. We should stress at  this point already 
tha t  the distance between two solutions, measured in order to control route 
stability, needs to be measured in the solution space, and not in the ob- 
jective fimction space. In other words, the solution chosen by the decision 
maker should itself be close to a baseline solution, not its quality. 
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(a) Baseline solution 

(b) Similar (c) Not similar 

Figure 1: Solution robust vehicle routing example 

The approach for route stabil i ty developed in this paper uses a meta- 
heuristic to generate a set of good solutions. For each solution, the distance 
to a given baseline solution is measured and a set of efficient solutions is 
generated. From these solutions, a decision maker can choose which solution 
best satisfies his or her preferences. 

The organization of this paper  is as follows. In the next section, we 
briefly introduce the VRP and survey the literature, especially with respect 
to metaheuristic solution approaches for this problem. In section 3, a dis- 
tance measure is developed to accurately determine the distance between 
two solutions. In section 4, an algorithm is developed tha t  uses this distance 
measure to determine solutions tha t  have a small travel cost and a small 
distance to a baseline solution simultaneously. Finally, section 5 discusses 
an experiment to show the effectiveness of the approach. 

2 Prob lem description and l iterature review 

In this paper,  we focus on the capacitated, distance-constrained vehicle 
routing problem (CDVRP or simply VRP). The VRP is defined on a graph 
G = (V,E) with V = v0 U {Vl, . . . ,Vn}.  The set {Vl, . . . ,Vn} represents 
a set of customers and v0 represents a depot. Wi th  each edge, a travel 
cost between customers is associated. Each of the n customer has a non- 
negative known demand qi (i = 1 , . . .  ,n) .  This demand must be serviced 
by a homogeneous set of vehicles, all having capacity Q. Travel costs c/j 
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between customers i and j are known and constant. Sometimes an extra 
cost (called drop cost) is incurred for each customer visited. 

The objective of the VRP is to determine a set of minimum-cost routes 
that satisfy the following constraints. 

1. Each route begins and ends at the depot. 

2. The total demand serviced in a single route does not exceed the ca- 
pacity Q of the vehicles. 

3. The total cost in a single route (sum of travel costs and drop costs) 
does not exceed a given maximum cost C. 

The Aft-complete [13] vehicle routing problem is very difficult in prac- 
tice and even some moderately-sized problems have not been solved to op- 
timality [27]. Because of this fact as well as its practical importance, many 
attempts have been made to design efficient heuristics for the vehicle routing 
problem, starting with Clark and Wright [6]. Also a rather large number of 
optimal algorithms have been developed, e.g. the branch and bound algo- 
rithm of Fisher [9] or the branch and cut algorithm of Lysgaard et al. [15]. 
The most powerful optimal methods can now find optimal solutions for 
problems with up to 100 customers with some reliability, but often require 
large clusters of parallel computers, see e.g. [17]. 

While optimal algorithms fail to find solutions for large problem in- 
stances, simple heuristics quickly find solutions, but these are often of low 
quality. Metaheuristics provide a means to find better solutions than simple 
heuristics in a reasonable amount of time. Although many more applica- 
tious of metaheuristics to the vehicle routing problem with time windows 
exist, several metaheuristic approaches have been proposed for the VRP. 
These approaches include tabu search [10, 18, 24, 30], granular tabu search 
[26], memetic algorithms [1, 16], ant algorithms [19], and others. For a 
detailed recent survey, including the details of these methods, we refer to 
Cordeau et hi. [7]. 

A possible way of finding solutions that are close to a given baseline 
solution and hence increase solution robustness, has been proposed in Jail- 
let [11] and Bertsimas et al. [4] for the traveling salesman problem and 
by Bertsimas [3] for the VRP (see also Bertsimas and Simchi-Levi [2]). 
In this approach--coined a priori optimization--a single route is designed 
that  includes all customers. When the demand becomes known, two dif- 
ferent procedures are proposed: (1) all customers are visited, but only the 
customers that have non-zero demand are serviced or (2) only the customers 
with non-zero demand are visited. A vehicle on the route is then forced to 
return to the depot when its capacity has been reached. A natural objective 
for this problem is to minimize the total expected travel distance. A priori 
routing tackles the problem of route stability by never changing the route. 
This technique has some drawbacks however, the most important one be- 
ing the fact that  a solution can only be split into pieces by a very simple 
heuristic which may result in a very low-quality solution. 
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As mentioned in the introduction, measuring solution stability requires 
the existence of a distance measure between solutions. The distance measure 
used in this paper is based on the edit distance. The edit distance was first 
introduced by Levenshtein [14] in the context of error-correcting codes and 
later extended by Wagner and Fischer [29]. 

The algorithm developed in this paper is a memetic algorithm with pop- 
ulation management (MA[PM). This algorithm uses distances between two 
vehicle routing solutions to actively control the diversity of a small popula- 
tion of individuals. MAIPM (formerly called GAIPM or genetic algorithms 
with population management) have been shown to produce highly com- 
petitive results on several benchmark problems, e.g. scheduling problems 
[22, 23], and current research is being undertaken to test and improve their 
performance. 

3 Dis tance  be tween  two vehicle  rout ing solu- 
t ions 

A VRP solution can be represented as a set of permutations, one for each 
trip. Each trip is determined by the order in which the customers appear 
in it. In this section, we develop a distance measure for vehicle routing 
solutions, based on the edit distance, also called Levenshtein distance. For 
a more elaborate discussion of some issues related to distance measures, 
including some other distance measures for permutation problems, we refer 
to SSrensen [21]. Another commonly used distance distance measure is the 
number of common edges between two solutions, but a comparison between 
these distance measures is beyond the scope of this paper. 

3.1 Edit  d i s t a n c e  

The edit distance is used to calculate the distance between strings, com- 
posed of characters from a finite alphabet ~. A is the null-character, signi- 
firing the absence of a character. 

An elementary edit operation (x, y) r (A, A) is an ordered pair of charac- 
ters from the set ~UA. An elementary edit operation is called a substitution 
iff x ~ h and y # A. It is called an insertion iff x = A and a deletion iff 
y = A .  

An ordered set of edit operations that transforms a string s into a string 
t is called an edit transformation of s into t. 

Elementary edit operations can be weighted by a weight function 7, that  
assigns a non-negative real number 7(x, y) to each elementary edit operation 
(x, y). Using the function 7, a non-negative real value can be assigned to 
any edit transformation E = [(xl, Yl), (x2, Y2),..-, (Xm, Ym)]. The weight of 
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edit transformation E is equal to 

~(E) = ~ ~(x,, y,). 
i= l 

The edit distance 5(s, t) between strings s and t is defined as 

J(s, t) = min{~,(E)lE is an edit transformation of s into t} 

If 7(x, y) = 1 for all x, y then J(s, t) is equal to the number of elementary 
edit operations required to transform string s into t. 

The edit distance has several interesting properties. It is a metric, i.e. 
Vs, t,u: 6(s,t) > 0 (non-negativity), 6(s,t) = 0 =~ s = t (separation), 
~(s, t) = ~(t, s) (symmetry) and ~(s, t) + ~(t, u) >_ ~(s, u) (triangle inequal- 
ity). The edit distance is also able to calculate the distance between strings 
of different lengths, in which not all characters of the alphabet appear, and 
in which characters may be repeated. A simple implementation in java can 
be tried on line at http://www.merriampark.comfld.htm. 

3 . 2  C a l c u l a t i o n  o f  t h e  e d i t  d i s t a n c e  

For two strings s and t of length Isl respectively Ith the time-complexity of 
the dynamic programming algorithm proposed by Wagner and Fischer [29] 
is O(Isl • Itl), i.e. O(n 2) if the lengths of both strings is about n. The space 
complexity can be reduced to O(n) if only the value of the edit distance 
is needed (and not the edit sequence that  this distance corresponds to). 
A more efficient algorithm is given by Ukkonen [28]. The worst-case time 
complexity is O(n x d), the average complexity is O(n + 2 x d) where n is 
the length of the strings and d is their edit distance. This is fast for similar 
strings where d is small, i.e. if d << n. Other, even more efficient algorithms 
have been proposed, but these are outside the scope of this paper. 

3 . 3  A d a p t a t i o n  o f  t h e  e d i t  d i s t a n c e  t o  v e h i c l e  r o u t i n g  

p r o b l e m s  

For a given VRP with n customers an alphabet of cardinality n + 1 is 
defined, having a character for each customer and one extra character for 
the depot. A solution to the VRP can then be represented as a string of 
characters of this alphabet. A distance measure between such strings sl 
and s2 has the following characteristics. 

1. The distance d(sl, s2) is equal to the minimal number of edits needed 
to transform sl into s2, taking into account that  

2. trips are independent and therefore can be taken in any order, and 

3. trips can be executed in any direction (forward or backward). 
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To calculate a distance measure d(sl, s2) between two VRP solutions st 
and s2, the following procedure can be followed. 

1. Let T1 = {~'~,T~ . . . .  ,T~} and T2 = {r2,~-22,... ,~-~} be the sets of trips 
in solutions Sl and s2 respectively. Let [Tl[ ---- k be the number of trips 
in T1 and IT2[ = 1 the number of trips in T2. Empty trips are added 
to the solution with the fewest trips, so that both solutions have the 
same number of trips. 

2. Create a square matrix D = dij of size max(k, 1). 

3. Let dlj = min(6(~-], ~-]), 6(7-/1, .?2)). @] is the reverse tour of 7-] going 
from the last customer in 7 -2 to the first. 

4. Calculate d(sl, s2) where 

d(81,s2)=min~-:disxiS , (1) 
iS 

s.t. 

�9 , j  > o v i ,  j ,  (2) 

�9 , j  = I v i ,  (3) 
.,4 

: , s  = 1 vj .  (4) 
i 

d(st, s2) is equal to the total cost of the minimum cost assignment 
having the matrix D as linear cost matrix. 

The algorithm finds the matching between trips in the first solution 
and trips in the second solution that minimizes the total edit distance be- 
tween the two solutions. We calculate the assignment problem using the 
Jonker-Volgenant algorithm [12]. According to Dell'Amico and Toth [8], 
this algorithm consistently performs well. It should be noted that in some 
rich routing models (e.g. models with time windows), tours cannot be re- 
versed. In this case, the calculation of the distance is slightly simplified as 
step 3 can be changed to "Let dis = 6(~-~, T2) " . 

Although the computational time required to calculate this distance 
measure is relatively high, we believe it to be a very accurate measure of 
the difference between two vehicle routing solutions. Verbally, this distance 
measure calculates the minimal number of changes required to transform 
the first solution into the second one. It is possible to assign weights to 
each individual edit operation or to groups of edit operations, adding to the 
flexibility of this distance measure. 
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3 . 4  E x a m p l e  

For a vehicle routing problem with 10 customers, labeled a to j ,  2 solu- 
tions are given: Sl = abc lde fg lh i j  and s2 = bcde f tg j  iha.  

Matr ix D contains in each cell the minimum of (1) the edit distance 
between the string in the row and the string in the column and (2) the edit 
distance between the string in the row and the reverse of the string in the 
column (or between the reverse of the string in the column and the string in 
the row which can be shown to be the same). An asterisk label (*) indicates 
tha t  one of the strings needs to be reversed to find the minimum distance. 
An empty tr ip (indicated by A) is added to the second solution so that  it 
has the same number of t r ips as the first one. 

As an example, we calculate the contents of element d21, representing 
the distance between tr ip 2 of solution 1 and tr ip 1 of solution 2. The edit 
distance between de fg  and bcde:f is 3 (see eq. 5 for a possible transformation 
using 3 edits). The edit distance between de fg  and f edcb  (the reverse of 
bcde:f) is 4 (see eq. 6 for a possible transformation). The value of d21 is 
therefore equal to min(3, 4) = 3. 

d e f g  remove g clef add b brief add c, bcdef  (5) 

defg d~ fefg ~ fed.fg - ~  fedcg g ~ b  fedcb (6) 

Table 1: Matrix D w i t h e d i t  distances for the VRP 
bcdef  g j ih .a  A 

abc 4 4* 3 
defg 3 4* 4 
h i j  5 2* 3 

Solving an assignment problem with the  matr ix in table 1 as cost matr ix  
assigns abc ~-~ A, de fg  *-* bcdef  and h i j  ~-~ a h i j g  (indicated in bold in the 
table), yielding a total  cost of 8. 

4 A n  algori thm for solut ion stabil ity and so- 
lut ion quality 

We have argued that ,  when a certain baseline solution Xo is implemented 
and a re-optimization of the problem is performed, there will often be a pref- 
erence for the new solution x to be as close as possible to x0. Nevertheless, 
x should also have a travel cost that  is as low as possible. Both objectives 
should be achieved simultaneously. Preferably, the decision maker should 
be presented with a diverse set of solutions, as uniformly spread along the 
Pareto frontier as possible. 

In this section, an algorithm is developed that  is able to find solutions 
that  have both  a small travel cost and a small distance to a given baseline 
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solution. We first develop a generic algorithm and afterward specify how 
both objectives can be achieved. It  should be noted that the memetic algo- 
rithm developed in the next section extensively uses the distance measure 
developed in section 3 for an altogether different purpose: to maintain a 
small but diverse population. 

4 . 1  A M A [ P M  f o r  t h e  V R P  

Memetic algorithms with population management, developed in S6rensen 
[21] are structured like a simple memetic algorithm, but add some features 
to improve performance. First, a very small population (of e.g. 10 or 20 
solutions) is used. Second, population management  ensures the diversity of 
the population. Algorithm 1 is a schematic representation of a MA[PM. 

A l g o r i t h m  1 MA[PM 
1: initialize population P,  population diversity parameter A 
2: r e p e a t  
3: select: Pl and P2 from P 
4: crossover: Pl | 192 --* Cl , c2 
5: tabu search: on cl and c2 
6: for  each child c do 
7: whi le  dp(c)  < A do  
8: mutate  c 
9: end  whi le  

10: remove solution: P ~- P \ b  

lh  add solution: P *- P U e 

12: end  for  
13: update diversity parameter A 
14: unt i l  stopping criterion satisfied 

Like in Prins [16], VRP solutions are encoded as strings of customers 
without trip delimiters. A binary tournament selection scheme is used, i.e. 
two solutions are chosen randomly and the best one is used for crossover. 

The crossover operator used is LOX (linear ordered crossover), originally 
defined for the VRP. Parent 1 is cut at two locations i and j and the 
corresponding string is placed in positions i to j of offspring 1. Offspring 1 
is then completed by searching parent 2 circularly from position j + 1. A 
second offspring is created by reversing the roles of the two parents. 

After crossover, solutions are split into trips optimally (using the pro- 
cedure outlined by Prim), so that they can be subjected to tabu search 
and later population management. The splitting procedure works by first 
building an auxiliary graph containing all feasible tours that  have their cus- 
tomers in the same order as the encoded solution. It then finds the optimal 
splits by solving a shortest-path problem in this graph. For a more detailed 
explanation, we refer to Prins [16]. 
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The tabu search procedure is able to quickly improve the quality of solu- 
tions it is set to work upon. A simple local search scheme is used, in which 
each possible swap of two customers is considered and the best-improving 
move is made. A tabu list is used to prevent the solution from getting 
stuck in a local optimum. The tabu search continues until the best solution 
found during the tabu search phase was not improved for a fixed number of 
moves. As the solutions returned by the crossover operator are generally of 
rather low quality, such a hybridization procedure is absolutely necessary 
to ensure that  the algorithm finds good solutions. The two candidate solu- 
tions improved by the tabu search operator are then subjected to population 
management. 

Population management works by calculating the distance of the candi- 
date solution c to all other solutions in the population. The distance to the 
population dp (c) is equal to the smallest distance to any solution in the pop- 
ulation. The candidate solution is added to the population if its distance to 
the population is larger than or equal to the population diversity parameter 
A. By using this criterion, solutions are only added to the population if 
they add sufficient new genetic material. The calculation of the distance to 
the population involves the use of the distance measure developed in sec- 
tion 3. The new solution replaces a solution chosen by binary tournament 
selection (i.e. the worst of two randomly selected solutions is removed from 
the population), thus maintaining the population size. If the distance to 
the population of the candidate solution is insufficient (i.e. smaller than the 
population diversity parameter A), it is mutated. The mutation operator 
randomly swaps two customers. This process is repeated until the candi- 
date solution satisfies the diversity criterion, after which it is added to the 
population. 

The value of the diversity parameter determines to a large extent the 
diversity of the population. A large value of A will allow only very different 
solutions in the population and will thus increase the diversity. A small 
value of A will likewise decrease the diversity. It follows that the value of 
A can be used to control the diversity of the population using population 
management strategies. See e.g. SSrensen and Sevaux [22] for more details. 

4 . 2  O b j e c t i v e s  

As mentioned, a solution is sought that  simultaneously minimizes two 
objectives: the total distance traveled by all vehicles (which we will refer 
to as travel cost to avoid ambiguity) and the distance of the solution to 
the baseline solution, as measured by the distance developed in section 3. 
As explained previously, the algorithm uses a tabu search local optimiza- 
tion procedure inside the structure of a memetic algorithm with population 
management. The direction of the search is determined in two ways: (1) by 
the selection operator of the MAIPM and (2) by the move selection of the 
tabu search procedure. In principle, both can be used to guide the search 
in the direction of either of the objectives. 
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Experiments show however that  it is both intractable and undesirable 
to direct the tabu  search in the direction of minimization of distance to the 
baseline solution. First,  the tabu  search procedure requires too many eval- 
uations of the solution quality and determining the distance to the baseline 
solution is too time-consuming. When using travel cost to determine as the 
criterion, the objective function evaluation can be easily short-circuited. I t  
is easily verifiable that  when customer k is inserted between customers i 
and j ,  the total  cost of the route changes by cik + ckj - c~j (provided that  
the route remains feasible). Similar types of reasoning apply for removing 
a customer from a route or swapping two customers in a route. Although 
individual distance measure calculations are negligibly small, using the dis- 
tance measure to direct the  tabu search increases total  computing time 
dramatical ly  as these constant-time shortcut calculations are replaced by 
the far more demanding distance calculations outlined in section 3. A sec- 
ond reason to not direct the tabu search towards the minimization of the 
distance to the baseline is that  the tabu  search procedure tends to be too 
effective in finding solutions close to the baseline solution. As a result, the 
quality of the solution in terms of travel cost tends to be too low. For these 
two reasons, we use the tabu search to direct the search in the direction of 
minimal travel cost only. This guarantees that  all solutions generated by 
the algorithm are of relatively high quality. 

The search is directed in the direction of minimal distance by using this 
criterion to select solutions from the population. The selection operator  of 
the  MAIPM therefore pulls the solution in the direction of minimal distance 
to the baseline, while the tabu  search procedure is used to ensure the quality 
of the solution in terms of travel cost. 

5 Experiments and results 

We assume tha t  a company uses a given baseline solution x0 on a regular 
(e.g. dally) basis. A set of customers is added to the list of customers tha t  
require service. In general, adding the customers to the baseline solution in 
any simple way (e.g. by inserting them at their nearest insertion point) will 
render the baseline solution infeasible. Because of this, the MAIPM is used 
to find a new solution. The company prefers this new solution to be as close 
as possible to the baseline solution. This situation may occur in practice 
when a company has a set of "loyal" customers and other customers may 
call in to demand a visit. 

In the experiment, the MAIPM is allowed 100 generations to find a 
baseline solution using the original list of customers from the Christofides 
et ai. [5] instances. Then, the size of the customer list is increased by 
10% (rounded upwards). New customers are generated randomly on the 
same grid as the original customers (i.e. x and y coordinates between 0 and 
70). Demand of each customer is randomly generated between 0 and 30, 
comparable with the demand of the original customers. 
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Data file n Added Crit. f d CPU(s) 
vrpnc01 50 5 f 556.13 14 137.80 

d 561.22 8 
vrpnc02 75 8 f 928.12 26 379.08 

d 973.67 25 
vrpnc03 100 10 f 907.95 51 744.94 

d 1012.29 36 
vrpnc04 150 15 f 1166.66 79 2070.34 

d 1287.65 66 
vrpnc05 199 20 f 1487.45 144 5110.79 

d 1585.95 109 
vrpnc06 50 5 f 606.41 20 167.77 

d 6O8.58 10 
vrpncO7 75 8 f 1007.89 36 515.94 

d 1048.10 29 
vrpncO8 I00 I0 f 931.41 25 678.53 

d 974.34 19 
wrpnc09 150 15 f 1352.90 94 2027.00 

d 1445.27 57 
vrpncl0 199 20 f 1633.28 116 4229.15 

d 1705.26 96 
vrpncll 120 12 f 1291.59 89 1234.86 

d 1343.68 57 
vrpncl2 I00 I0 f 926.52 31 683.75 

d 956.76 18 
vrpncl3 120 12 f 1737.76 65 1602.42 

d 1952.10 52 
vrpncl4 I00 I0 f 1085.39 48 734.76 

d 1182.77 21 

Table  2: Results of  the  exper iment  wi th  10% customers  added 

The  MA[PM is then allowed 200 generat ions to search for a solution tha t  
is both  good and close to the  baseline solution. For each of the  solutions 
genera ted  this way, t ravel  cost f(x)  and dis tance to  the  baseline solut ion 
d(x, xo) are recorded. In table  2, the  results are  summarized.  This  table  
shows for each d a t a  set the  object ive  function values of two solutions: the  
solut ion with  minimal  travel  cost (first row) and the solut ion wi th  min imal  
dis tance to the  baseline (second row). All p rogramming  was done in MS 
Visual  Basic, all experiments  were performed on an A M D  Athlon  1100 P C  
running MS Windows.  

As can be seen from this table,  the  results show tha t  a t rade-off  needs 
to be made  between the travel cost and dis tance to the  baseline solution, as 
decreasing one object ive will generally lead to an increase of  the  other.  In a 
more  e laborate  mult i -cr i ter ion decision process, the  decision maker  can plot  
the  values of bo th  object ives against  one another  and choose any solution 
on the  Pare to  frontier. F igure  2 shows bo th  the  efficient and the  domina ted  
solutions found by the  MA[PM for the d a t a  file vrpnc05. We should note  of 
course tha t  there  is no guarantee  tha t  these solutions are on the  real Pa re to  
frontier as they  may  be domina ted  by solutions not  encountered dur ing the  
search. 
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Figure 2: Efficient and dominated solutions for a run of the MAIPM 

6 Conclusions  

In this paper, we have argued that route stability can be an important 
criterion in vehicle routing. Marketing and other objectives often dictate 
a need for vehicle routing solutions to remain as similar as possible over 
time. We have shown how route stability can be measured by developing a 
distance measure between vehicle routing solutions. We have then used a 
memetic algorithm with population management or MAIPM to generate a 
non-dominated set of solutions that have both a small total travel cost and 
a small distance to a baseline solution. From this set, decision makers can 
choose a solution that best satisfies their preferences. 
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