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Abstract
Sustainable development is imperative, and the worldwide energy production must focus on the transition from petroleum 
derivatives to biomass-based biofuels and bioproducts to achieve a bio-based economy. The global interest in the processing of 
waste biomass to obtain bio-based products is continuously increasing. However, biorefineries have not yet been consolidated. 
The effective conversion of biomass components for the generation of value-added biochemicals and biofuels is a determining 
factor for the economic success of biorefineries. Therefore, exhaustive research has been performed to consolidate the 
biorefinery industry. This review summarizes the current advances in liquid biofuel production and solid catalysts prepared 
from waste biomass, as well as their advantages, drawbacks, and statistical data. It offers an extensive perspective, covering 
conventional methods and cutting-edge techniques such as biochemical and thermochemical biomass conversion technologies 
(e.g., hydrolysis, fermentation, pyrolysis, and gasification) to produce bioalcohols, biodiesel, renewable diesel, bio-jet, and 
bio-oil. In addition, the preparation of heterogeneous catalysts using residual biomass and different synthesis routes and 
their role in biofuel production were analyzed. This review contributes to the analysis of the importance of identifying and 
valorizing a wide spectrum of raw materials (i.e., urban, forestry, industrial, and agricultural) that have the potential to be 
used as catalyst precursors and biofuel feedstock. Finally, a techno-economic analysis, the main challenges, and the future 
scope of the diverse methods used to prepare biofuels and catalysts are discussed. This review examines numerous aspects 
from biomass to catalysts, thus providing relevant information for researchers, students, policymakers, and industry experts.
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Introduction

The accelerated and growing exploitation of fossil-based 
fuels is associated with population expansion and industrial 
and economic development (Nanda and Berruti 2021), which 
have also intensified energy and environmental problems, 
thus becoming the main concern that humanity faces today. 
Different statistics indicate that natural gas, coal, crude oil, 
and other fossil fuel derivatives (Wang et al. 2022c) represent 
more than 80% of the total energy production worldwide 
(Davidson 2019). Transportation, agriculture, and almost all 
industrial sectors are highly dependent on the use of fuels 
obtained from nonrenewable sources (Wang et al. 2022c). 
These fuels have been subjected to a drastic depletion 
because of the continuous increasing energy demand of 
society, in addition to generating greenhouse gas emissions 
that influence climate change, deteriorate ecosystems, and 

cause potential risks to human health (Wu et al. 2023). 
Therefore, this has driven the scientific community to find 
alternative sources of low-cost, sustainable, and renewable 
energy (e.g., wind, hydraulic, solar, and biomass) (Shahbeik 
et al. 2022).

A perspective of sustainable development is imperative 
in this direction, where cost-effective implementation and 
operation of biorefineries are key factors in the transition 
from a linear to a circular economy. The installation and 
start-up of biorefineries have promoted biomass valorization 
at local and regional levels to maximize its environmental 
and economic benefits, thus generating a variety of competi-
tive and efficient technologies for biomass conversion into 
value-added products, see Fig. 1. Biomass obtained from 
industrial, agricultural, and urban sources is a low-cost feed-
stock for the production of fuels and chemicals, owing to 
its wide availability, non-edible nature, and carbon–neutral 

Fig. 1  Biomass wastes, biorefinery processes and their products
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property (Singh et al. 2022). Biofuels have become one of 
the main sources of green energy and are considered promis-
ing substitutes for fossil fuels because of their economic and 
environmental benefits (Li et al. 2022b).

Herein, it is convenient to remark that several technolo-
gies for the thermochemical transformation of biomass also 
rely on reactive systems that must be catalyzed (Ahmed et al. 
2022a). Therefore, the development of heterogeneous cata-
lysts derived from biomass has become increasingly impor-
tant, because they are essential for the production of biofuels 
and other value-added materials (Hussain et al. 2022). They 
can enhance the reaction rates, improve selectivity, and pro-
vide more efficient conversion of biomass feedstock into bio-
fuels and other chemicals. Note that high biomass conversion 
is crucial to successfully achieve a competitive bioeconomy 
in which the catalysts play a key role in the quality of biofuels 
and other products (Abdullah et al. 2022). The application 
of carbon-derived supports in catalyst preparation has been 
widely studied (Abdullah et al. 2022) and ongoing research 
is focused on developing new materials with better proper-
ties to further advance the consolidation of a biomass-based 
economy (Zou et al. 2022).

In this review, the advantages and drawbacks of liquid 
biofuels (e.g., biodiesel, renewable diesel, bioalcohols, 
bio-oil, and bio-jet) obtained from biomass processing are 
discussed and analyzed. The importance and relevant sta-
tistics of the residual biomass used to produce these liquid 
biofuels are highlighted. A comprehensive overview of the 
conventional and well-studied cutting-edge techniques is 
also provided. In addition, the preparation and application 
of biomass-based catalysts and their utilization in obtaining 
biofuels are discussed. A summary of recent studies on the 
preparation of biofuels and catalysts derived from biomass 
is presented. The inclusion of a techno-economic analysis, 
challenges, and perspectives amplifies the scope of this 
review. These insights, combined with thought-provoking 
remarks, not only enrich the understanding of this subject, 
but also pave the way for future innovations.

This review is a meticulous examination of multiple 
facets, from biomass to catalysts, and its forward-looking 
approach makes it a useful resource for researchers, students, 
policymakers, and industry experts.

Biofuels: their advantages and drawbacks

Biofuels have been defined as all types of energy derived 
from renewable biological sources (e.g., organic, agricul-
tural, industrial, urban, forestry, human, and animal wastes) 
(Powar et al. 2022). Overall, biofuels exhibit a competi-
tive cost-effectiveness tradeoff during energy production. 
Biofuels are easy to handle and store because of their low 
flammability and toxicity compared with fossil fuels (Priya 

et al. 2022). Various studies have concluded that biofuels 
are distinguished for being environmentally friendly and 
sustainable due to their degradation properties, especially 
because they emit harmful gases into the atmosphere by 
10 times lower than fossil fuels during their consumption 
(Angulo-Mosquera et al. 2021). They are classified as pri-
mary or secondary biofuels, as shown in Fig. 2. Primary 
biofuels are used directly without pretreatment for cooking 
or heating, and they mainly originate from wood, plants, 
and animals (Ahmed et al. 2023). Secondary biofuels are 
obtained from biomass processing where thermochemical 
(i.e., transesterification) biological (i.e., fermentation) routes 
or catalysts are required (Ahmed et al. 2023). Biofuels can 
be produced in different physical states: solid, liquid, and 
gas (Priya et al. 2022).

Depending on the type and source of the raw materials 
used to produce biofuels, they can be categorized as first- to 
fourth-generation fuels (Priya et al. 2022). First-generation 
biofuels are obtained from edible raw materials such as high 
lipid-containing seeds [e.g., soybean (Vázquez-Garrido et al. 
2021), neem (Adepoju 2020), palm (Basir et al. 2019)], sugar 
cane (Rabiu et al. 2018), sugar beet (Del Amo-Mateos et al. 
2022), potato (Chohan et al. 2020), sorghum (Batog et al. 
2020), wheat (Gouran et al. 2021), corn (Dai et al. 2019), 
among others. One of the main limitations of this generation 
of biofuels is the significant investment in terms of capital, 
energy, and time to obtain the raw materials (food crops), in 
addition to their negative impact on the food sector, which 
has generated conflict and debate in the world population 
because they could become scarce due to fluctuations and 
instabilities in market prices (Astolfi et al. 2020; Liu et al. 
2021). Second-generation biofuels are produced from non-
edible sources (Puricelli et al. 2021), lignocellulosic biomass 
(Ahorsu et  al. 2018), residues [e.g., forestry (Liu et  al. 
2015), agricultural (Wei et al. 2022), industrial (Tekin et al. 
2023), and urban (Zhang et al. 2019)], used cooking oils 
(Abdullah et al. 2022), and animal fat (Adepoju 2020). In 
particular, lignocellulosic biomass, owing to its abundance 
and easy availability, makes second-generation biofuels the 
most interesting alternative. These feedstock sources make 
biofuel production more economical, effective, sustainable, 
and environmentally friendly (Lin and Lu 2021). However, 
it is well-known that second-generation biofuels may not 
be entirely profitable, as the equipment and technologies 
required to obtain commercial products that meet established 
quality standards are typically expensive (Liu et al. 2021). It 
has been recognized that another factor that could impact the 
production costs of second-generation biofuel manufacturing 
processes is the potential shortage of raw materials (Puricelli 
et al. 2021; Abbaszaadeh et al. 2012).

On the other hand, third-generation biofuels are gener-
ally based on the implementation of aquatic crops (e.g., 
microalgae) as feedstock (Choi et al. 2019). One of the main 
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properties that algae present and stand out over other energy 
sources is its high lipid and nutrient content, which makes 
it an attractive alternative for biofuel production (Srivastava 
2019). Another benefit of this energy source is its high per-
formance in capturing greenhouse gases  (CO2), easy adapta-
bility, rapid growth in different water bodies (i.e., wastewater, 
freshwater, and seawater), and high photosynthetic efficiency 
(Choi et al. 2019; Aron et al. 2020).

Recently, fourth-generation biofuels have been developed 
from electro-biofuels, photobiological solar fuels, and geneti-
cally modified microorganisms (e.g., microalgae, cyanobac-
teria and yeast) (Malode et al. 2022). These microorganisms 
not only enhance the photosynthesis process and wastewa-
ter treatment, but also demonstrate their ability to consume 
high concentrations of  CO2, compared to other raw materials 
(Leong et al. 2019). This in turn facilitates biofuel production 
and promotes environmental conservation. These modified 
photosynthetic feedstocks are renewable, inexpensive, widely 
and easily available (Abdullah et al. 2019). It is worth men-
tioning that despite the progress achieved in this generation 
of biofuels, they are still in the development phase without 
reaching large-scale commercialization and industrial imple-
mentation (Puricelli et al. 2021).

Liquid biofuels have high energy density and are alter-
natives to conventional fuels used in aviation (Vamvuka 

2011) where petroleum-derived liquid fuels play a key role, 
whereas gaseous biofuels (i.e., biomethane and biohydrogen) 
offer greater benefits for public transportation and industrial 
combustion (Priya et al. 2022). Solid biofuels derived from 
waste biomass require low energy consumption for their 
production and have, by nature, a high calorific value in 
comparison with nonrenewable solid energy sources (i.e., 
firewood, charcoal, and lignite) that are commonly utilized 
to meet daily human needs (Angulo-Mosquera et al. 2021).

As stated, the biofuel industry, based on renewable 
feedstocks, has the potential to substitute petrochemical 
industries, with the consequent creation of new employment 
opportunities, and can contribute to the implementation 
of a circular economy for future generations (Powar 
et  al. 2022). However, it is necessary to overcome the 
drawbacks of current biofuel production processes. This 
requires confronting the economic, environmental, social, 
and technical barriers inherent to each type of biofuel 
generation with the aim of consolidating profitable large-
scale exploitation and commercialization in the near future 
(Kothari et al. 2020). It should be noted that there are still 
concerns regarding the production costs of some biofuels, 
which could be higher than those of conventional fuels 
(Angulo-Mosquera et al. 2021). At present, the management, 
transportation, and feedstock costs are considered obstacles 

Fig. 2  Classification of biofuels and their generations
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to producing biofuels at an industrial scale under specific 
socioeconomic conditions (Angulo-Mosquera et al. 2021). 
In some cases, large extensions of land are required, 
which can lead to deforestation, habitat destruction, and 
competition with food crops; however, the consequent 
water consumption generates environmental pollution and 
potential scarcity (Mahapatra et al. 2021; Priya et al. 2022). 
The overall energy balance and greenhouse gas emissions of 
biofuels can vary significantly, depending on the feedstock 
and production process. Some industrial processes require 
a large amount of energy to carry out the biofuel synthesis 
or can be technologically challenging and costly (Angulo-
Mosquera et al. 2021). It has also been proven that the 
chemical properties of some biofuels can damage and impact 
the performance of internal combustion engines during long-
term operation (Priya et al. 2022). Therefore, there are still 
several technological challenges to achieving successful 
large-scale incorporation of biofuels in the global market.

In summary, the economy of biofuel production 
can be influenced by factors such as feedstock costs, 
energy inputs, and government subsidies, which can 
affect the competitiveness of biofuels compared to other 
conventional energy sources. It is important to consider 
these disadvantages alongside the potential benefits of liquid 
biofuels to generate better technologies for their production. 
The ongoing research and technological efforts have focused 
on addressing these challenges to improve the sustainability 
of biofuel supply chains and exploring alternative feedstocks 
and processes to overcome the fact that the global economy 
continues to rely heavily on fossil fuels.

Biomass waste: sources, classification 
and statistics

Biomass is a well-known renewable energy source that has 
become the focus of producing not only thermal or electrical 
energy, but also biofuels (e.g., ethanol and biodiesel) and 
other high value-added chemical products (e.g., furfural 
and levoglucosan). It is considered to be an environmentally 
friendly, cost-effective, and sustainable feedstock (Patra 
et al. 2022).

The main sources of biomass are wood, crops, and 
different agricultural, forestry, urban, animal, and industrial 
wastes (Palmisano et al. 2022). They can be classified into 
four major groups according to their main components: 
sugar, starch, triglycerides, lignocellulose, and hydrocarbons 
(pyrolysis oil) (Goswami et al. 2022).

Lignocellulosic biomass obtained from agricultural 
residues has been the subject of recent studies because of its 
high calorific capacity; in particular, there is an alternative to 
provide adequate use and eliminate the large loads generated 
and accumulated globally (Zhang et al. 2020a). This type 

of biomass is considered a valuable energy source for the 
production of biofuels and green value-added chemicals 
because of its renewable nature and wide availability (Koul 
et al. 2022). Lignocellulosic biomass is mostly composed 
of biopolymers (cellulose, hemicellulose, and lignin) (Li 
et  al. 2022a), whereas inorganic minerals and organic 
extractives are found in trace amounts (Vassilev et al. 2012). 
The composition of this biomass can vary depending on its 
source and origin (Ramos et al. 2022). It has been estimated 
an annual production of 181.5 billion tons of lignocellulosic 
biomass, of which only 8.2 billion tons are used for practical 
purposes and different final applications (Dahmen et al. 
2019).

It is important to highlight that food waste deserves 
special mention because it is a valuable raw source for 
biofuel production. Food waste is generated at every step 
of the food supply chain, such as harvesting, transporting, 
processing, packaging, and consumption (Dhiman and 
Mukherjee 2023). Lahiri et  al. (2023) highlighted that 
more than 91 million tons of food waste can be generated 
per year in China (Alizadeh et al. 2020). Food waste does 
not merely imply an economic loss, but also generates 
environmental impacts (Dhiman and Mukherjee 2023). The 
United Nations via the Environment Programme (UNEP) 
and partner organization WRAP informed, in the 2021 
Food Waste Index Report, that more than 930 million tons 
of food sold in 2019 landed in waste bins, which represents 
17% of the available food in restaurants, households, and 
shops (UNNews 2021). Therefore, it is imperative to 
find alternatives to reuse or recycle food waste because it 
contains carbohydrates, proteins, starch, and lipids (Dhiman 
and Mukherjee 2023). Nowadays, the common practice in 
several countries is to dispose of this waste in landfills or 
to incinerate it with other municipal solid wastes. These 
practices have consequences, such as the generation and 
release of harmful environmental pollutants, in addition to 
the corresponding economic impact.

On the other hand, waste cooking oil (WCO) is generated 
from catering and food industry and is an important biomass-
derived feedstock (e.g., canola, corn, sunflower, safflower 
oil) to produce biofuels (Li et al. 2023). The generation 
of this residue reaches 16.54 million tons worldwide 
annually (Wang et al. 2022a) due to the consumption of 
200 million tons of edible vegetable oils (Li et al. 2023). 
A significant concern is that WCOs are usually disposed in 
containers or wastewater drains, with the consequent risk of 
environmental pollution or blockage of sewers and drains 
(Baghani et al. 2022). The meat and chicken industries 
are increasing because of the growth of the global human 
population. Animal fats, including beef tallows, chicken fat, 
mutton fat, and pork lard, are the most prevalent organic 
wastes produced globally (Aliana-Nasharuddin et al. 2020). 
It is estimated that 17 million tons of this type of waste 
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are generated per year in the EU (Sreeharsha et al. 2023), 
where their inadequate disposal could cause eutrophication 
and water contamination. However, they are composed of 
high amounts of fatty acids, which make them a potential 
feedstock for biodiesel production (Hazrat et  al. 2019). 
The fact that biofuels can be derived from a variety of 
biomass sources enhances community interest, making them 
adaptable to diverse regions and contributing to the overall 
decentralization of energy production (Cheah et al. 2022).

Several estimations indicate that biomass has the capacity 
to support the global energy system, generating a total of 100 
to 400 EJ per year (Vaskalis et al. 2019). Therefore, the selec-
tion, valorization, and processing of renewable feedstock are 
paramount because they represent approximately 80% of the 
total cost of biofuel production, and waste biomass could 
considerably reduce these costs (Priya et al. 2022).

The operation of biorefineries has intensified to address 
the global energy, environmental, and economic issues gener-
ated by the consumption of fossil fuels (petroleum products) 
and to accelerate their substitution with biofuels (Goswami 
et al. 2022). The implementation of these biomass processing 
facilities can improve the energy security and environmental 
conditions of the planet by decreasing greenhouse gas emis-
sions to the atmosphere (Gil 2022), although this is not yet 
economically feasible for the economic conditions of several 
countries (Dahlke et al. 2021).

Recent studies indicate that 53 EJ were generated globally 
in 2018 from renewable energy sources (waste biomass), 
thus representing approximately 8.7% of the total global pri-
mary energy supply where biofuels (solid, liquid, and gase-
ous) symbolize about ¾ parts of renewable energy (Energy 
Statistics Pocketbook 2021). Approximately, 160 million 
liters of biofuels are produced worldwide, with bioethanol 
and biodiesel accounting for 62 and 26%, respectively, while 
the remaining 12% is made up of other biofuels (Global Bio-
energy Statistics 2020). Note that the 2019 report by the 
International Energy Agency (IEA) indicates that the energy 
demand (fuel) is forecasted to increase by 20% by 2050, 
which has set off alarm bells and prompted the implementa-
tion of new renewable sources of green energy, specifically 
biofuels (International Energy Agency 2021). It is expected 
that world biofuel demand will increase by approximately 
186 billion liters in 2026 compared to previous years (Inter-
national Energy Agency 2021). Lane (2019) highlighted that 
each country or region should manage and regulate the evo-
lution of biofuel production and consumption according to 
its specific economic conditions and characteristics.

Today, the countries that have made significant advances 
in the supply chain and application of biofuels are the USA, 
Brazil, China, and the European Union (EU) (Barr et al. 
2021). These nations are leading the way in integrating bio-
fuels into their energy matrices, and this development holds 

great promise for a sustainable energy future. In December 
2019, the European Commission presented an ambitious 
new strategy (the European Green Deal) to support environ-
mental stewardship and, in turn, achieve pollution-free and 
climate-neutral territory by 2050 (European Commission 
2019). This initiative signifies a recognition of the urgent 
need to combat climate change and transition to cleaner 
energy sources. By that time, solid and liquid biofuels are 
expected to represent approximately 60 and 30% of energy 
matrix, respectively, while the rest would be associated with 
gaseous biofuels (i.e., biogas) (Piñón-Muñiz et al. 2023).

Techniques and methods used 
in the production of liquid biofuels

As stated, the economic and sustainable production of bio-
fuels has become a challenge for the scientific community, 
and it is paramount to improve or find new technologies and 
strategies to maximize and make profitable the development 
of this energy source with the aim of reducing its negative 
impacts on the environment (Boro et al. 2022). It is evident 
that these challenges require innovative solutions and col-
laborative efforts to ensure the viability and sustainability of 
biofuels as renewable energy sources. The production and use 
of biofuels at the global level mainly depend on the raw mate-
rials and production methods, as well as the effectiveness of 
the entire process (Boro et al. 2022). It has been also pointed 
out that biomass has become a viable, economic, and promis-
ing source to produce sustainable biofuels (Lin and Lu 2021).

Raw biomass as a biofuel shows undesirable characteris-
tics, such as high moisture, hygroscopicity, and heterogeneity, 
as well as low density and calorific value (Silva et al. 2018). 
Therefore, the promotion of raw biomass utilization has 
diminished, and several attractive and competitive processes 
have been proposed to obtain high-quality fuels derived from 
thermochemical transformation (Silva et al. 2018). Biofuels 
derived from biomass can be obtained using various methods 
(biological, physical, and chemical) (Hajilary et al. 2019). 
Fermentation, gasification, liquefaction, thermochemical 
conversion, anaerobic digestion, and transesterification are 
among the primary biofuel production methods, see Fig. 3.

The thermochemical processes include gasification, liq-
uefaction, combustion, and pyrolysis. Particularly, pyrolysis 
plays a significant role in the biomass transformation into 
renewable bioproducts such as bio-oil (Xue et al. 2023), 
biochar (Zou et al. 2022), and syngas (Dahmen et al. 2019). 
According to the operating conditions, pyrolytic processes 
can be categorized into three types: slow, fast, and flash 
pyrolysis (Rahimi et al. 2022). This differentiation is cru-
cial for optimizing the efficiency and output of the pyrolysis 
process because each type has its own set of advantages and 
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limitations. In addition to the classification of pyrolysis, the 
choice of technology plays a pivotal role in the generation 
of biofuels from waste. Various reactor designs have been 
proposed for producing biofuels from waste via pyrolysis, 
including fixed beds, rotary kilns, fluidized beds, rotating 
cones, vacuum reactors, and ablative reactors (Rahimi et al. 
2022). The generation of biofuels via waste gasification 
technologies has mainly focused on fixed beds, fluidized 
beds, entrained beds, and plasma reactors (Rahimi et al. 
2022). These technologies are essential to convert the energy 
potential of waste materials (Nabi et al. 2022).

It is important to highlight that residual lignocellulosic 
biomass is a great source of natural sugars derived from 
biopolymers (e.g., hemicellulose, cellulose, and lignin), 
which are relevant feedstocks in the operation of biorefin-
eries to obtain a variety of platform chemicals (Patra et al. 
2022). The chemical structure of this waste presents a sig-
nificant challenge for biomass processing and transformation 
during biofuel production (De Bhowmick et al. 2018). Cur-
rently, various lignocellulosic biomass pretreatment methods 
and technologies (e.g., chemical, physical, physicochemical, 
and biological approaches) can be combined to achieve this 
goal, see Fig. 4.

The pretreatment stage plays an important role in the 
sugar conversion process because it modifies the structure 
and composition of biomass (Haldar and Purkait 2021). 
Chemical and enzymatic methods have shown the best per-
formance for the generation of sugars from lignocellulosic 
biomass (Lu et al. 2022). Although physical and chemical 
pretreatments have been successful in the production of 
biofuels, their main limitations are the high consumption 
of energy and water, the use of specialized equipment and 
expensive reagents, and the generation of inhibitory com-
pounds that affect biofuel yield and can generate harmful 
and toxic residues for human health (Ahmed et al. 2022b). 
Therefore, biological pretreatments are usually suggested 
because they can operate under moderate reaction condi-
tions (temperature and pressure close to ambient conditions) 
and are mainly based on the application of microorganisms 
or enzymes that can alter the structure of lignocellulosic 
biomass with a low energy demand in an environmentally 
friendly manner, making them a promising method for the 
production of biofuels (Ahmed et al. 2022b). Note that the 
incubation time and efficiency are factors that limit the uti-
lization and selection of biological methods over other pre-
treatments (Vasco-Correa et al. 2016). This step results in 

Fig. 3  Thermochemical and biochemical methods for biomass conversion into biofuels
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higher biomass saccharification and generation of bioalco-
hols (Kumar et al. 2020), which, together with fermentation, 
are considered the fundamental stages involved in bioalco-
hol production from lignocellulosic biomass (Cherian et al. 
2022).

Biodiesel

Biodiesel has a chemical composition of fatty acid alkyl 
esters and is a strong candidate to replace conventional 
petrodiesel in the future. This biofuel can contribute to 
the global energy crisis because of its multiple benefits, 
including good performance in combustion engines, low 
generation of polluting gases (greenhouse gases), non- or 
low toxicity, biodegradability, and sustainability (Sentanu-
hady et al. 2022). Biodiesel is generally obtained using four 
conventional methods: direct blending or dilution, micro-
emulsion, thermal cracking/pyrolysis, and transesterification 
(Velusamy et al. 2021).

Direct blending or dilution is a cost-effective and sim-
ple method in which non-edible oils are directly used as 
fuels (Vellaiyan 2020) or mixed with petrodiesel, gasoline, 

ethanol, or other solvents to improve their physicochemical 
properties (e.g., decrease in viscosity and increase in cetane 
index and volatility) for an efficient and satisfactory use in 
combustion engines (Nayab et al. 2022).

On the other hand, microemulsion is an effective and 
viable method for reducing the viscosity of raw vegetable 
oils (Nayab et al. 2022). Recent studies have indicated that 
the use of alcohols (e.g., methanol, ethanol, butanol, and 
hexanol) can reduce the viscosity of vegetable oils when 
microemulsions are used (Nayab et al. 2022). Higher-chain 
alcohols and alkyl nitrates are commonly utilized as sur-
factants and cetane improvers, respectively (Vellaiyan 2020). 
This method is energetically profitable and does not require 
previous treatment of vegetable oils to produce biodiesel 
with properties comparable to those of traditional diesel 
(Devarajan et al. 2022).

The pyrolytic processes to transform oils and fats are car-
ried out under an inert atmosphere (absence of oxygen or air) 
in a temperature range of 350–800 °C, with or without the 
presence of catalysts. This thermochemical process breaks 
the chemical bonds of triglyceride chains to obtain biodiesel 
(Pydimalla et al. 2023). Catalytic pyrolysis has been reported 

Fig. 4  Summary of methods and technologies used in the pretreatment of lignocellulosic biomass
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to improve the reaction rate and biodiesel conversion rate, 
as well as its quality, eliminating oxygenated products and 
lowering acidity (Ong et al. 2019). Several catalysts, such as 
zeolites, alumina, sodium and potassium hydroxide, sodium 
carbonate, and carbon-based catalysts, can be used in the 
catalytic pyrolysis (Abdelfattah et al. 2018). Currently, flu-
idized bed reactors (e.g., bubbling and circulating) (Mul-
len and Boateng 2019), concentrated solar rotating reactors 
(Niyas and Shaija 2023), and microwave (Anis et al. 2021) 
have been proposed for biodiesel production. The yield and 
properties of biofuels are strongly related to parameters such 
as feedstock, reactor design, heating rate, pyrolysis temper-
ature, residence time, and catalyst type (Abdelfattah et al. 
2018). Biodiesel obtained using this method shows improved 
physicochemical properties such as a high cetane index, low 
sulfur content, and viscosity (Pydimalla et al. 2023). How-
ever, the biodiesel obtained from this route must be neutral-
ized and pretreated because of its high moisture content and 
low density (Johansson et al. 2021).

Transesterification (alcoholysis) is the most common 
method for producing biodiesel and consists of a reaction 
between triglycerides (lipid source) and an alcohol, pref-
erably short chain (methanol and ethanol), in the presence 
of a catalyst (homogeneous, heterogeneous, or biocatalyst) 
(Pydimalla et al. 2023). Generally, the variables that have the 
greatest impact on the profitability of the transesterification 
process are the catalyst (type, loading, and concentration), 
alcohol-to-oil molar ratio, temperature, stirring, and reac-
tion time (Günay et al. 2019). It is worth noting that the 
(reversible) transesterification reaction requires a stoichio-
metric alcohol-to-oil molar ratio of at least 3/1 to complete 
the chemical reaction and favors the production of biodiesel 
and glycerol (a valuable by-product) (Günay et al. 2019). 
In general, excess alcohol is required to shift the reaction 
forward, thus favoring the formation of products (Ahmed 
et al. 2023). Catalytic transesterification is currently one of 
the preferred and most widely used methods because of its 
simplicity and the fact that a wide variety of lipid sources 
and catalysts can be employed, thus offering high conver-
sion and biodiesel yields under moderate reaction condi-
tions (Nayab et al. 2022; Shahbeik et al. 2022; Pandit et al. 
2023). Novel and innovative synthesis methods have been 
proposed to obtain biodiesel, including transesterification 
using microwave technology, in situ transesterification, ultra-
sound-assisted transesterification, transesterification using 
membrane technology, reactive distillation, and supercritical 
fluid technology (non-catalytic method) (Quah et al. 2019).

Renewable diesel

Renewable diesel is also known as green diesel (Knothe 
2010), hydrotreated vegetable oil (HVO) (Douvartzides 
et al. 2019), or 2G diesel (Julio et al. 2022). This renewable 

fuel is a mixture of saturated straight-chain and branched 
hydrocarbons  (C15–C18) (Douvartzides et al. 2019), mainly 
composed of paraffins with properties comparable to those 
of petrodiesel. Some attractive properties of this biofuel are 
its high cetane content and calorific value, low oxygen con-
tent, excellent storage stability, non-corrosiveness, and high 
energy density (Chia et al. 2022). Therefore, this biofuel can 
be used as an additive or directly as fuel in diesel engines, 
showing excellent performance and a decrease in the emis-
sion of polluting gases  (CO2) into the atmosphere compared 
to traditional diesel (Knothe 2010). Lipid-rich feedstocks 
(i.e., oils, animal fats, and lignocellulosic biomass) are gen-
erally used to produce renewable diesel (Douvartzides et al. 
2019). Depending on the type of feedstock used, different 
synthesis routes and technologies can be utilized to produce 
renewable diesel, see Fig. 5. Renewable diesel from ligno-
cellulosic biomass, starches, carbohydrates, and sugars can 
be obtained via biological and catalytic conversion, gasi-
fication, Fischer–Tropsch (biomass to liquid process), and 
pyrolysis, whereas lipid sources (triglycerides) are mainly 
treated by thermochemical processes (pyrolysis) and hydro-
processing/hydrotreatment (Chia et al. 2022). These biomass 
conversion processes require advanced and efficient tech-
nologies to achieve the highest quality and yield of products 
with the lowest cost and environmental impact (Chia et al. 
2022).

Bioalcohols

Bioalcohols (bioethanol, biopropanol, and biobutanol) have 
increased in popularity worldwide and are considered green 
and renewable alternative sources of energy (Ambaye et al. 
2021). They can also be obtained from various biomass 
sources (Huzir et al. 2018). This is particularly important 
for diversifying the energy resources and reducing the reli-
ance on a single feedstock type (Renewables  2020). Differ-
ent studies have improved and developed new techniques to 
produce bioalcohols with the aim of achieving properties 
comparable to those of gasoline (i.e., flammability, thermal 
efficiency, high evaporation enthalpy, and octane rating) 
(Singh et al. 2020). Bioalcohol production from biomass 
involves a series of stages such as pretreatment, enzymatic 
hydrolysis, saccharification, fermentation, and purification 
(e.g., distillation), see Fig. 6.

Bioconversion of lignocellulosic biomass from modified 
microorganisms (metabolically and genetically) has become 
an excellent option for increasing the production of bioal-
cohols (Lu et al. 2022). Recent studies have indicated that 
microbes belonging to the actinobacteria can generate a wide 
variety of efficient enzymes used in the decomposition and 
degradation of biomass (Lu et al. 2022). The ability to use 
these enzymes to break down lignocellulosic materials is a 
significant step toward making the bioalcohol production 
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more efficient and cost-effective. This is also evidence of the 
versatility of nature and value of microbial diversity in sus-
tainable bioprocesses. For example, hydrolytic enzymes can 
easily obtain sugars. Several researchers have reported that 
biomass pretreatment plays a fundamental role in achieving 
high amounts of simple sugars for subsequent fermentation 
(Avinash et al. 2020). Saccharification reactions (Cherian 

et al. 2022) and fermentation (Luo et al. 2020) are consid-
ered to have the greatest impact on bioalcohol conversion 
from lignocellulosic biomass.

Microbes are important in the fermentation process and 
are used to obtain value-added chemicals, combustion gases, 
and biofuels (bioalcohols) via the biological transformation 
of lignocellulosic biomass (Luo et  al. 2020). Note that 

Fig. 5  Synthesis routes and 
technologies used to produce 
renewable diesel from biomass

Fig. 6  Methods and technologies involved in the production of bioalcohols from biomass
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ethanol and butanol are usually produced by the fermentation 
of a wide variety of biomass sources based mainly on the 
traditional industrial process known as acetone-butanol-
ethanol (ABE) fermentation (Carmona-García et al. 2021). 
On the other hand, nanocatalysts have been used to improve 
bioalcohols production in the synthesis gas (syngas) 
fermentation (Avinash et al. 2020). Specifically, a wide 
group of metallic nanoparticles, such as ruthenium and 
nickel (Cimino et al. 2018), palladium over Mg–Al oxides 
(Quesada et al. 2018), copper (Siqueira et al. 2019), zinc 
(Gu et al. 2022) among others, has been used as effective 
catalysts for their production. Cherian et al. (2022) proved 
that nanocatalysts derived from zeolites, hydroxyapatite, 
and hydrotalcites can exhibit high catalytic activity and 
selectivity in the conversion of ethanol to butanol. In 
addition, CuZnAlOOH catalysts have been utilized in a two-
step hydrolysis to produce ethanol from syngas (Gu et al. 
2022).

Bio‑oil

In recent years, bio-oil has attracted attention as a novel 
renewable biofuel because of its biodegradability and envi-
ronmental friendliness. Another advantage of this biofuel 
is its high energy density, ease of storage, and performance 
during its utilization in combustion engines, which reduces 
the levels of polluting gases  (CO2,  NOx, and  SOx) released 
into the atmosphere (Zhang et al. 2020b). Currently, ther-
mochemical techniques (pyrolysis and liquefaction) are the 
most used to produce bio-oil from biomass, see Fig. 7. Other 
technologies such as hydrolysis/solvolysis can be employed 
(Biswas et al. 2021). The pyrolytic (400–600 °C) and liq-
uefaction (250–400 °C) processes have different operating 
temperature conditions (Velusamy et al. 2021). Note that 
bio-oils are characterized by a complex composition with 
a wide molecular weight, highly oxygenated compounds, 
and low pH values (2–3). Therefore, the complete deoxy-
genation of the bio-oil is required to improve its properties 
such as viscosity and oxidative stability (Nogales-Delgado 
et al. 2020) and, caloric value and acidity (Li et al. 2021). 
It is convenient to point out that the properties of bio-oil 
can be improved via the use of chemical / physical (Bridg-
water 2018) and catalytic methods (Mardiana et al. 2022). 
For example, Bridgwater (2018) achieved physical improve-
ments in pyrolytic bio-oil obtained from filtration, emulsion, 
and solvent addition processes. Various researchers have 
opted for novel catalytic methods, such as hydrodeoxygena-
tion and zeolite cracking, to improve and overcome these 
limitations in terms of oxygenation and stability (Mardiana 
et al. 2022). The hydrodeoxygenation process requires the 
presence of catalysts (i.e., CoMo, NiMo, Ru, Pd, and Pt) for 
the total deoxygenation of the bio-oil and oxygen elimina-
tion in the form of water. The main factors that affect the 

properties and performance of bio-oil during this process 
are the residence time, temperature, type of solvent, type of 
catalyst, and hydrogen pressure (Zhang et al. 2021).

Bio‑jet

Traditionally, the kerosene produced from crude oil has 
been used to produce aviation fuel. Approximately, 300 
million tons of aviation fuel are consumed every year 
globally, and this demand will double by 2050 (Hussain 
et al. 2022). It is concerning that the aviation industry con-
tributes 2.5% of global  CO2 emissions (Ravindran et al. 
2022). Therefore, the transition to bio-jet in the aviation 
industry is not just a desirable move but a necessary one 
(Skrotskyi et al. 2019). As air travel has become increas-
ingly vital in a globalized world, it is imperative to address 
the sector’s carbon footprint and its contribution to climate 
change. The fact that aviation is responsible for a signifi-
cant share of global  CO2 emissions highlights the urgency 

Fig. 7  Thermochemical methods for biomass transformation to bio-
oil
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to find sustainable alternatives for the energy supply of 
this sector. Bio-jet, often known as aviation turbine fuel, 
can be used as a replacement for conventional kerosene in 
the aviation industry (Wei et al. 2019). The typical com-
position of a bio-jet consists of hydrocarbons  (C8–C16), 
such as alkanes, iso-alkanes, naphthenic or naphthenic 
derivatives, and aromatic compounds (Wei et al. 2019). 
Biochemical and thermochemical routes have been devel-
oped to produce this biofuel, see Fig. 8. The first pathway 
involves the use of enzymes or microorganisms, whereas 
the second pathway utilizes processes such as syngas 
derived from pyrolysis or gasification technologies (Wei 
et al. 2019). The catalytic hydrodeoxygenation of biomass-
derived oil and the Fischer–Tropsch synthesis of biomass-
derived syngas are common technologies to obtain bio-jet 
(Wei et al. 2019).

Hydrodeoxygenation and hydro-thermolysis methods 
consist of a series of reactions, such as catalytic hydro-
genation, hydrodeoxygenation, carboxylation, cyclization, 
cross-linking, cracking, hydrolysis, and isomerization, 
which allow obtaining high-energy biofuels with suitable 
properties such as thermal stability, high cetane number, 
and low tailpipe emissions, but with low aromatic content 
(Wei et al. 2019).

The Fischer–Tropsch (FT) process converts syngas 
into transportation fuels with high specific energy and no 
sulfur emissions (Liu et al. 2013). This process involves 
six steps: feedstock pretreatment, biomass gasification, 
gas conditioning, acid gas removal, FT synthesis, and 
syncrude refining (Wei et al. 2019). The selectivity of 
the catalyst is fundamental for obtaining target hydrocar-
bons. However, these technologies involve multiple steps 
and complex procedures. Continuous efforts to develop 
optimal processes are being undertaken to obtain more 
economical and sustainable technologies, where catalytic 
co-pyrolysis stands out as a simple and effective alterna-
tive to obtain high-quality biofuels (Wei et al. 2019).

Recent advances on the thermochemical 
transformation of biomass into biofuels

It is clear that various types of biomass have been used as 
raw materials to produce bioenergy (electricity) and biofuels 
(biochar, syngas, biohydrogen, bio-oil, biogas, biodiesel, 
and bioethanol) using different methods and conversion 
techniques (Lee et al. 2019). The most relevant biomass 
sources for biofuel production include wood, agricultural 
residues, oil sources (used cooking oils), and aquatic 
biomass (microalgae) (Lee et al. 2019). In the following 
sections, recent studies on biofuel production and their 
results are discussed (Wang et al. 2020).

Biodiesel

As discussed in Sect. "Biodiesel", biodiesel is one of the 
most widely studied biofuels as an alternative to petroleum 
derivatives. Commercial biodiesel is produced from edible 
oils. However, this is not a sustainable long-term solution. 
To offer a long-term option, the selection of biomass 
feedstock to obtain oil that will be converted into biodiesel 
is fundamental. Therefore, diverse and attractive biomass 
wastes have been proposed for its production. Table  1 
shows recent studies that have focused on the feasibility and 
valorization of alternative biomass-derived oils to produce 
biodiesel.

Shen et al. (2018) evaluated the performance of Xan-
thoceras sorbifolia Bunge seed kernel oil as a raw mate-
rial for biodiesel production. This biomass has a high lipid 
content and composition like that of conventional diesel, 
which makes it an imminent and promising raw material 
for biodiesel production. The seeds were dried at 80 °C and 
ground to carry out oil extraction via the Soxhlet method 
using petroleum ether as the solvent at 120 °C for 5 min, 
leaching for 1 h, and a subsequent recovery for 25 min. 
Transesterification was performed using 0.06 g of oil, 4 mL 

Fig. 8  Conversion methods used to produce bio-jet from biomass



955Application of waste biomass for the production of biofuels and catalysts: a review  

Ta
bl

e 
1 

 R
ec

en
t s

tu
di

es
 o

f u
se

 o
f b

io
m

as
s w

as
te

 a
s p

ot
en

tia
l f

ee
ds

to
ck

 to
 p

ro
du

ce
 b

io
di

es
el

W
as

te
C

at
al

ys
t

B
io

m
as

s t
re

at
m

en
t c

on
di

tio
ns

Re
ac

tio
n 

co
nd

iti
on

s
Y

ie
ld

 o
r c

on
ve

rs
io

n,
 %

Re
fe

re
nc

es

Tr
an

se
ste

ri
fic

at
io

n
W

as
te

 se
w

ag
e 

sl
ud

ge
N

i/H
ZS

M
-5

Fa
st 

py
ro

ly
si

s:
 5

00
 °C

, p
ar

tic
le

 
si

ze
: 0

.6
 m

m
, v

ap
or

 re
si

de
nc

e 
tim

e:
 1

.9
5 

s

25
9 

°C
, 3

.2
3 

h,
 e

th
an

ol
/o

il 
ra

tio
: 

2.
5:

1,
 1

.2
 g

 o
f n

ic
ke

l-m
od

ifi
ed

 
H

ZS
M

-5

67
A

ra
zo

 e
t a

l. 
(2

01
7)

Pa
ss

io
n 

fr
ui

t
H

2S
O

4
So

xh
le

t e
xt

ra
ct

io
n 

(s
ee

ds
): 

so
lv

en
t (

he
xa

ne
), 

4 
h,

 th
e 

O
/

so
lv

en
t m

ix
tu

re
 w

as
 tr

ea
te

d 
w

ith
  M

gS
O

4 (
2 

h)
 to

 re
m

ov
e 

w
at

er

70
 °C

, 2
 h

, m
et

ha
no

l/o
il 

m
ol

ar
 

ra
tio

: 7
/1

,  H
2S

O
4/O

 m
ol

ar
 

ra
tio

: 0
.0

9

99
Ih

a 
et

 a
l. 

(2
01

8)

G
ua

va
 fr

ui
t

99
C

as
to

r o
il

K
O

H
–-

60
 °C

, 3
0 

m
in

, 1
 w

t%
 o

f K
O

H
, 

m
et

ha
no

l/o
il 

ra
tio

: 9
/1

95
K

ee
ra

 e
t a

l. 
(2

01
8)

Xa
nt

ho
ce

ra
s s

or
bi

fo
lia

 B
un

ge
 

se
ed

 k
er

ne
l o

il
So

xh
le

t e
xt

ra
ct

io
n:

 p
et

ro
le

um
 

et
he

r, 
12

0 
°C

, 5
 m

in
, l

ea
ch

in
g 

fo
r 1

 h
, r

ec
ov

er
y 

fo
r 2

5 
m

in

0.
06

 g
 o

f o
il,

 4
 m

L 
is

oo
ct

an
e,

 
0.

2 
m

L 
K

O
H

–m
et

ha
no

l 
(2

 m
ol

/L
), 

30
 s

10
0

Sh
en

 e
t a

l. 
(2

01
8)

Po
ng

am
ia

 p
in

na
ta

 ra
w

 o
il

Fe
3O

4 n
an

op
ar

tic
le

s i
m

pr
eg

na
te

d 
eg

gs
he

ll 
(C

ES
-F

e 3
O

4)
––

65
 °C

, 2
 h

, m
et

ha
no

l/o
il 

ra
tio

: 
12

/1
, 2

%
 o

f C
ES

-F
e 3

O
4

98
C

hi
ng

ak
ha

m
 e

t a
l. 

(2
01

9)

Pi
g 

fa
t a

nd
 n

ee
m

 (A
za

di
ra

ch
ta

 
in

di
ca

 a
.Ju

ss
) s

ee
ds

C
aO

2 
kg

 o
f p

ig
 fa

t w
as

he
d 

w
ith

 
di

so
di

um
 c

ar
bo

na
te

 a
nd

 
di

so
di

um
 su

lfa
te

. N
ee

m
 o

il 
re

m
ov

al
 b

y 
he

at
in

g,
 3

0 
°C

, 
20

 m
in

60
 °C

, 5
8 

m
in

, 2
.1

79
 g

 o
f C

aO
, 

m
et

ha
no

l/n
ee

m
 o

il-
pi

g 
fa

t 
(6

0/
40

): 
5.

9/
1

98
A

de
po

ju
 (2

02
0)

C
or

n 
oi

l
Sr

O
-Z

nO
/A

l 2O
3 b

ifu
nc

tio
na

l
–

70
 °C

, 3
 h

, e
th

an
ol

/o
il 

ra
tio

: 
10

/1
, 1

0%
 o

f S
rO

–Z
nO

/A
l 2O

3 
bi

fu
nc

tio
na

l

95
A

l-S
aa

di
 e

t a
l. 

(2
02

0)

Ju
pa

ti 
(R

ap
hi

a 
ta

ed
ig

er
a 

M
ar

t.)
 

oi
l

M
ur

um
ur

u 
ke

rn
el

 sh
el

l b
io

ch
ar

 
su

lfo
na

te
d

–
13

5 
°C

, 4
 h

, m
et

ha
no

l/o
il 

ra
tio

: 
30

/1
, 6

%
 o

f M
ur

um
ur

u 
ke

rn
el

 
sh

el
l b

io
ch

ar
 su

lfo
na

te
d

92
B

as
to

s e
t a

l. 
(2

02
0)

W
as

te
 c

ot
to

n-
se

ed
 c

oo
ki

ng
 o

il
K

O
H

 a
nd

 C
aO

–
K

O
H

: m
et

ha
no

l/o
il 

ra
tio

: 6
.1

/1
, 

53
 °C

, 0
.4

6%
K

O
H

: 9
8

Sh
ar

m
a 

et
 a

l. 
(2

02
0)

C
aO

: m
et

ha
no

l/o
il 

ra
tio

: 1
0.

9/
1,

 
48

 °C
, 0

.9
6%

C
aO

: 9
6

Te
rm

in
al

ia
 c

he
bu

la
 o

il
C

uO
So

xh
le

t a
nd

 m
ec

ha
ni

ca
l 

ex
tra

ct
io

n 
(s

ee
ds

): 
50

 g
 o

f 
bi

om
as

s, 
n-

he
xa

ne
: 3

00
 m

L,
 

15
 h

60
 °C

, 1
 h

, m
et

ha
no

l/o
il 

ra
tio

: 
9/

1,
 3

%
 o

f C
uO

, 6
50

 rp
m

97
Ya

tis
h 

et
 a

l. 
(2

02
1)

So
xh

le
t e

xt
ra

ct
io

n 
(le

av
es

): 
50

 g
 

of
 b

io
m

as
s, 

72
 h

, t
he

 w
at

er
-

ex
tra

ct
 w

as
 d

rie
d 

(8
0 

°C
, 3

 h
)

W
as

te
 se

w
ag

e 
sl

ud
ge

N
aO

H
So

xh
le

t e
xt

ra
ct

io
n:

 se
w

ag
e 

sl
ud

ge
 to

 M
eO

H
 ra

tio
: 1

/1
0,

 
70

 °C
, 8

 h

60
 °C

, 4
 h

, m
et

ha
no

l/o
il 

ra
tio

: 
9/

1,
 5

%
 o

f N
aO

H
84

A
ls

ae
di

 e
t a

l. 
(2

02
2)



956 R. A. Quevedo-Amador et al.

Ta
bl

e 
1 

 (c
on

tin
ue

d)

W
as

te
C

at
al

ys
t

B
io

m
as

s t
re

at
m

en
t c

on
di

tio
ns

Re
ac

tio
n 

co
nd

iti
on

s
Y

ie
ld

 o
r c

on
ve

rs
io

n,
 %

Re
fe

re
nc

es

W
ild

 m
us

ta
rd

 (S
in

ap
is

 A
rv

en
si

s)
 

se
ed

 o
il

La
Ti

O
3

–
80

 °C
, 1

 h
, m

et
ha

no
l/o

il 
ra

tio
: 

4/
1,

 5
%

 (1
00

 m
g)

 o
f  L

aT
iO

3

92
Re

za
ni

a 
et

 a
l. 

(2
02

2)

C
itr

us
 m

ed
ic

a 
se

ed
 o

il
C

uO
 n

an
op

ar
tic

le
s

So
xh

le
t e

xt
ra

ct
io

n:
 5

 g
 o

f 
bi

om
as

s, 
n-

he
xa

ne
: 2

50
 m

L,
 

60
 °C

, 5
 h

85
 °C

, 2
 h

, m
et

ha
no

l/o
il 

ra
tio

: 8
/1

, 0
.1

8%
 o

f C
uO

 
na

no
pa

rti
cl

es

93
Ro

zi
na

 e
t a

l. 
(2

02
2)

W
as

te
 c

oo
ki

ng
 o

il
B

an
an

a 
ps

eu
do

ste
m

 b
as

ed
-a

sh
–

60
 °C

, 2
 h

, m
et

ha
no

l/o
il 

ra
tio

: 
9.

35
/1

, 4
.7

%
 o

f b
an

an
a 

ps
eu

do
ste

m
 b

as
ed

-a
sh

98
D

ai
m

ar
y 

et
 a

l. 
(2

02
3)

Jo
jo

ba
 (S

im
m

on
ds

ia
 c

hi
ne

ns
is

) 
se

ed
 o

il
K

O
H

M
ec

ha
ni

ca
l e

xt
ra

ct
io

n:
 so

lv
en

t 
(n

-h
ex

an
e)

/B
 ra

tio
: 1

4.
6 

cc
/1

 g
, 

64
.5

 °C
, 1

87
.7

 m
in

, 9
3.

2 
rp

m

50
 °C

, 2
.2

5 
h,

 m
et

ha
no

l/o
il 

ra
tio

: 
5.

5/
1,

 0
.4

75
%

 o
f K

O
H

67
Sa

fa
rip

ou
r e

t a
l. 

(2
02

3)

C
an

na
bi

s s
at

iv
a 

se
ed

 o
il

B
i 2O

3 n
an

o-
ca

ta
ly

st
So

xh
le

t e
xt

ra
ct

io
n:

 5
 g

 o
f 

bi
om

as
s, 

n-
he

xa
ne

: 2
30

 m
L,

 
60

 °C
, 5

–6
 h

92
 °C

, 3
.5

 h
, 1

.5
 w

t.%
 o

f  B
i 2O

3 
na

no
-c

at
al

ys
t, 

m
et

ha
no

l/o
il 

ra
tio

: 1
2/

1,
 m

em
br

an
e 

re
ac

to
r

92
Sa

w
ai

ra
 e

t a
l. 

(2
02

3)

Py
ro

ly
si

s
C

as
to

r r
aw

 o
il

N
aO

H
 a

nd
 Z

M
S-

5 
co

m
bi

ne
d 

w
ith

 N
aO

H
C

at
al

yt
ic

 p
yr

ol
ys

is
23

3–
34

7 
°C

, 2
00

–3
10

 m
in

, 1
 

w
t%

 N
aO

H
, 1

 L
 o

f o
il

92
A

bd
el

fa
tta

h 
et

 a
l. 

(2
01

8)

W
as

te
 c

la
y 

oi
l

C
u/

ac
tiv

at
ed

 c
ar

bo
n

C
at

al
yt

ic
 p

yr
ol

ys
is

55
0 

°C
, 0

.2
 L

/m
in

  N
2, 

10
 g

 
of

 o
il,

 1
5%

 o
f C

u/
ac

tiv
at

ed
 

ca
rb

on

91
Y

ua
n 

et
 a

l. 
(2

02
1)

Su
pe

rc
ri

tic
al

 fl
ui

ds
W

as
te

 se
w

ag
e 

sl
ud

ge
-

D
ry

in
g 

at
 1

05
 °C

 fo
r 2

 d
ay

s 
So

xh
le

t e
xt

ra
ct

io
n 

w
ith

 h
ex

an
e

10
0 

°C
, 5

 h
, m

et
ha

no
l/o

il 
ra

tio
: 

10
/1

,7
%

 o
f i

on
ic

 li
qu

id
90

O
lk

ie
w

ic
z 

et
 a

l. 
(2

01
6)

C
al

op
hy

llu
m

 in
op

hy
llu

m
 o

il
–

C
ol

d 
pr

es
si

ng
 o

f s
ee

ds
34

9.
85

–3
99

.8
5 

°C
, 0

.5
 h

, 
30

 M
Pa

, m
et

ha
no

l/o
il 

ra
tio

: 
40

/1
, M

et
hy

l t
er

t-b
ut

yl
 e

th
er

, 
M

et
hy

l a
ce

ta
te

, D
im

et
hy

l 
ca

rb
on

at
e

M
et

ha
no

l a
nd

 
di

m
et

hy
l 

ca
rb

on
at

e:
 >

 80
M

et
hy

l a
ce

ta
te

: 6
0

M
et

hy
l t

er
t-b

ut
yl

 
et

he
r: 

70

La
m

ba
 e

t a
l. 

(2
01

7)

Pi
g 

fa
t

–
–

29
0 

°C
, m

et
ha

no
l/o

il 
ra

tio
: 

67
.5

/1
99

Po
ud

el
 e

t a
l. 

(2
01

7)

Sc
hi

zo
ch

yt
ri

um
 li

m
ac

in
um

 
m

ic
ro

al
ga

e
–

Ly
op

hi
liz

ed
 p

ow
de

r
26

9.
85

 °C
, 4

0 
m

in
, 2

0 
M

Pa
, 

m
et

ha
no

l/o
il 

ra
tio

 (v
/w

t):
 1

0/
1

 >
 90

R
at

hn
am

 a
nd

 M
ad

ra
s (

20
19

)

Sc
hi

zo
ch

yt
ri

um
 li

m
ac

in
um

 
m

ic
ro

al
ga

e
–

–
31

9.
85

 °C
, 5

0 
m

in
Et

ha
no

l: 
>

 95
R

at
hn

am
 e

t a
l. 

(2
02

0)

37
9.

85
 °C

, 5
0 

m
in

, 2
0 

M
Pa

, 
ra

tio
 o

f a
lg

ae
 to

 e
th

yl
at

in
g 

ag
en

t (
w

t./
v)

: 1
/1

0

Et
hy

l a
ce

ta
te

: >
 60

R
ap

es
ee

d 
oi

l
–

–
85

0 
°C

, 0
.5

 h
, 2

0 
M

Pa
, w

at
er

/
m

et
hy

l a
ce

ta
te

 ra
tio

: 2
 w

t%
 

(8
.3

 m
ol

%
)

97
.9

5
R

id
w

an
 e

t a
l. 

(2
02

0)



957Application of waste biomass for the production of biofuels and catalysts: a review  

of isooctane, 0.2 mL of KOH–methanol (2 mol/L), and this 
system reached a biodiesel conversion of 99.77%.

Abdelfattah et al. (2018) focused on the production of 
biodiesel from the pyrolysis of raw castor oil employing 
different types of catalysts. A biodiesel yield of 91.7% was 
obtained from oil catalytic pyrolysis, which was carried 
out under the following reaction conditions: 1 L of oil, 
233–347 °C, 200–310 min and 1 wt% NaOH.

The use of supercritical fluids to produce biodiesel 
is an interesting alternative because methanol (or other 
alcohols) acts as a medium and reactant without the need 
for a catalyst, thus causing that the catalyst separation is 
not needed, and the reaction time is shorter than that of the 
catalytic reaction (Lee et al. 2021). The advantages of this 
approach were demonstrated by Lamba et al. (2017). They 
tested Calophyllum inophyllum oil as a lipid feedstock for 
biodiesel production using dimethyl carbonate (DC), methyl 
acetate (MA), methyl tert-butyl ether (MTBE) and methanol 
(Met). Biodiesel production under non-catalytic supercritical 
conditions was performed by varying the temperature 
(250–400  °C) and time (3–180  min) under a constant 
pressure of 30 MPa and a reagent/oil molar ratio of 40/1. 
The highest biodiesel conversions (˃ 80%) were obtained 
at 30 min in the presence of the solvents DC and Met at 
350 °C, while with MA and MTBE at 400 °C achieved 
conversions of 60 and 70%, respectively (Zhang et al. 2016).

Trentini et al. (2019) tested the transesterification of 
grease trap waste under supercritical conditions. The 
effects of different water concentrations (in ethanol) on 
the production of ethyl esters were also evaluated. The 
reactions were carried out in a continuous reactor at several 
temperatures (275, 300, and 325 °C) and residence times 
(10, 20, and 30 min) using ethanol with water at various 
concentrations (2.5 to 10 wt%) at 20 MPa. Ester production 
improved with the use of water at low residence times. The 
highest ester yield (92.6%) and lowest content of unreacted 
compounds (5.5 wt%) were obtained using ethanol with 2.5 
wt% of water.

Soy sauce residue (SSR) is a by-product of soy sauce 
production, where 450,000 tons/year of this waste is 
generated globally (Xiang et  al. 2019). This biomass 
contains up to 36% oil and can be used to produce biodiesel. 
Xiang et al. (2019) produced biodiesel from SSR using a 
novel process based on supercritical  CO2 and evaluated the 
influence of parameters such as the size of the raw material, 
reaction pressure, temperature, time, and methanol/oil molar 
ratio. It is noteworthy that the oil showed a high free fatty 
acid content (71 mg KOH/g), which negatively impacted 
the traditional alkaline transesterification. However, its 
effect was negligible in supercritical systems. The optimal 
conditions were a particle size of 60 mesh, 16 MPa, 100 °C, 
180 min, and a methanol-to-oil molar ratio of 35:1. This 
system resulted in a biodiesel yield of 96%.Ta
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Two types of residual biomass (neem oil seed and pig 
fat) from different origins were used as lipidic feedstock in 
catalytic transesterification by Adepoju (2020). Disodium 
carbonate was used to wash pork fat under continuous 
stirring for 25  min. Two phases were formed, and 
centrifugation was used for separation. The mixture with 
a ratio (v/v) of neem oil/pig fat of 60/40 presented low 
viscosity (1.50  mm2/s) and high fatty acid content. Hence, 
a previous esterification of the oil mixture was necessary. 
The catalytic transesterification of the mixture of esterified 
oils was carried out at 60 °C for 57 min, with a methanol/
neem oil-pig fat ratio of 5.9/1, and 2 g of catalyst (CaO). The 
system achieved a biodiesel yield of 98%.

Sewage sludge has become an important biomass that 
is widely used as a raw material for the production of bio-
diesel (Arazo et al. 2017; Alsaedi et al. 2022). The global 
sewage sludge production is calculated in 12.9 Mt, and its 
disposal accounts for 30–50% of the total cost of wastewater 
treatment plant operation (Capodaglio and Callegari 2018). 
Therefore, it is a valuable source of raw lipids. Arazo et al. 
(2017) used this biomass (0.6 mm particle size) for pyrolytic 
treatments as a bio-oil production method. The pyrolysis 
process was carried out at 500 °C for 1.95 s in a fluidized 
bed reactor. Once the process was completed, the bio-oil 
was used as a lipid feedstock to obtain biodiesel via catalytic 
transesterification. A biodiesel yield of 67.2% was achieved 
under the following optimal reaction conditions: 258.5 °C, 
3.23 h, ethanol-to-bio-oil mass ratio of 2.50, and catalyst 
loading of 1.2 g of nickel-modified HZSM-5. The obtained 
biofuel sample was of high quality with a caloric power of 
29.97 MJ/kg. In another study, Alsaedi et al. (2022) analyzed 
the utilization of municipal sewage sludge as an alternative 
energy source for biodiesel production using methanol as a 
solvent for lipid extraction via the Soxhlet method. The opti-
mal extraction conditions were 70 °C for 8 h and a sewage 
sludge/methanol ratio of 1/10, obtaining a maximum lipid 
recovery of 27%. Biodiesel production was carried out via 
catalytic transesterification at 60 °C for 4 h with a methanol-
to-oil ratio of 9/1 and 5 wt% catalyst, with a biofuel yield of 
84%. This biodiesel complied with ASTM specifications and 
the quality requirements established worldwide.

Renewable diesel

The production of diesel from renewable sources is a prom-
ising approach in the biofuel industry. The biomass used to 
produce biodiesel can also be utilized to generate renewable 
diesel. Several types of biomass sources rich in triglycerides 
(edible/non-edible oil, vegetable oils, natural fats, animal 
fats, greases, waste cooking oil, and lignocellulosic mate-
rial) can be used as raw materials to produce green biofu-
els (Douvartzides et al. 2019). As indicated, the production 
route and methods of renewable diesel vary depending on 

the type of starting raw material (Chia et al. 2022). Recent 
statistics indicate that in 2020, the USA stood out with a pro-
duction of 533 million gallons of green diesel, and greater 
production of this biofuel (2.65 billion gallons) is expected 
for 2024 (Kelly 2021). Table 2 shows the potential of bio-
mass as a raw material for obtaining renewable diesel.

The catalytic treatment of residual chicken fat has been of 
interest to the scientific community, as this waste is considered 
a suitable raw material for producing renewable diesel because 
approximately 10.7–12.9 million metric tons are generated per 
year (Aliana-Nasharuddin et al. 2020). Hanafi et al. (2016) 
used residual chicken fat as a low-cost feedstock to obtain 
renewable diesel via catalytic hydrocracking. The implemen-
tation of this technique enables the production of biofuels with 
physicochemical properties comparable to those of conven-
tional diesel or other types of fuels derived from petroleum. 
This renewable diesel production process was implemented in 
a continuous reactor at 400 °C, 6 MPa, 150 mL/min  H2, 450 
v/v  (H2/oil ratio), and LHSV of 4  h−1 with a maximum conver-
sion of 94.2%. The results showed that the catalyst maintained 
good stability and could be used for several reaction cycles, 
thus efficiently producing naphtha with limited performance 
for the generation of long-chain alkanes.

Overall, it has been established that the cost of deoxy-
genation is lower than hydrodeoxygenation. This process has 
been explored by Aliana-Nasharuddin et al. (2020) to obtain 
green diesel via the catalytic deoxygenation of chicken fat oil 
using binary metal pairs (Ni–Mg, Ni–Mn, Ni–Cu, Ni–Ce) 
loaded on multi-walled carbon nanotubes (MWCNTs) as 
catalysts. A semi-batch reactor was used to determine the 
catalytic activity and effect of the catalysts in the deoxy-
genation reaction carried out at 350 °C for 2 h with 50 mL/
min  N2 and 3 wt% catalyst. Specifically, the catalyst with 10 
wt% Ni and 15 wt% Mg in the support  (Ni10-Mg15/MWCNT) 
showed the highest stability and catalytic activity, achieving 
90% conversion, where the green diesel satisfied the quality 
standards in terms of sulfur content and heating power.

Scaldaferri and Pasa (2019a) reported the production of 
liquid biofuels, such as renewable diesel, from upgrading 
reactions (deoxygenation, hydrogenation, and cracking) 
of cashew nutshell liquid (CNSL) in the presence of Pd/C 
catalysts under different conditions. This biomass is pro-
duced from Anacardium occidentale, a non-food product and 
industrial waste that can be used as a renewable raw material 
to obtain renewable diesel. Note that this biomass is easy to 
cultivate. The catalytic activity of palladium supported on 
activated carbon (Pd/AC) was evaluated. Catalyst tests were 
carried out in a batch reactor obtaining a maximum conver-
sion yield of 98% under the following optimal reaction con-
ditions: 10% w/w Pd/C, 300 °C, 10 h, 4 MPa, and 500 rpm. 
The production of renewable diesel derived from CNSL can 
be implemented on an industrial scale (biorefinery), offering 
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multiple benefits to the bioeconomy, environment, and trans-
port sectors.

Other authors have studied the use of cashew nutshell liquid 
as a raw material to prepare renewable diesel using different 
processes (e.g., hydroprocessing and hydrotreating) (Hapsari 
et al. 2020; Permata and Trisunaryanti 2020). Both Hapsari 
et al. (2020) and Permata et al. (2020) utilized different metals 
(Co and Ni, respectively) supported via wet impregnation of 
mordenite and evaluated their performance in the hydrotreat-
ment of cashew nutshell liquid. Catalysts prepared by Hapsari 
et al. (2020) (Co/Mordenite) and Permata and Trisunaryanti 
(2020) (Ni/Mordenite) showed high catalytic activity, reach-
ing similar renewable diesel conversions of 98.04 and 98.13%, 
respectively, under the same reaction conditions.

Yenumala et al. (2019) studied the hydrodeoxygenation 
of Karanja oil to produce renewable diesel using NiMo-
alumina as a catalyst. Under the tested reaction conditions, 
an increase in the reaction temperature and metal content of 
the catalyst favored the hydrodeoxygenation process. The 
optimal operating conditions (Ni/Mo molar ratio of 0.9/3.4, 
20 wt% catalyst, 340 °C, 4 h, and 3 MPa of  H2) allowed to 
obtain 100% conversion of oxygenated compounds. These 
authors emphasized that the catalyst was essential in the 
hydrodeoxygenation process for the effective production of 
renewable diesel made up of alkanes  (C15-C22) chains, which 
were similar to those of petrodiesel and can be used directly 
in diesel engines without the need for blending.

Yulia and Zulys (2020) studied the hydroprocessing 
of kemiri sunan oil to produce renewable diesel. These 
authors prepared a NiMoCe/γ–Al2O3 catalyst and evaluated 
its performance. The hydroprocessing of this oil was 
carried out in a closed batch reactor at 400 °C for 5 h and 
3.5 MPa, obtaining a maximum conversion of 58%. The 
incorporation of cerium on the catalytic surface favored the 
hydroprocessing of kemiri sunan oil and showed a better 
performance compared to other reported catalysts (e.g., 
sulfided NiMo/γ-Al2O3).

Muniyappan et al. (2023) studied the impact of operating 
temperature, blending ratio and catalyst addition on the 
renewable diesel composition via microwave co-pyrolysis 
of hydnocarpus de-oiled seed cake (HDSC) and waste 
electrical and electronic plastic (WEEP). These authors 
proposed a new approach of “treatment of wastes with 
waste” because the spent toner powder was converted 
into a low-cost catalyst via calcination at 600 °C to obtain 
magnetic  Fe3O4 nanoparticles. Co-pyrolysis was carried 
out at operating temperatures of 450, 500, and 550 °C and 
HDSC:WEEP mixture ratios of 100:0, 75:25, 50:50, 25:75, 
0:100. The results showed that the oil phase yield was higher 
when a 50:50 mixture ratio was used. This condition was 
established for the catalyst addition. The oil analysis showed 
that the oil produced had a high calorific value of 39.51 MJ/
kg and a viscosity of 2.71 cSt, which were comparable to 

those of commercial diesel. The use of a catalyst notably 
decreased oxygen and nitrogen compounds and promoted 
the formation of aromatic hydrocarbons. Finally, techno-
economic analysis revealed that a plant with a capacity 
of 1000 kg/h can be economically viable, with minimal 
production costs ($0.53/L in comparison to $1.15/L of 
commercial diesel in India).

Bioalcohols

The production of short-chain bioalcohols, such as ethanol 
and butanol, is generally carried out by the hydrolysis of a 
wide variety of lignocellulosic biomasses to obtain sugars 
(Jin et al. 2019), which are subsequently used in fermen-
tation by different microorganisms (Gomes et al. 2019). 
Saccharomyces cerevisiae is the most popular yeast (Sala-
fia et al. 2022) applied at an optimal temperature range of 
30–35 °C (Kruasuwan et al. 2022) for bioethanol production, 
and Clostridium acetobutylicum and Clostridium beijerinckii 
(Pugazhendhi et al. 2019) for biobutanol production at an 
optimum temperature of 35–37 °C (Wu et al. 2021).

Chemical hydrolysis is the preferred method for obtaining 
sugars because it is an economical and fast process, unlike 
enzymatic hydrolysis, which can last days (Constantino et al. 
2021). However, it depends on the raw material used; there-
fore, pretreatment methods can be combined to obtain better 
results. Table 3 reports recent studies on the use of biomass 
waste as feedstock for the production of bioalcohols.

Herein, it is convenient to highlight that the exploration 
of new sources of lignocellulosic biomass is fundamental. 
In this direction, Smuga-Kogut et al. (2019) proposed the 
use of lignocellulosic biomass obtained from areas that 
were excluded from agricultural production. Wastelands 
have diverse vegetation (e.g., grass and shrubs) with easy 
access, and their collection does not involve specialized 
equipment. These authors used ionic liquids (ILs) for 
lignocellulose pretreatment because these chemicals are 
environmentally friendly due to their low toxicity. The 
biomass was pretreated with 1-ethyl-3-methylimidazolium 
acetate (EMIMOAc) and 1-ethyl-3-methylimidazolium 
chloride (EMIMCl) to increase enzymatic hydrolysis. The 
mixture was then incubated at 120 °C for 2 h. Enzymatic 
hydrolysis was performed using commercial cellulase and 
fermentation with S. cerevisiae. The use of ILs has a positive 
impact by enhancing enzymatic hydrolysis. Finally, ethanol 
content also improved following the tendency: EMIMOAc 
(18.5 g/L) > EMIMCl (4.3 g/L) > untreated (0.32 g/L).

Aruwajoye et  al. (2020) used cassava peel waste to 
obtain bioethanol via chemical hydrolysis using HCl and 
enzymatic hydrolysis using α-amylase and amyloglucosi-
dase. The obtained sugar (0.58 g/g) was used by the yeast 
S. cerevisiae at 30 °C for 36 h to produce up to 0.53 g/g 
of bioethanol. Yusuf and Inambao (2019) employed only 
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the chemical hydrolysis of matooke peels from two species 
(Mbwazirume and Nakyinyika) with sulfuric acid (1.7%) at 
70 °C for 40 min to obtain a total sugar of 77.03 g/L with 
the Mbwazirume species and 75.32 g/L with the Nakyinyika 
species. This sugar fermentation achieved up to 71.54 and 
70.57 g/L of bioethanol, respectively. In addition, Chouaibi 
et al. (2020) opted for a single enzymatic hydrolysis of 
pumpkin peel using α-amylase and amyloglucosidase to 
obtain up to 84.36 g/L of bioethanol.

Watermelon rind (WMR) biomass was used as feedstock 
to produce ethanol via integrated and combinative 
sequential ultrasonication and deep eutectic solvent (DES) 
pretreatment, enzymatic hydrolysis, and fermentation 
(Fakayode et al. 2021). Note that DESs are inexpensive, easy 
to prepare, renewable, biocompatible, and biodegradable; 
thus, they are suitable for different applications. In this study, 
the DES was prepared using choline chloride and lactic acid. 
On the other hand, ultrasonication allows chemical reactions 
under mild conditions with reduced power requirements. The 
results indicated that the ethanol yield ranged from 0.276 to 
0.458 g/g of raw WMR, with fermentation efficiencies of 
54.12–89.80%, respectively. The maximum efficiencies were 
obtained using an ultrasonication power of 180 W, frequency 
of 40 kHz, time of 40 min, and DES reaction temperature of 
120 °C for 180 min. The combined pretreatment favored the 
delignification, solubilization, and hydrolysis of cellulose 
and hemicellulose into monomeric sugars.

Although chemical and enzymatic hydrolysis are the most 
popular and commonly used methods, other processes and 
microorganisms have been explored. They include solid/
liquid extraction with water to obtain sugars from different 
fruit residues (e.g., melon, pineapple, banana, apple, and 
mango) and the use of Wickerhamomyces sp. for fermen-
tation (Zanivan et al. 2022). This process generated up to 
21.63 g/L of bioethanol.

Biobutanol is an important fuel used in internal 
combustion engines (López-Linares et al. 2021) as well 
as a solvent and extractant (Hijosa-Valsero et al. 2018). 
Consequently, several types of biomass wastes have been 
studied as precursors for this biofuel. The biomass used 
for this purpose includes industrial tea waste (ITW) (Tekin 
et al. 2023), spent coffee grounds (SCG) (López-Linares 
et al. 2021), pea pod waste (Nimbalkar et al. 2018), and 
apple pomace (Hijosa-Valsero et al. 2017). For example, 
Hijosa-Valsero et al. (2017) studied apple pomace, which 
is the residue after juice extraction, as feedstock to produce 
biobutanol. Note that it has been estimated that the global 
apple production was approximately 84 million tons in 2014. 
Five soft physicochemical pretreatments (autohydrolysis, 
acids, alkalis, organic solvents, and surfactants) were tested 
in a high-pressure reactor, with subsequent traditional 
enzymatic treatment and fermentation with Clostridium 
beijerinckii. Nitric acid was the best reagent to pretreat Ta
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e 
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biomass at 120  °C. The analysis demonstrated 91% of 
sugar consumption confirming its effectiveness to produce 
3.55 g/L of acetone, 9.11 g/L butanol and 0.26 g/L ethanol. 
In contrast, Tekin et al. (2023) and López-Linares et al. 
(2021) used ITW and SCG, respectively, in a similar 
process to obtain biobutanol yields up to 6.21 and 7.7 g/L. 
In both studies, the biomass was subjected to chemical 
hydrolysis with sulfuric acid, followed by fermentation 
with Clostridium beijerinckii. Nimbalkar et al. (2018) also 
used sulfuric acid to carry out the hydrolysis of pea pod 
waste. However, the yield of this process was lower than that 
reported in other studies since they only obtained 3.82 g/L 
of biobutanol using Clostridium acetobutylicum.

The increasing global demand for cocoa has led to 
a high generation of cocoa pod husks as waste. Muharja 
et al. (2023) tested the potential of this biomass to produce 
biobutanol. Various treatments such as ultrasonic-assisted 
pectin extraction, microwave-assisted delignification, 
enzymatic hydrolysis with surfactant addition, and extractive 
fermentation using immobilized cells with reducing agent 
supplementation have been studied. This sequential process 
resulted in a high butanol concentration of 20.4 g/L.

Bio‑oil

Lignocellulosic biomass is an important raw material 
in bio-oil production (Li et al. 2021). Various vegetable 
materials are rich in esters, aldehydes, ketones, and other 
important functional groups (Li et al. 2021). Therefore, 
selection of a suitable biomass feedstock is crucial to obtain 
this bioproduct. Table 4 lists relevant studies on bio-oil 
production from waste biomass.

Li et al. (2021) studied the bio-oil production from Aes-
culus chinensis Bunge Seed (ACBS) via catalytic pyrolysis 
with  Fe2O3 and NiO. ACBS sample was previously treated 
with  NaHCO3. The pyrolysis products consisted of alde-
hydes, ketones, acid esters, alcohols, and hydrocarbons. 
In particular, 1-hydroxy-2-propanone (3.97%), acetic acid 
(5.42%), and furfural (0.66%) were recovered for their use as 
chemical feedstock in the form of bio-oil. It was noted that 
the catalysts enhanced pyrolysis by accelerating the precipi-
tation of gaseous compounds. The combination of ACBS 
waste and nanocatalysts could address the valorization of 
agricultural and forestry waste.

Catalytic fast pyrolysis (CFP) using HZSM-5 was 
employed to obtain bio-oil from eucalyptus wood (Promsam-
pao et al. 2022). The ex situ CFP in a fluidized bed reactor 
strategy has a high potential to produce deoxygenated bio-oil 
in a single process. The use of a catalyst enhanced the bio-oil 
yield to achieve a maximum of 11.4 wt% and low oxygen 
content (< 4.3 wt%) resulting in 93% oxygen removal.

Xiong et al. (2023) proposed the use of natural hair waste 
(HW) and corn straw (CS) as feedstock to produce bio-oils. 

Human hair waste can be classified as municipal solid biowaste. 
HW and CS pyrolysis was performed in a tubular furnace at 
450 °C. The co-pyrolysis of CS was carried out under different 
HW loads. The highest bio-oil yield (48%) was obtained with 
the HW load (21%). Therefore, an increase in the HW ratio of 
the blend favored the bio-oil yield. It was observed that the mix-
ture of CS and HW for co-pyrolysis provided a more complex-
structured bio-oil than individual pyrolysis. Bio-oils contained 
93 and 89 compounds in CS and HW oils, respectively, which 
increased to 107 compounds in the blend.

Bio-oils have a high oxygen content and require further 
upgrading prior to use. Therefore, Zhang et al. (2023) tested 
the catalytic reforming of bio-oil during rice straw pyroly-
sis using a calcium-containing catalyst. The results demon-
strated that the use of a catalyst in the rice straw pyrolysis 
affected the chemical composition of the bio-oil, where 
ketones, furans, alcohols, and phenols were obtained.

Xue et  al. (2023) proposed a novel technology that 
coupled formaldehyde-pretreatment (FA) and catalytic fast 
pyrolysis of poplar sawdust to solve the problem of low 
hydrocarbon yields. This interesting technology (FACFP) 
introduced a catalyst in the pretreatment stage, favoring 
the dissolution of lignin and its conversion. The effects of 
pretreatment variables, such as solvents, temperature, and 
processing time, on bio-oil yield were studied. The use of FA 
as a pretreatment solvent in comparison with water allowed 
lignin removal and enhanced the accessibility of cellulose to 
the catalyst during pyrolysis. FA pretreatment resulted in a 
70% oil yield. SEM micrographs revealed that the increase 
in pretreatment temperature caused the fragmentation of 
biomass owing to the dissolution of hemicellulose and lignin 
in the filtrate. The chemical compounds in the bio-oil were 
hydrocarbons, phenols, and carbonyls. The coupling FACFP 
technology significantly improved hydrocarbon selectivity 
(1.7-fold for the two-step FA + CFP). The use of HZSM-5 
enabled the deoxygenation of phenols and carbonyls to 
hydrocarbons during pyrolysis.

Bio-oil production from non-edible Reutealis trisperma 
oil (RTO) by catalytic pyrolysis was carried out using dolo-
mite (a sedimentary carbonate rock) as catalysts (Buyang 
et al. 2023). It is noteworthy that Reutealis trisperma seeds 
contain 50–50% of oil. The results showed that an increase 
in pyrolysis temperature (400–450 °C) enhanced bio-oil 
yield from 60 to 77%, with low char formation, while non-
catalytic pyrolysis produced 68% bio-oil with 7% of char. 
The use of dolomite enhanced the composition of heavy 
hydrocarbon molecules, as reflected in a bio-oil with a 
higher flash point, thermal stability, calorific value, density, 
and low viscosity. Additionally, the bio-oil quality improved 
with esterification, thus reducing the carboxylic acid content 
from 55 to 3%.

Water hyacinth (Eichhornia crassipes) is an invasive 
weed common in lakes, ponds, and rivers because it forms 
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impenetrable nets that affect aquatic life and obstruct 
waterways (Gao et al. 2023). It has been determined that its 
growth is accelerated (0.26-ton dry biomass per day), and 
infestations are often difficult to remove. Therefore, the val-
orization of this biomass is an alternative method to resolve 
these issues. Gao et al. (2023) evaluated the hydrothermal 
liquefaction of WH impregnated with Cu and Co to improve 
the bio-oil yield. The use of Cu resulted in a higher bio-oil 
yield than that obtained with Co. The impact of the reaction 
parameters (e.g., reaction residence time, temperature, and 
biomass-to-water ratio) was also evaluated. The water-to-
biomass ratio considerably tailored the bio-oil yields. The 
optimal conditions were identified as 0.2 M-Cu-impreg-
nated-WH, 1:9 biomass-to-water ratio, 270 °C, and 30 min 
to achieve the highest bio-oil yield of 41 wt% with a conver-
sion of 83%. The chemical composition of the bio-oil mainly 
consisted of N-containing and phenolic compounds.

Bio‑jet

The hydrocarbon-like jet fuel obtained from renewable 
biomass exhibits a satisfactory combustion performance for 
engines and contributes to reduce COx emissions (Ravindran 
et al. 2022). Table 5 illustrates the use of different biomass 
waste as feedstock to produce bio-jet. Recent advances in the 
production of this biofuel are described below.

Chu et al. (2017) modeled the hydrodeoxygenation of the 
oilseeds camelina, carinata (non-edible oil), and WCO to 
produce bio-jet. Data were collected from the literature. The 
effect of feedstock composition and condition parameters 
on product yields and distribution, hydrogen consumption, 
and process utilities were analyzed. The model considered 
feedstock production, oil extraction, oil conversion, and 
product recovery. The results showed that the hydrogen 
consumption ranged from 26 to 30 kg/ton of input oil and 
depended on unsaturation chemistry. The thermal energy 
requirement was 2.8 GJ/ton for WCO, 5.2 GJ/ton for 
carinata and 5.7 GJ/ton for camelina. Note that the highest 
energy consumption for camelina processing was due to 
the high energy required for oil extraction. The electricity 
consumption was 73 kWh/ton for WCO, 170 kWh/ton for 
carinata, and 227 kWh/ton for camelina, respectively.

The catalytic cracking of WCO to produce bio-aviation 
fuel has been studied by El-Araby et  al. (2020). Zinc 
aluminate was used as a catalyst and WCO exhibited low 
acidity and the presence of unsaturated C = C as linoleic 
acid. The optimal reaction conditions were 450 °C, 120 bar, 
2.5% (w/v) catalyst dose, reaction time of 60 min, and  H2 
pressure of 4 atm. Thermal cracking of WCO under optimum 
conditions yielded 96% crude biofuel and, after distillation 
at 120–250 °C, 49% bio-jet was obtained. The bio-jet was 
composed of 83% paraffin.

Altalhi et al. (2021) obtained bio-jet from WCO and 
jatropha oil via catalytic cracking with thermal agitation at 
450 °C for 4 h using modified-montmorillonite as catalyst. 
The products were then recovered via condensation. The 
characteristics of the bio-jet were determined, and the fatty 
acid content was found to be similar for both oil feedstocks. 
The bio-jets were blended with petro-JET A1, and the most 
efficient mixture was 10% bio-jet and 90% JET A1, which 
met ASTM specifications.

A continuous fixed-bed reactor was used for catalytic 
deoxygenation of palm kernel oil to produce a bio-jet 
(Makcharoen et  al. 2021). A Pd catalyst supported on 
activated carbon was packed into a tubular reactor. The 
results demonstrated a bio-jet yield of 58%, which contained 
27.68% of linear alkanes in the jet fuel  (C8-C16) range with 
a productivity of 9.32 g of product per g of catalyst. This 
yield was achieved under optimal operating conditions 
(420 °C, 500 psi,  H2 flow rate of 17.50 mL/min, and 0.07 g 
of catalyst). The oxygen content was successfully reduced 
from 19% (in oil) to 15% (in the bio-jet).

Orange tree is the most widely cultivated fruit tree in the 
world, contributing approximately 60% of the 100 Mt per 
year of citrus produced globally (Erukainure et al. 2016). 
The orange juice industry produces 30 Mt of waste annu-
ally (Donoso et al. 2022). The orange peels were subjected 
to oil extraction using steam distillation. The potential use 
of orange oil as a bio-jet precursor was studied by Donoso 
et al. (2022). The raw orange oil extraction yield was 4.9 
wt% on a dry basis and contained 44.6 wt% of D-limonene. 
The D-limonene molecular structure suggested that it could 
ideally work as a blend component for Jet A1 because the 
carbon number is in the Jet A1 range, and it is a cyclic alk-
ene. To enhance its fuel properties, especially to decrease 
its soot tendency, the oil was hydrogenated to be industrially 
viable. Hydrogenation was performed in a closed reactor 
filled with  H2 at 60 °C for 5 h to obtain a conversion of 
50%. Key physicochemical parameters including the density, 
viscosity, heating values, lubricity, flash point, crystalliza-
tion onset temperature, and smoke point were measured. The 
properties of hydrogenated orange oil indicated that this is a 
potential alternative for blending up to 15 vol% with Jet A1, 
fulfilling all the ASTM requirements.

Ahmed et al. (2022a) obtained bio-jet from WCO using 
catalytic pyrolysis where functionalized montmorillonite/
chitosan nanocomposites were used as catalyst. A split-type 
tubular semi-batch reactor was used to perform the pyrolysis. 
The pyrolytic product exhibited chemical characteristics 
comparable to those of the bio-jet. The optimum conditions 
for producing the bio-jet were 0 catalyst ratio of 0.7%, 
reaction time of 120 min, and temperature of 300 °C. The 
use of a catalyst determined the selectivity and quality of 
the final product.



970 R. A. Quevedo-Amador et al.

Ta
bl

e 
5 

 R
ec

en
t s

tu
di

es
 o

f u
se

 o
f b

io
m

as
s w

as
te

 a
s p

ot
en

tia
l f

ee
ds

to
ck

 to
 p

ro
du

ce
 b

io
-je

t

W
as

te
C

at
al

ys
t

Tr
ea

tm
en

t
Re

ac
tio

n 
co

nd
iti

on
s

Y
ie

ld
 o

r 
C

on
ve

rs
io

n,
 

%

Re
fe

re
nc

es

W
as

te
 so

yb
ea

n 
oi

l a
nd

 p
al

m
 fa

tty
 

ac
id

 d
ist

ill
at

e
Pd

-b
as

ed
 z

eo
lit

e
C

at
al

yt
ic

 c
on

ve
rs

io
n

27
0 
℃

, 3
 h

, 1
.5

 M
Pa

, 1
0 

g 
of

 
re

ac
ta

nt
, 2

.5
 g

 o
f c

at
al

ys
t

31
C

ho
i e

t a
l. 

(2
01

5)

C
am

el
in

a 
sa

tiv
a,

 B
ra

ss
ic

a 
ca

ri
na

ta
 

an
d 

U
se

d 
co

ok
in

g 
oi

l
N

iM
o

H
yd

ro
de

ox
yg

en
at

io
n

40
0 

°C
, 2

 h
, 9

.2
 M

Pa
53

–5
4

C
hu

 e
t a

l. 
(2

01
7)

Pr
et

re
at

ed
-W

as
te

 c
oo

ki
ng

 o
il

N
iM

o/
γ-

A
l 2O

3-
β-

ze
ol

ite
C

at
al

yt
ic

 h
yd

ro
de

ox
yg

en
at

io
n

35
0 

°C
, 5

 M
Pa

, 3
 h

, 0
.1

 g
 o

f 
ca

ta
ly

st,
 p

re
tre

at
ed

-w
as

te
 

co
ok

in
g 

oi
l/s

ol
ve

nt
s (

te
tra

lin
 a

nd
 

do
de

ca
ne

) w
/w

 ra
tio

: 1
/4

98
Li

 e
t a

l. 
(2

01
8b

)

Pa
lm

 o
il

Y
D

eo
xy

ge
na

tio
n 

(d
ec

ar
bo

xy
la

tio
n 

an
d 

de
ca

rb
on

yl
at

io
n,

 c
at

al
yt

ic
 

cr
ac

ki
ng

)

B
at

ch
 re

ac
to

r, 
15

0 
m

L 
pa

lm
 o

il,
 O

il/
ca

ta
ly

st 
m

as
s r

at
io

: 2
0/

1,
 3

90
 °C

, 
S:

 3
00

 rp
m

91
B

as
ir 

et
 a

l. 
(2

01
9)

ZS
M

-5
74

Y-
ZS

M
-5

 c
om

po
si

te
96

Y
/Z

SM
-5

 h
yb

rid
99

W
as

te
 c

oo
ki

ng
 o

il
Zn

A
l 2O

4
C

at
al

yt
ic

 h
yd

ro
cr

ac
ki

ng
B

at
ch

 re
ac

to
r, 

45
0 

°C
, 1

 h
, 1

2 
M

Pa
, 

2.
5%

w
/v

 o
f c

at
al

ys
t, 

pr
es

su
re

 
in

iti
al

 o
f 0

.4
05

3 
 H

2

49
El

-A
ra

by
 e

t a
l. 

(2
02

0)

W
as

te
s p

la
sti

c 
an

d 
fir

 D
ou

gl
as

Fe
/a

ct
iv

at
ed

 c
ar

bo
n

C
at

al
yt

ic
 C

o-
py

ro
ly

si
s

50
0 

°C
, c

at
al

ys
t/f

ee
ds

to
ck

 ra
tio

: 1
, 

50
 m

L/
m

in
  N

2

54
Li

n 
et

 a
l. 

(2
02

0)

W
as

te
s p

la
sti

c 
an

d 
fir

 D
ou

gl
as

Su
lfo

na
te

d 
ac

tiv
at

ed
 c

ar
bo

n-
ba

se
d

C
at

al
yt

ic
 C

o-
py

ro
ly

si
s

50
0 

°C
, 0

.2
5 

h,
 1

60
–1

70
 m

L/
m

in
 

 N
2, 

3 
g 

of
 c

at
al

ys
t

98
M

at
eo

 e
t a

l. 
(2

02
0)

M
ac

au
ba

 a
ci

d 
oi

l
C

o/
ac

tiv
at

ed
 c

ar
bo

n
D

eo
xy

ge
na

tio
n

35
0 

°C
, 4

 h
, 3

 M
Pa

  H
2

98
M

or
ei

ra
 e

t a
l. 

(2
02

0)
Ja

tro
ph

a 
cu

rc
as

 o
il 

an
d 

W
as

te
 

co
ok

in
g 

oi
l

M
on

tm
or

ill
on

ite
-3

-m
er

ca
pt

op
ro

py
l 

tri
m

et
ho

xy
 si

la
ne

-S
O

3H
Py

ro
ly

si
s

15
0 

m
L 

of
 J

at
ro

ph
a 

cu
rc

as
 o

il,
 

35
0 

°C
, 4

 h
, 0

.2
–1

%
 o

f c
at

al
ys

t, 
ca

ta
ly

tic
 c

ra
ck

in
g:

 2
50

 °C

N
A

A
lta

lh
i e

t a
l. 

(2
02

1)

15
0 

m
L 

w
as

te
 c

oo
ki

ng
 o

il,
 3

50
 °C

, 
4 

h,
 0

.2
–1

%
 o

f c
at

al
ys

t, 
ca

ta
ly

tic
 

cr
ac

ki
ng

 2
50

 °C
Pa

lm
 k

er
ne

l o
il

Pt
/a

ct
iv

at
ed

 c
ar

bo
n

D
eo

xy
ge

na
tio

n
42

0 
°C

, 3
.4

5 
M

Pa
, 1

7.
5 

m
L/

m
in

  H
2, 

pa
lm

 k
er

ne
l o

il 
flo

w
 o

f 0
.0

2 
m

L/
m

in
, 0

.0
7 

g 
of

 c
at

al
ys

t

83
M

ak
ch

ar
oe

n 
et

 a
l. 

(2
02

1)

Pa
lm

 k
er

ne
l o

il
Pd

/a
ct

iv
at

ed
 c

ar
bo

n
D

eo
xy

ge
na

tio
n

40
0 

°C
, 2

 h
, 8

%
 o

f c
at

al
ys

t
96

W
hy

 e
t a

l. 
(2

02
1)

W
as

te
 c

oo
ki

ng
 o

il
A

ct
iv

at
ed

 m
on

tm
or

ill
on

ite
 c

la
y

Py
ro

ly
si

s
30

0 
°C

, 2
 h

, 0
.7

%
 o

f c
at

al
ys

t
N

A
A

hm
ed

 e
t a

l. 
(2

02
2a

, b
)

A
ct

iv
at

ed
 m

on
tm

or
ill

on
ite

 
cl

ay
 m

od
ifi

ed
 w

ith
 c

hi
to

sa
n 

bi
op

ol
ym

er

40
0 

°C
, 3

 h
, 0

.8
%

 o
f c

at
al

ys
t

N
A

Tu
ng

 o
il

C
o-

W
/s

ili
ca

- a
lu

m
in

a
D

eo
xy

ge
na

tio
n-

cr
ac

ki
ng

35
0 

°C
, 2

 h
,  N

2 a
tm

os
ph

er
e,

 5
%

 o
f 

ca
ta

ly
st

69
A

si
ki

n-
M

ija
n 

et
 a

l. 
(2

02
2)



971Application of waste biomass for the production of biofuels and catalysts: a review  

Recent advances on the preparation 
of catalysts from biomass and their 
application in biofuel production

Homogeneous catalysts are effective and inexpensive for 
use in diverse reactive systems. However, their utilization 
also exhibits environmental and technical drawbacks such 
as a large volume of waste, corrosion of equipment, diffi-
cult separation from mixtures, and environmental pollution 
(Mateo et al. 2020). Heterogeneous catalysts can overcome 
several of these drawbacks because they offer easy separa-
tion, recycling, and reuse, which are beneficial in terms of 
energy-saving and environmental impact (Mateo et al. 2020).

In recent years, the number of catalysts obtained from 
biomass has considerably increased (Li et al. 2023). Both 
cost and environmental factors have encouraged the use of 
green catalysts derived from natural sources. Biomass-based 
catalysts are of great interest because they add value to the 
waste and guarantee a sustainable catalyst production. The 
residues used for the preparation of these materials include 
agricultural (shells, leaves, stems, seeds, etc.) (Verma et al. 
2012), corals, animal bones, chitosan waste (Si et al. 2017), 
biomass ash, and carbon materials (Mateo et al. 2020). The 
catalysts derived from carbonaceous materials have been 
intensively investigated because they can be easily prepared 
and are less expensive than other supports (Mateo et al. 
2020). Note that these carbon-based materials offer large 
surface areas, wide pore distribution, thermal stabilities, 
embedded functional groups, and tunable physicochemical 
properties that can be tailored for the application at hand 
(Zhang et al. 2019). Depending on the preparation methodol-
ogy, biochar, hydrochar, or activated carbon can be obtained, 
which can offer specific physicochemical characteristics as 
catalyst supports. In this section, the preparation and appli-
cation of heterogeneous carbon-based catalysts for the pro-
duction of various biofuels are discussed.

Biodiesel

Catalysts in the transesterification process are responsible 
for starting the reaction and stimulating the solubility of 
the alcohol in the oil, subsequently increasing the reaction 
speed and biodiesel yield. Catalysts are also important in 
pyrolysis and other thermochemical technologies, where 
the use of waste biomass contributes to reducing costs and 
enhancing the availability of this type of biodiesel (Nayab 
et al. 2022). Table 6 shows the use of biomass waste as a 
catalyst precursor for biodiesel production where different 
catalysts are discussed in this subsection.

Calcium oxide (CaO) is a basic heterogeneous catalyst 
for oil transesterification because of its catalytic activity, 
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long functional life, mild reaction conditions, non-tox-
icity, low solubility in methanol, and basic strength. It 
has been found that calcium-containing metal oxides are 
easier to separate from the products (Kawashima et al. 
2008) and have high reactivity with water producing cal-
cium hydroxide. The production of CaO from waste shells 
rich in calcium, such as shells, chicken eggshells (Pav-
loviç et al. 2021; Ashine et al. 2023), ostrich eggshells 
(Chen et al. 2014), palm kernel shell gasification residues 
(Bazargan et al. 2015), oyster shells (Shobana et al. 2021), 
snail shells (Laskar et al. 2018), and cockle shells (Boey 
et al. 2011), has been an interesting and environmentally 
friendly option. Animal bones are another source of CaO 
because they are composed of 40% of calcium phosphate, 
beta-tricalcium phosphate, and natural hydroxyapatite. 
Hydroxyapatite has a surface area of 83  m2/g, low crys-
tallinity, and high thermal stability. Thus, it can be used 
as a support and catalyst. The most widely used process 
for obtaining CaO from these residues is calcination 
at > 850 °C, but not at temperatures higher than 1000 °C 
(due to the significant reduction in the surface area). Previ-
ous studies have demonstrated that the basicity and surface 
area of this oxide increased as the temperature of the ther-
mal treatment also increased (Suwannasom et al. 2016).

Several authors have used animal bones such as bovine 
bones (Ayodeji et al. 2018), chicken (Suwannasom et al. 
2016) and ostrich (Khan et al. 2020) to prepare catalysts 
for oil transesterification. Suwannasom et al. (2016) studied 
the transesterification of used cooking oil with CaO derived 
from the calcination of waste chicken bone at 800 °C and 
obtained a yield of 96.31%. A lower concentration of bio-
diesel was obtained with catalysts prepared at lower calcina-
tion temperatures. Ayodeji et al. (2018) obtained a calcium 
oxide catalyst from cow bones and soybean oil with a reac-
tion time of 3 h at 60 °C and a yield of 93%.

Khan et  al. (2020) utilized ostrich waste calcined 
at 600–1000  °C for the catalyst preparation. The 
transesterification conditions were 60 °C, a 15:1 methanol-
to-oil molar ratio, a reaction time of 4 h, and a catalyst 
loading of 5 wt%. XRD analysis showed that the crystallinity 
increased with calcination temperature, where CaO and 
Ca(OH)2 were found to be part of the catalyst structure. SEM 
micrographs demonstrated that the uncalcined ostrich had 
an amorphous crystal structure, while a hexagonal crystal 
structure was formed after calcination at 900 °C due to the 
breakdown of carbonates and the formation of metal oxides. 
The results showed that the best catalyst (sample calcined at 
900 °C for 4 h) obtained a FAME yield of 90.56%.

In contrast, agricultural residues contain different 
inorganic elements such as Ca, K, Mg, and Si (Adepoju 
et al. 2022). The combustion of these residues resulted in a 
reduction in the carbon and oxygen composition, generating 
ash. These ashes are rich in alkali metal oxides such as CaO, 

MgO,  K2O, and  SiO2, which can be used as basic catalysts 
in fatty acid transesterification processes (Adepoju et al. 
2022). For instance, Sitepu et al. (2020) tested the biodiesel 
production using heterogeneous palm bunch ash (PBA) 
catalysts. PBA contained  K2O as the main component, which 
enabled a high conversion of 98.9% using a catalyst weight 
of 18%, an oil-to-methanol molar ratio of 1:15, stirring 
at 5000 rpm, room temperature, and 10 min of reaction. 
It was found that this process could save 67–87% reaction 
time and up to 98% of electricity consumption compared to 
other transesterification methods. Adepoju (2022) studied 
the transesterification of Asimina triloba using wood ash 
as a catalyst. This catalyst had a BET surface area of 441 
 m2/g   with a composition of 42.6% CaO, 12.2%  K2O, and 
23.9%  SiO2. The catalyst was tested at 40  °C, 2.5 wt% 
catalyst, 6:1 of oil-to-ethanol molar ratio and 40 min. These 
authors obtained a FAME yield of 92.5%. The results also 
showed that the catalyst could be reused, but its performance 
degraded after eight reaction cycles.

Biochar, hydrochar, and activated carbon are carbon-
based materials that exhibit high thermal and mechanical 
stabilities and tunable properties as supports for anchoring 
appropriate functional groups to obtain a competitive 
catalyst (Saidi et al. 2023). Therefore, these materials have 
been explored in various studies to obtain novel catalysts 
for biodiesel production. Recently, Abdullah et al. (2022) 
synthesized a nanosized activated carbon from empty fruit 
brunch waste via hydrothermal carbonization (HTC) to 
produce a bifunctional catalyst. HTC of the biomass waste 
was carried out at 200 °C for 24 h, and the hydrochar was 
activated with  H3PO4 (20%). The solid was pyrolyzed at 
600 °C, and the final activated carbon was functionalized 
with  K2CO3 and Cu(NO3)2 and pyrolyzed at 600 °C for 
3 h. This catalyst was used for simultaneous esterification 
and transesterification of WCO. The results revealed that 
this carbon-based support had a surface area of 4056  m2/g, 
resulting from hydrolysis, dehydration decarboxylation, 
aromatization, and recondensation during HTC. The final 
catalysts exhibited a surface area lower than 500  m2/g and 
crystalline structure, as revealed by the XRD diffractograms. 
FTIR spectra showed the attachment of metallic species 
(i.e., K and Cu) on the carbon surface. The reaction system 
to obtain the biodiesel derived from WCO achieved 96% 
conversion and the catalyst could be reused for 6 cycles to 
obtain a final conversion of 63%.

A sulfonated biochar-based magnetic catalyst was pre-
pared by Saidi et al. (2023). The biochar was produced by 
rice husk pyrolysis at 700 °C for 3 h. It was mixed with 
KOH 1 M to remove the silica and increase the pore size. 
Magnetic functionalization was performed using  FeCl3 and 
different weight ratios of  ZnCl2 at 25 °C for 3 h, followed by 
pyrolysis at 600 °C for 2 h. Finally, the magnetic biochar was 
treated with concentrated  H2SO4 or  ClSO3H as a sulfonating 
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agent to obtain covalent bonds of  SO3H (sulfonic groups). 
Catalytic performance was tested for the esterification of 
oleic acid. The effects of reaction conditions (e.g., time, 
catalyst concentration, methanol/oil ratio, and temperature) 
were analyzed using Central Composite Design (CCD) and 
Response Surface Methodology (RSM). Saturation magneti-
zation measurements indicated that the magnetism increased 
with increasing  ZnCl2 concentration. FTIR spectra showed 
the presence of  SO3H group, while textural parameter analy-
sis demonstrated that surface area increased with sulfonation 
and presented a mesoporous structure. The catalyst could be 
reused for 6 cycles with FAME yields of 97.52% in the first 
cycle and 80.64% in the sixth cycle, respectively.

Renewable diesel and bio‑jet

Renewable diesel has become more attractive in the 
transportation sector and the development of catalysts for 
its production has increased (Hongloi et al. 2022). Different 
catalysts have been studied for improving the deoxygenation 
of fatty acids (Safa-Gamal et al. 2021). Specifically, noble 
metal catalysts (e.g., Pd, Pt, and Ru) have been reported, 
but they are expensive and unattractive at the industry 
level (Safa-Gamal et al. 2021). Therefore, biomass-derived 
catalysts have been proposed. Table 7 describes the use of 
biomass-derived catalysts in renewable diesel production.

For example, the coconut shell was utilized as a precur-
sor of carbon-based catalysts containing Co and Ag for the 
deoxygenation of palm fatty acid distillate (PFAD) (Safa-
Gamal et al. 2021). The catalyst was prepared via the pyroly-
sis of coconut shells at 700 °C with subsequent activation 
with  H3PO4 to promote an acidic nature that favored the 
decarboxylation activity. Then, the Ag and Co nitrate salts 
were impregnated, and thermal treatment was carried out 
at 600 °C to degrade the nitrate precursors. Deoxygenation 
was performed by mixing 10 g of oil with 0.3 g of catalyst 
at 350 °C for 60 min. XRD patterns revealed that the high 
crystallinity was associated with several metallic phases 
present on the catalyst surface. The activated carbon used 
as a support displayed a surface area of 350  m2/g, which 
was reduced to 790  m2/g when the material was impreg-
nated with Ag-Co (10–10 wt%). SEM micrographs showed 
a homogeneous metal dispersion on the catalyst surface. 
PFAD deoxygenation with the best catalyst  (Ag10%-Co10%) 
resulted in 77% hydrocarbon yield, while 95% was achieved 
under the optimized reaction conditions.

The use of deoxygenation catalysts to produce green 
diesel is challenging owing to their deactivation during the 
process and over time. Mohammed et al. (2022) studied 
the stability of a catalyst prepared from apricot seeds, an 
agricultural waste, in the hydrothermal production of green 
diesel fuel from WCO. First, the apricot seeds were soaked 
in  H3PO4 and pyrolyzed at 500 °C for 60 min to obtain 

activated carbon. The activated carbon was sonicated in the 
presence of  HNO3 for 2 h at 60 °C.  PdCl2 was used to modify 
the carbon surface via incipient wetness impregnation, and 
the solid was pyrolyzed at 650 °C to obtain the catalyst. 
Finally, the catalyst was coated with a nanofilm aluminum 
protective layer using the sol–gel method to prevent the fast 
deactivation of the catalyst.

Rodriguez et al. (2023) prepared two catalysts derived 
from a biochar obtained via the pyrolysis of rice husk or 
banana midrib at 700 °C. The biochars were then activated 
with 3 M KOH or 2 M HCl. The catalytic performance was 
evaluated for the cracking of waste motor oil. This oil was 
composed of  C15-C50 hydrocarbons. The cracking reaction 
was carried out in a batch reactor in the temperature range of 
400–425 °C with 0.4 wt% of catalyst. The product exhibited 
a chemical composition similar to that of commercial diesel 
 (C10-C27), with a conversion of 90% using KOH-rice husk 
char. It is noteworthy that acidic treatment diminished the 
catalytic properties of both biomass-derived chars owing to 
the release of metallic species. Conversely, the basic cata-
lysts achieved high conversions. Both treatments increased 
the surface areas being more evident for banana midrib char, 
which was confirmed by SEM micrographs that showed 
more cavities in the alkaline chars. XRD patterns showed 
that KOH activation removed silica from the rice husk char 
and enhanced the degree of carbon order in both chars.

The complex reactions to produce bio-jet involve the use 
of catalysts to address the selectivity and yield parameters. 
The use of noble metals such as Pt or Gd allows hydro-
gen transfer reaction to produce aromatic compounds in the 
bio-jet. Zeolites or alumina are commonly used as catalysts 
or catalytic supports, but they show poor adaptability for 
different biomass feedstock, excess cracking of molecules, 
high cost, and deactivation, which hinder the correspond-
ing process scaling (Kannapu et al. 2022). Therefore, the 
search for alternative catalysts is mandatory, and biomass-
derived catalysts are promising alternatives for addressing 
these drawbacks. Table 8 describes different studies related 
to the use of biomass-derived catalysts to produce bio-jet.

Ravindran et al. (2022) evaluated the conversion of palm 
kernel oil using a modified carbon-based catalyst prepared 
from bamboo (FeMo/ACB) via microwave heating. First, 
the support was obtained via bamboo pyrolysis at 600 °C. 
The biochar was then modified with KOH and pyrolyzed at 
800 °C to produce an activated carbon. Activated carbon was 
functionalized with Mo and Fe species via co-precipitation. 
The final solid was thermally treated at 530 °C. Palm kernel 
oil was converted into bio-jet fuel as an alternative to solve 
the “palm oil controversy.” Catalytic deoxygenation of the 
oil was performed in a microwave reactor. Characterization 
studies revealed that the highly porous structure and active 
acidic O-containing groups of the catalyst were strongly cor-
related with the deoxygenation activity. The introduction 
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of metallic species favored the bio-jet selectivity by 80%. 
Authors indicated that this catalyst could be used over 5 
consecutive cycles.

Kannapu et al. (2022) prepared a MgO-activated carbon 
derived from rice husk for the bio-jet fuel production from 
pyrolysis of sawdust. Rice husks were pyrolyzed at 500 °C 
and subsequently modified with KOH solution. The biochar 

was then calcined at 750 °C. MgO was incorporated via 
impregnation with its nitrate salt. Finally, the solid was again 
calcined at 600 °C. Fast pyrolysis of sawdust was performed 
in a micropyrolyzer at 400–600 °C. Rice husks showed a 
poor surface area of 2  m2/g, while activated carbon exhibited 
a high surface area of 775  m2/g that diminished after metal 
impregnation. XRD diffractograms demonstrated that the 

Table 7  Recent studies of biomass-derived catalysts to produce renewable diesel

Waste Treatment Conditions for catalyst 
preparation

Reaction conditions Yield or 
Conversion, 
%

References

Coconut shell waste Thermochemical Pyrolysis: 700 °C, 4 h,  N2 Semi-batch reactor, 
Deoxygenation: oil (palm 
fatty acid distillate), 3% 
of  Co(10wt.%)-Mo(10wt.%)/
activated carbon, 350 °C, 
2 h, 50 mL/min  N2, 400 rpm

92 Gamal et al. (2020)

Chemical activation:  H3PO4 
(150 °C, 12 h)

Wet impregnation: 
Co(NO3)2.6H2O and 
((NH4)6Mo7O24.4H2O) 
metal solutions (CoxMoy, 
where x = 10 wt.% and 
y = 5, 10, 15, and 20 wt.%), 
mixed vigorously (room 
temperature, 6 h), dried 
(110 °C, 12 h)

Thermal treatment: 550 °C, 
4 h  (N2 atmosphere)

Coconut shell waste Thermochemical Pyrolysis: 5 g of biomass, 
700 °C, 4 h, heating rate of 
5 °C/ min, 10 mL/min  N2

Semi-batch reactor, 
Deoxygenation: 10 g of oil 
(palm fatty acid distillate), 
1% of  Co(10wt.%)-Ag(10wt.%)/
activated carbon, 350 °C, 
2 h, 20 mL/min  N2

92 Safa-Gamal et al. (2021)

Chemical activation: 100 mL 
 H3PO4 (150 °C, overnight)

Wet impregnation: Co(NO3)2 
and  AgNO3 metal solutions 
(CoxAgy, where x = 10 wt% 
and y = 5, 10, 15, and 20 
wt%), and mixed vigorously 
(room temperature, 6 h), 
dried (110 °C, overnight)

Thermal treatment: 600 °C, 
4 h  (N2 atmosphere)

Macauba endocarp Thermochemical Carbonization: 550 °C, 2 h, 
100 mL/min  N2, heating rate 
of100 °C/min

Batch reactor, 350 °C, 3 h, 
3 MPa  H2, 10% of Co/
endocarp activated carbon, 
300 rpm

97 Moreira et al. (2020)

Activation: 850 °C, 7 h, 
200 mL/min  CO2, heating 
rate of 10 °C/min

Wet impregnation: Co(NO3)2 
to produce catalysts with 10 
wt% of Co
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Table 8  Recent studies of biomass-derived catalysts to produce bio-jet

Waste Treatment Conditions for catalyst 
preparation

Reaction conditions Yield or 
Conversion, 
%

References

Palm male flowers Thermochemical Pre-carbonization: 500 °C, 
100 mL/min  N2

360 °C, 4 h, 5 MPa 77 Kaewtrakulchai et al. (2020)

Palm male flowers 
carbonized with Co(NO3)2, 
600 °C, 2 h

Corncob Thermochemical 100 g of biomass, 100 mL 
 H3PO4 85%, 24 h, drying

500 °C, 50 mL/min  N2, 
catalyst/feedstock ratio: 1/1

54 Lin et al. (2020)

100 mL Fe(NO3)2, 12 h, 
drying

Pyrolysis: 1 h
Corncob Thermochemical 56.5%  H3PO4 for 24 h 500 °C, 15 min, 160–

170 mL/min  N2, 3 g of 
catalyst

8 Mateo et al. (2020)

450 °C, 0.5 h, Microwave 
power of 700 W

10 g carbon, 96%  H2SO4, 
101.2 °C, 8.1 h

Macauba endocarp Thermochemical Carbonization: 550 °C, 2 h, 
100 mL/min  N2, heating 
rate of 100 °C/min

350 °C, 4 h, 3 MPa  H2 98 Moreira et al. (2020)

Activation: 850 °C, 7 h, 
200 mL/min  CO2

Modification: Co(NO3)2

Bamboo Thermochemical Carbonization: 600 °C, 0.5 h, 
150 mL/min Ar

250 °C, 0.5 h, 5% of catalyst, 
microwave system

80 Ravindran et al. (2022)

Modification: KOH (85%), 
weight ratio: 1/1, 12 h

Activation: 800 °C, 1 h (Ar 
atmosphere)

Fe3+,  Fe2+ and Mo salts, 80% 
carbon, 530 °C, 2 h  (N2 
atmosphere)

Rice husk Thermochemical Biochar preparation 1 mg of sawdust, 10 mg of 
catalyst (MgO/activated 
carbon), 600 °C

29 Kannapu et al. (2022)

Pyrolysis: 550 °C, 1 h, 
75 mL/min  N2

Modification: biochar/KOH 
weight ratio: 3/1, drying: 
110 °C, 12 h

Activated biochar preparation
Activation: calcination 

(750 °C, 1 h,  N2 
atmosphere), modification 
(100 mL of 5 M HCl, 0.5 h, 
continuous stirred), drying: 
110 °C, 12 h

MgO/Activated carbon 
preparation

Modification: Mg(NO3), 
dried (110 °C, 12 h)

Calcination: 650 °C, 3 h, 
100 mL/min  N2
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organic crystalline structure of biochar changed to a micro-
crystalline carbon structure due to fine graphitization during 
calcination. SEM micrographs revealed a smooth rice husk 
surface that changed to a surface with cavities due to the sev-
eral treatments applied. The main compounds produced from 
sawdust consisted of hepta-3,5-dien-2-one, ethylbenzene, 
p-xylene, and 1,4-dimethylbenzene, which are characteristic 
of bio-jet, demonstrating its effectiveness with a 29% yield. 
In contrast, the use of biochar, activated carbon, and other 
intermediate materials produced chemical compounds that 
were unsuitable for their use as bio-jets. This set of studies 
showed that there is a great opportunity to explore the prepa-
ration of heterogeneous catalysts derived from biomass waste 
to produce renewable diesel. Currently, research in this field 
has focused on the reaction process or biomass feedstock to 
produce biofuel using high-cost catalysts.

Bioalcohols

A pretreatment stage for converting cellulose into simple sug-
ars is required before bioalcohol production (Gohain et al. 
2021). Recent advancements in biomass pretreatment and 
hydrolysis using biomass-derived heterogeneous catalysts 
have overcome the environmental and economic limitations 
of homogeneous catalysts (Gohain et al. 2021). This technol-
ogy is crucial for the conversion of lignocellulosic biomass 
into biofuels and value-added chemicals (Higai et al. 2021). 
However, traditional solid acids contain single functional 
groups, which do not exhibit efficient catalytic properties 
(Lu et al. 2021). For example, polymers with Brønsted acids 
(e.g., commercial amberlyst, nafion, and sac) cannot adsorb 
lignocellulose, resulting in a low hydrolysis yield. Oxide 
catalysts (e.g., zeolites, niobic acid, and  SiO2-Al2O3) are 
good adsorbents; however, they cannot depolymerize lig-
nocellulose (Lu et al. 2021; Prabhu et al. 2021). Therefore, 
the development of biomass-derived catalysts with tailored 
properties has attracted significant attention. For illustration, 
Table 9 shows the application of waste biomass to prepare 
catalysts to produce bioethanol and biobutanol.

For example, Si et al. (2017) evaluated the hydrolysis 
of bamboo biomass using two surfactants for biofuel pro-
duction. Surfactants can emulsify and dissolve extractives 
contained in wood structures, and their synergistic effect 
with ionic liquids (ILs) was also studied. A sulfonated cross-
linked chitosan acid catalyst was synthesized and used in 
the reaction. Hydrolysis was performed by mixing 1-Butyl-
3-methylimidazolium chloride ([BMIC]Cl), the prepared 
catalyst, and a surfactant (Tween 80, polyethylene glycol, 
and sodium dodecyl sulfate) in a round-bottom flask. The 
results showed that the catalyst improved the reduction in 
total sugars, achieving yields ranging from 3% (without 
catalyst) to 86% (1:20 bamboo to catalyst). The use of sur-
factants enhanced the hydrolysis in the following order: 

Tween (12%) > SDS (10%) > PEG (7%). The catalyst was 
reused for 4 cycles with a suitable sugar yield of 80%. SEM 
micrographs showed that the catalyst was spherical with a 
porous structure and folded meandering surface.

Chen et  al. (2019) prepared an acid catalyst using 
rice husk as a precursor with one-step carbonization and 
sulfonation and its subsequent application for the hydrolysis 
and saccharification of corncob. The one-step procedure 
is advantageous because of its simple operation, shorter 
reaction time, and lower energy consumption than the two-
step method. Rice husks were mixed with  H2SO4 (96%) 
in a hydrothermal synthesis reactor at 160 °C for 6 h. The 
analysis demonstrated that this catalyst consisted of aromatic 
carbon sheet structures with –SO3H, –COOH, and –OH 
groups. In the corn cob hydrolysis and saccharification, 
this catalyst showed a maximum reducing sugar yield of 
486.53 mg/g and xylose of 253.03 mg/g, being twofold and 
fivefold higher than that of control, respectively.

Gohain et al. (2021) studied the hydrolysis capacity of 
biomass-derived catalysts prepared from Musa balbisiana 
colla peel (BPA), water hyacinth (WH), Carica papaya 
stem (CPS), Tectona grandis leaves (TGL), and de-oiled 
Rhodotorula mucilaginosa biomass (RCA). The first 
four biomass samples were calcined, and the de-oiled 
biomass was transformed into potassium-impregnated 
activated carbon. Bioethanol was produced from de-oiled 
Scenedesmus obliquus microalgae, in which catalysts were 
used in the saccharification step. Alkaline saccharification 
was performed using 2 wt% of the catalyst. The solid–liquid 
mixture was maintained at a 1:10 ratio and then autoclaved 
at 121 °C for 20 min. The hydrolysate was fermented and 
the catalyst efficiency in saccharification followed the trend: 
CPS (60%) > BPA (50%) > RAC (49%) = WH > TGL (42%). 
The catalysts exhibited high basicity, with K being the main 
element in the form of  K2O and  K2CO3. The ethanol yield 
after fermentation was in the range of 45.03–68.32%.

Higai et al. (2021) obtained an activated carbon-based 
catalyst derived from coconut shells for its use in sac-
charification. Specifically, an acid catalyst was prepared by 
immersing the coconut shell in a phosphoric acid solution 
at 25 °C for 1 h. The mixture was then heated at 170 °C for 
2 h to remove water. Subsequently, the mixture was heated 
to 400–600 °C for 1 h under air atmosphere, rinsed with 
hot distilled water, and dried. The activated carbon was sul-
fonated with fuming or chlorosulfuric acid to obtain –SO3H 
active sites. Acid saccharification was performed by mixing 
0.5 g of the catalyst (1 g with microcrystalline cellulose and 
30 g) in an autoclave at 180 °C. Catalyst characterization 
showed that the activated carbon modified with chlorosul-
furic acid had the lowest surface area (659  m2/g), while the 
sulfonated catalysts exhibited surface areas of approximately 
1057–1381  m2/g. XPS analysis revealed that all catalysts 
contained 46–58% oxygenated species in their structures. 
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The catalysts obtained at 400 °C and modified with chloro-
sulfuric acid showed the highest conversion (75%) of mono-
saccharides when the preparation conditions were optimized.

Bio‑oil

The yield of hydrocarbons and the absence of oxygen-
containing compounds (e.g., carboxylic acids or alcohols) in 
the bio-oil structure are important characteristics associated 
with their quality because they increase the corrosive 
capacity, acidity and viscosity of bio-oil and decrease its 
calorific value (Rabiu et al. 2018). These limitations can 
be overcome by using a suitable catalyst during pyrolysis 
or hydrothermal liquefaction of biomass to obtain biofuel 
(Kumar et al. 2019).

Several studies have focused on obtaining bio-oil using 
zeolite-based catalysts, with HZSM-5 being the most 
popular catalytic material (Bhoi et al. 2020) because it has 
acidic sites that allow high hydrocarbon yields (Zhao et al. 
2019). However, the main disadvantage of this catalyst is the 
low possibility of reuse because, after the first reaction, it is 
deactivated because of its microporous structure and acidic 
nature, which favors the deposition of coke on its surface 
(Crespo et al. 2023). With the aim of using green and low-
cost catalysts, some studies have reported the preparation of 
heterogeneous catalysts from waste biomass, see Table 10.

The incorporation of metals in the preparation of the cata-
lysts enables the generation of a significant number of active 
(metallic) sites, which helps in the production of bio-oil with 
a low content of water and oxygenated compounds because 
it favors the deoxygenation reaction (Kopperi and Mohan 
2023). This eliminates the extra step used when the product 
contains compounds that are not of interest, thus obtaining 
refined biofuels (Du et al. 2022).

Dai et al. (2019) used rice husk derived biochar obtained 
via microwave-assisted pyrolysis at 550 °C. This biochar was 
modified with Fe using iron nitrate as the precursor salt and 
then calcined at 600 °C for 1 h. The catalyst was evaluated 
in the pyrolysis of torrefied corn cob to obtain a bio-oil yield 
of up to 36.55 wt% (42.78 wt% without a catalyst), where 
the gas yield increased with the catalytic system. However, 
the use of a catalyst enhanced the yield and selectivity 
of phenol and cresol. SEM micrographs showed cavities 
on the catalyst surface due to the pyrolysis treatment, 
where biochar exhibited a low area (4.17  m2/g), whereas 
the catalyst achieved 110  m2/g.  NH3-TPD (i.e., ammonia 
temperature-programmed desorption) tests demonstrated 
the acidic nature of this catalyst. A similar yield (33.2%) 
was obtained with a catalyst prepared by impregnation of 
Fe from a carbon-based catalyst derived from pine wood 
sawdust via pyrolysis at 600 °C (Liu et al. 2022).

Biswas et al. (2021) prepared a Ni-impregnated material. 
This catalyst was obtained from the biochar derived from 

rice straw via pyrolysis at 450 °C. Subsequent activation 
with 3 M KOH and thermal treatment at 700 °C under  N2 
flow were performed, and Ni impregnation was performed 
for subsequent thermal treatment at 700 °C. This catalyst 
was used to obtain bio-oil by the hydrothermal liquefaction 
of alkaline lignin, which resulted in a high yield (72 wt%) 
in which diverse phenolic compounds, such as phenols, ali-
phatic ketones, and aromatic hydrocarbons, were identified. 
The activated carbon (without supported metal) exhibited a 
surface area of 640  m2/g, while the area of the Ni-catalyst 
was reduced to 564  m2/g because of the metal filling the 
activated carbon lattice.  NH3-TPD analysis showed that Ni 
increased the acidity of activated carbon. The XRD diffracto-
grams confirmed the presence of the metallic species.

Zeng et al. (2021) developed an economical and easy-to-
recover catalyst from Choerospondias axillaris seeds for the 
microwave-assisted catalytic pyrolysis of corn cobs to produce 
phenol-rich oil. The seed powder was modified with  H3PO4 
and microwave pyrolysis was performed at 600 °C to pro-
duce activated carbon. This material was impregnated with 
0.1 M Fe(NO3)3 under ultrasonication for 40 min to achieve 
uniform incorporation of Fe. The dried sample was carbon-
ized at 600 °C for 1 h to obtain the magnetic catalyst. BET 
analysis revealed that the biochar had a surface area of 45 
 m2/g, while the catalysts showed a surface area of 592–732 
 m2/g. SEM images indicated a catalyst with cavities and pores 
due to the treatments used. The main chemical components 
of the corncob-derived oil were simple phenolic compounds, 
followed by aldehydes and furan compounds. The catalyst was 
still selective for phenolic compounds after 5 cycles of reuse.

Corn cob was used to prepare a catalyst based on acti-
vated carbon through carbonization (500 °C for 1 h) and 
subsequent impregnation with Ni in the form of monoxide 
(Li et al. 2023). This catalyst was evaluated in the pyrolysis 
of WCO (in a fixed-bed reactor), obtaining a yield of up 
to 59.64 wt%. Catalyst characterization revealed the acidic 
nature of the surface via  NH3-TPD. This property is crucial 
to this reaction system. Brunauer–Emmett–Teller (BET) 
analysis showed that the catalyst had micro- and mesopores 
and a surface area of approximately 720  m2/g. An increase 
in nickel (10%) loading on the catalyst was favorable for 
improving the bio-oil yield and monocyclic aromatic hydro-
carbon selectivity. The bio-oil products were classified as 
gasoline  (C5-C12), diesel  (C10-C18) and jet fuel  (C8-C16 
alkanes and aromatics).

Carbon-based catalysts are not the only effective materials 
that can be prepared from residual biomass, because wastes 
that contain large amounts of other interesting catalytic com-
pounds can also be used. For example, Arun et al. (2020) 
obtained calcium hydroxide from clam shells to obtain bio-
oil from Scenedesmus obliquus microalgae via hydrothermal 
liquefaction. The catalysts were prepared by calcination at 
800 °C for 2 h. The powder was mixed with 2N HCl and 2 
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N NaOH, and Ca(OH)2 was precipitated and recovered. This 
catalyst showed a surface area of 42  m2/g and agglomerated 
morphology, as determined by SEM. The reaction achieved a 
bio-oil yield of 39.6 wt% consisting mainly of hydrocarbons, 
esters, and oxyacids.

Techno‑economic analysis of liquid biofuel 
production

Techno-economic analysis (TEA) is fundamental for esti-
mating the capital cost, operating cost, mass balance, and 
energy balance for process design and simulation (Rajendran 
et al. 2022). This analysis allows industries to determine the 
viability of their processes and systems and identify areas for 
improvement (Saetiao et al. 2023). TEA of biofuel produc-
tion is fundamental to develop both economic and sustain-
able supply chain. For example, the commercial feasibility 
of using camelina seed oil to produce bio-jet in a rural loca-
tion in Canadian Prairies was studied by Li et al. (2018a). 
The base case scenario involved the processing of 252,000 
tons/year of camelina oil. To model the cost of camelina oil, 
the logistic cost of feedstock (collection, transport, and stor-
age) was considered. An economic engineering model was 
proposed using SuperPro Designer®. This model focused 
on the capital investment, scalability, and viability of pro-
ducing bio-jet and other high-value co-products based on 
biorefineries with capacities of 112.5–675 million L/year. 
The results revealed that the selling price of biofuel ranged 
from $0.40 to $1.71 per L, depending on variations in the 
plant capacity and feedstock cost. The marginal and mean 
cost curves indicated that the Canadian region could handle 
a plant capacity of up to 675 million L/year with a capital 
investment of $167 million.

Kang et al. (2019) evaluated Miscanthus sacchariflorus as 
a feedstock for bioethanol production and its viability on an 
industrial scale. The experimental data obtained in the small-
scale process were also compiled to perform the sensitivity 
and economic analyses. The results showed that a plant with 
606,061 tons/year of Miscanthus sacchariflorus could reach 
a production of 1 ×  109 L of bioethanol as the main product, 
with a total production cost of $1.76 per L. The co-products 
(lignin and xylose molasses) could be sold or incorporated 
into the process as a source of heat, providing the process of 
added profitability and achieving a reduction in the final cost 
of bioethanol production ($1.31 per L). One of the factors 
directly influencing bioethanol production costs was the high 
cost of the enzymes ($0.328/L).

Martinez-Hernandez et al. (2019) conducted simulation 
studies and TEA using vegetable oil as feedstock to pro-
duce renewable diesel and bio-jet. They carried out hydro-
deoxygenation of vegetable oil to produce renewable die-
sel and propane as co-product, while hydrodeoxygenation 

and isomerization/hydrocracking were used to obtain 
bio-jet as the main product and other products (i.e., green 
diesel, naphtha, and propane). The simulation and TEA 
analyses were developed in SuperPro Designer®, linked 
to Excel Visual Basic to perform Monte Carlo simula-
tions and obtain a better estimation of the minimum sell-
ing price (MSP). The results demonstrated that a green 
diesel plant with an annual production capacity of 63,000 
barrels/year can be a viable and profitable option with a 
minimum selling price of $1/L, while a bio-jet plant with 
a production capacity of 75,000 barrels/year can obtain a 
minimum selling price of $1.35/L.

A techno-economic study on the potential of three 
Canadian forest biomass feedstocks (spruce, corn stover, 
and wheat straw) to produce renewable diesel via pyrolysis 
and hydroprocessing in a model plant with a capacity of 
2,000 tons per day was carried out by Patel et al. (2019). 
Fast pyrolysis was performed in a fluidized bed reactor at 
400–550 °C. Aspen Plus® was used to model the process, 
where the use of grinders, dryers, screen separators, reactors, 
cyclone separator units, condensers, hydroprocessing units, 
pumps, and storage tanks was considered in the techno-
economic analysis.  H2 production was analyzed because 
this gas is fundamental in the hydroprocessing of bio-oil to 
be upgraded to renewable diesel. The highest bio-oil yield 
(65%) was obtained for spruce, followed by corn stover 
(55%) and wheat straw (49%). The low yield of wheat 
straw was due to its low carbon content. In the techno-
economic analysis, the cost of renewable diesel from spruce 
was $0.98/L with  H2 purchased and $1.06/L when it was 
produced. The prices were $1.14/L and $1.22/L for corn 
stover and wheat straw, respectively, with  H2 production. It 
is noteworthy that the fossil fuel price is $0.42/L and 1.59 
$/L for diesel (OPEC 2023).

Among forest residues, eucalyptus in Brazil is considered 
a strong candidate for bio-oil production because of its abun-
dance and wide availability with approximately 5.7 million 
hectares planted (IBÁ 2019). It is estimated that 243,000 
tons of eucalyptus residue are generated annually in Sao 
Paolo and can be used as feedstock to produce approximately 
61 million L/year of bio-oil via fast pyrolysis (Iglesias et al. 
2021). In this context, Pighinelli et al. (2018) took as a basis 
for their simulation a production capacity of 2000 tons/
day of Eucalyptus benthamii obtaining a minimum selling 
price of $28/GJ and a high calorific value of 30.76 MJ/kg. 
van Schalkwyk et al. (2020) evaluated the minimum sell-
ing price of bio-oil via a TEA, considering an internal rate 
of return (IRR) of 10%. On the other hand, Pinheiro et al. 
(2019) reported that bio-oil production costs varied in the 
range of $6–51/GJ. According to the TEA conducted by 
Iglesias et al. (2021), the new generation of biorefineries 
could reach a processing capacity of 60,000 to 5,000 tons/
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year of eucalyptus residues, with a minimum selling price 
ranging from $11.6 to $19.3/GJ.

Barbera et al. (2020) focused on the production of bio-jet 
from WCO, performing a comparative study between two 
methods: catalytic transfer hydrogenation (CTH) with iso-
propanol as hydrogen donor and conventional hydrogena-
tion (CH). TEA was performed based on a process simu-
lation with Aspen Plus® software. For both processes, a 
plant-processing capacity of 1000 tons/day of WCO was 
set. Reagent costs (WCO $0.15/kg, hydrogen $1.6/kg, and 
isopropanol $1.30/kg) were estimated according to the lit-
erature. The total plant capital expenditures for the CTH and 
CH processes were $7.3 million and $149.7 million, respec-
tively. The revenues obtained for liquid biofuels (bio-jet, 
diesel, naphtha, and kerosene) by both methods are similar, 
at approximately $140.4 million (CTH) and $141.4 million 
(CH). To be economically profitable, the bio-jet obtained via 
CTH and CH must be sold at $0.79/L and $0.44/L, respec-
tively. The selling price of the bio-jet obtained with CTH 
was higher than that obtained with CH, mainly because of 
the high cost of isopropanol, which represents up to 68% of 
the manufacturing cost.

Hsu et  al. (2021) evaluated the impact of the WCO 
hydro-conversion to bio-jet and its large-scale application 
whit processes with one, two or three stages. They found 
that with a plant-processing capacity of 300 tons/day of 
oil, the three-stage process was the most appropriate, with 
a total capital investment of $17.24 million and a low 
minimum selling price for bio-jet of $0.31/L based on the 
price of WCO ($0.63/kg) with a probability of profitability 
of 11.94%. Moreover, the 3-stage hydro-processed bio-jet 
process achieved a maximum yield of 57 wt%.

The optimization of WF oil extraction using solvents and 
its conversion to biodiesel via TEA was performed by Rajen-
dran et al. (2022). Under the optimized reaction conditions, 
a maximum FAME conversion of 96.3% was achieved. The 
TEA simulation considered a plant-processing capacity of 
10 MT/h. The raw material costs of the biochar catalyst ($1/
kg), ethanol ($0.75/kg), FW ($0/kg), and methanol ($0.24/
kg), and biodiesel ($0.84/kg) were considered. Results 
displayed that the TCP was $33.73 million with annual 
revenues of $24.14 million for a useful life of the plant 
of 20 years and an investment recovery rate of 3.16 years 
and minimum selling price of $0.46/kg. The annual bio-
diesel and crude glycerol production was 22,710.4 MT and 
3315.08 MT, respectively, with 37.11 MJ of energy required 
to produce 1 kg of biodiesel.

One of the main problems facing olive oil production is 
the generation of a large volume of olive mill wastewater 
(OMW), which pollutes the environment. Therefore, Khan 
et al. (2022) conducted a TEA for bio-oil recovery from 
OMW sludge via catalytic pyrolysis using different types of 
cooling schemes and a plant capacity of 93 ton/day of dry 

biomass (Fig. 9). The performance of the model with a vapor 
compression refrigeration machine in scheme 1 (Fig. 9a) 
was evaluated and compared with that of the model with 
an absorption refrigeration machine in scheme 2 (Fig. 9b). 
Both schemes were modeled using Aspen Plus®. The results 
showed that the bio-oil production cost obtained by schemes 
1 and 2 ranged from €2.16–6.19/GGE (gasoline gallon 
equivalent) and €1.78–5.01/GGE, respectively. It is worth 
mentioning that a basis of capital investment of €22.1 mil-
lion and operating expenses of €4.6 million were considered 
for scheme 1, while for scheme 2, the capital and operating 
costs were 17.5 and 3.6 million euros, respectively. From an 
energy and economical point of view, it was observed that 
scheme 2 showed a higher energy efficiency (0.7%) and bet-
ter economic performance (minimum selling price = €2.74/
GGE) than scheme 1. The results obtained were competitive 
and favorable, revalidating the possibility of bio-oil produc-
tion via fast catalytic pyrolysis on an industrial scale.

Saetiao et al. (2023) utilized with Aspen Plus® to design 
a small-scale biodiesel plant with a production capacity of 
10,000 tons per year using commercial-grade pure triolein, 
achieving a biodiesel purity of 99.99% and considering a pro-
jected plant lifetime of 20 years. As the prices of reagents and 
products may fluctuate, and the estimations change, therefore 
authors considered a range of prices for methanol ($0.13-
$0.42 per kg), triolein ($0.195-$0.280 per kg) and biodiesel 
($0.90–$1.15 per kg). The analysis showed that the total 
production cost (TPC) was estimated to be 4,169,698 USD, 
where raw materials had the highest cost (65.51%), followed 
by utilities (11%), and labor costs (5.46%). The net present 
value (NPV) of $415 million demonstrated that the project 
was economically viable with a low loss risk. The payback 
period for recovering the investment was 7.17 years. Authors 
concluded that changes in raw materials and product costs 
could have a significant impact on the project feasibility.

Omidkar et al. (2023) tested a new catalytic process in 
the presence of methane to produce green diesel from WCO. 
Due to the relevance and expectation of the process, TEA 
and life cycle analysis were performed. The results were 
comparable to those of other conventional and commercial 
methods reported in the literature. This promising method 
was able to reduce energy consumption (0.93 kW/kg green 
diesel) and production costs ($0.365/kg) compared to other 
commercial methods such as hydrotreatment ($0.574/kg) 
and alkali-catalyzed process ($0.513/kg). Also, the life 
cycle analysis showed that the process was environmentally 
friendly and could reduce the emissions of polluting gases 
 (CO2). From an economic perspective, the process is profit-
able because the minimum selling price is lower than the 
current price of conventional fuels in the market.

As can be seen, the TEA tool provides relevant infor-
mation about the economic feasibility of a process, and 
it depends on a variety of factors that, if not managed 
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properly, make the product unprofitable in the market. 
It is evident that the production cost of biofuels is still 
highly dependent on the cost of raw materials. Therefore, 
the search for abundant, suitable, low-cost raw materials 
such as residual biomass is fundamental.

Future remarks and perspectives

In the context of a future world economy based on liquid 
biofuels, more attempts should be made to guarantee 
low-carbon transition. By integrating biofuels into the 

Fig. 9  Bio-oil from oil mill wastewater sludge via catalytic pyroly-
sis using different two cooling schemes: a vapor compression refrig-
eration machine and b absorption refrigeration machine (Khan et al. 

2022). ESP Electrostatic precipitator, OMWS Olive mill wastewater 
sludge, R1, R2 condensers
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existing transportation and industrial infrastructure, low-
income countries can reduce their reliance on imported 
oil and create a more sustainable and resilient energy 
system. Governments worldwide must implement policies 
and regulations to encourage the production and use of 
different biofuels. Incentives, including tax credits, 
subsidies, and renewable energy mandates, would help 
to create a favorable market environment for biofuel 
producers, leading to increased investment and growth in 
the sector, especially in developed countries.

The future scope of biofuels derived from waste biomass 
is therefore promising. However, research, development, and 
collaboration among academia, industry, and governments 
are crucial for achieving the full potential of biofuels derived 
from waste biomass and integrating them into the global 
energy system. Several challenges must be addressed to 
ensure its successful implementation and widespread 
adoption. The availability and sustainability of biomass 
feedstock pose a significant challenge. The scaling up 
biofuel production requires a consistent and abundant supply 
of biomass without negatively affecting food production, 
land-use, water resources, or biodiversity. It is also important 
to improve and optimize biomass conversion technologies, 
increase their efficiency, and reduce costs. The development 
of improved biochemical and thermochemical methods can 
lead to higher yields, better energy efficiency, and lower 
greenhouse gas emissions. The advancements in catalysts, 
enzymes, and pretreatment techniques will play a vital role 
in improving the overall efficiency of biofuel production.

On the other hand, there is a critical need for innovative 
catalyst development to enhance the catalytic conversion of 
biomass-derived intermediates into biofuels. Solid catalysts, 
in particular, present opportunities for improved selectivity, 
durability, and recyclability compared to their liquid 
counterparts. Future research should research into the design 
and synthesis of novel solid catalyst materials with tailored 
properties, exploring catalytic mechanisms and optimizing 
reaction conditions for maximum biofuel production.

Furthermore, the integration of artificial intelligence 
and machine learning techniques into biomass-to-biofuel 
processes can offer predictive modeling and optimization 
capabilities. These technologies can help researchers 
identify optimal conditions, predict yield outcomes, and 
design efficient catalytic systems. By taking advantage 
of data-driven approaches, future studies can accelerate 
the development and implementation of biomass waste 
conversion technologies.

Lastly, a comprehensive life cycle assessment is 
essential to evaluate the environmental sustainability and 
overall impact of biomass-to-biofuel processes. Future 
research should address the ecological footprint, energy 
balance, and socioeconomic aspects associated with large-
scale implementation, ensuring that biofuel production 

from biomass waste aligns with broader sustainability 
goals. Collaborative efforts between researchers, industry 
stakeholders, and policymakers will be crucial to navigating 
the complexities of scaling up biomass waste utilization for 
biofuel production while addressing economic, social, and 
environmental considerations.

In addition, it is important to point out that public 
perceptions and acceptance of biofuels can influence their 
adoption. The prevailing collective concerns related to 
land-use change, food security, water usage, and potential 
environmental impacts should be addressed and resolved. 
The implementation of effective communication with society 
and raising awareness about the benefits and sustainability 
of biofuels can help overcome misconceptions and gain 
public support. Continuous innovation, technological 
advancements, supportive policies, and public engagement 
are key parameters for unlocking the full potential of 
biomass-derived biofuels in the global economy. In this 
direction, the benefits of biomass, as a promising source of 
sustainable biofuels, should be highlighted. The diversity in 
feedstock options provides flexibility in biofuel production, 
making it adaptable to regional and local contexts.

The challenges and opportunities presented in this review 
underline the need for continued research and investment in 
the biofuel sector. The transition to sustainable and economi-
cally viable biofuels is not only a technological challenge, 
but also an environmental imperative.

Conclusions

Biofuels derived from waste biomass have attracted sig-
nificant attention as promising alternatives to fossil fuels. 
Unlike the sources used to obtain the traditional fuels, the 
waste biomass is continuously generated making biofuels 
a long-term energy solution. They offer several advantages 
such as reduced greenhouse gas emissions, potential waste 
management solutions, and decreased reliance on nonrenew-
able resources.

The sustainability of biofuels production depends on 
the feedstock, reagents, processes, and technologies, which 
have different social, economic, environmental, and political 
impacts. The circular economy approach requires the large-
scale economic production of biofuels based on an effective 
“waste-to-wealth” strategy. It is clear that a multidisciplinary 
approach is required to achieve zero-waste economy, and the 
society is still far from achieving this goal.

The ongoing research and current advances have 
focused on improving the biofuel production processes 
and optimizing the conversion efficiency of waste biomass. 
Advancements in biochemical and thermochemical 
conversion technologies such as fermentation, pyrolysis, 
and gasification are expected to enhance the economic 
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viability and scalability of biofuel production. On the 
other hand, the synthesis of heterogeneous catalysts from 
biomass waste provides a more ecological and profitable 
route for biofuel synthesis. They have gained popularity for 
biofuel synthesis. They are low-cost and readily available 
when residual biomass is used as a support precursor, thus 
obtaining additional advantages over expensive catalysts 
based on only metallic elements. Therefore, it is vital to 
identify and valorize a wide spectrum of raw materials 
that can potentially be used as catalyst precursors. In this 
sense, carbon-based catalysts have shown an extraordinary 
ability to tailor their physicochemical properties, but also 
provide an inert surface and thermal stability, which are 
characteristics that offer advantages over other supports. 
Nevertheless, catalyst design is paramount from a green 
synthesis perspective to successfully achieve suitable 
biofuel conversion and selectivity. However, it is also 
important that these catalysts can be reused for several 
cycles with low deactivation. These challenges must be 
overcome to have the possibility of a high production 
yield.

In conclusion, the utilization of biomass waste as a raw 
source for biofuels and solid catalysts holds significant 
promise for addressing both environmental and energy 
challenges. By converting organic waste materials into 
biofuels, we can contribute to a more sustainable and 
renewable energy future, reducing dependence on finite 
fossil fuels.
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