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Abstract
Banana peduncle waste (BPW) is a major fibrous waste generated from the wholesale vegetable markets in urban areas that 
is less degradable due to the presence of cellulose, hemicellulose and lignin contents. In order to recover energy and pro-
duce biochar as a by-product, pyrolysis is a promising alternate method for the treatment and disposal of BPW. The novel 
aspect of the study is to use response surface methodology (RSM) with central composite design by Minitab Software to 
identify the optimum process parameters, such as pyrolysis temperature (PT), holding time (HT), and heating rate (HR) for 
the responses biochar yield (%), carbon content (g), and pH of the biochar. For RSM the minimum and maximum values are 
considered in the range of 400–600 °C, 80–240 min and 10–20 °C  min−1 for PT, HT and HR, respectively. Experiments of 20 
sets at different parameters as per RSM were carried out in lab scale pyrolysis unit and results showed that PT and HT have 
a significant effect on biochar yield, carbon content and pH, while HR did not show a considerable impact. The proximate 
and ultimate analyses of BPW and biochar obtained (BPW–BC) were also investigated including SEM and FTIR. From the 
results, biochar yield of 50%, carbon content of 3.18 g and pH of 11 were obtained at optimum conditions of PT: 462 °C, 
HT: 80 min and HR-10 °C  min−1 and found that the experimental responses are very close to the predicted values. Further, 
the characteristics of BPW–BC obtained vary with process conditions and could be potentially used for various applications 
such as soil conditioners, adsorbent pyrogenic carbon capture and storage.
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Introduction

Banana is one of the main fruits ranked second next to citrus 
fruits and has international trade market potential. Banana 
fruit is cultivated in tropical and subtropical regions and 
consumed globally (Workneh and Belew 2013). The banana 
peduncle contributes to about 12% of the weight of the fruit 
bunch and is conveyed along with the fruits to the cities 

for local distribution and consumption. This part of the 
peduncle is discarded as waste (Pazmiño-Hernandez et al. 
2019). The discarded banana peduncle is fibrous in nature 
due to the presence of lignocellulose and hemicellulose 
content. The lignin content forms the structure that acts as a 
shield for both cellulose and hemicellulose content, which 
inhibits bacterial activity, and hence conventional biological 
treatment methods like anaerobic digestion and composting 
are not suitable for BPW (Beis et al. 2002).

There are few studies reported for anaerobic digestion 
of BPW with pretreatment for biogas production (Benish 
et al. 2022). But, BPW can be easily treated and disposed 
using thermochemical conversion method which is a novel 
approach in this study. The thermochemical conversions of 
these waste biomasses are carried out either by incineration, 
gasification, liquefaction or pyrolysis processes (Dhyani and 
Bhaskar 2018). Among thermochemical biomass conversion 
technologies, pyrolysis is one of the simple methods by 
which biomass is burnt in the absence of oxygen resulting in 
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carbon capture and storage. During pyrolysis, the naturally 
present lignin, cellulose and hemicellulose contents are 
converted into biochar, bio-oil and synthetic gas (Mohan 
et al. 2006). The different types of pyrolysis adopted for 
biomass conversion are fast pyrolysis, flash pyrolysis, slow 
pyrolysis, catalytic pyrolysis and plasma pyrolysis (Uddin 
et al. 2018). During fast pyrolysis, the biomass is burnt to 
high temperatures in a short time. During fast pyrolysis, 
60–70% of bio-oil, 12–15% biochar and 15–28% of gas 
were obtained (Isahak et al. 2012). Similarly, during flash 
pyrolysis, bio-oil generation is predominant in comparison 
with biochar and syngas. During slow pyrolysis, the major 
products are biochar and non-condensable gases. The 
quality of biochar such as porosity, surface area and H/Corg 
molar ratio vary depending on the substrate, their organic 
and inorganic composition, genotype and other parameters 
during the pyrolysis process, i.e., particle size, pyrolytic 
temperature, heating rate and holding time (Angın 2013; 
Wati 2019; Zhao et al. 2021). Higher temperatures affect 
biochar characteristics and decrease biochar yield due to 
the escape of organic components (Zhao et al. 2018). The 
pyrolytic temperature is a significant factor that determines 
the composition and stability of the biochar. On the other 
hand, higher holding time results in carbonization of biochar 
with less organic content (Zornoza et al. 2016).

Most of the researchers focused their research on treat-
ment of banana pseudo-stems only, but it is pertinent to men-
tion that the banana peduncle transported along with banana 
fruit to the urban areas needs to be studied (Manimaran et al. 
2020) for treatment and safe disposal as currently most of 
BPW is disposed in open dumping or landfill. In addition, 
the greenhouse gases emission from fossil fuels and recent 
increase in the cost of energy have encouraged researchers 
to find new treatment technology to obtain energy and value-
added products, especially bioenergy from waste biomass, 
and potential options for carbon sequestration and storage to 
mitigate climate change including thermochemical conver-
sion processes (Ronsse et al. 2013).

Further on the other hand, the agricultural soil in many 
regions is under serious threat due to changes in farming 
methods, the use of artificial fertilizers and changes in cli-
matic conditions. Under these circumstances, there is an 
urgent requirement to improve the agricultural land by reme-
diating the soil and regaining its fertility by natural methods 
(Johns 2017). Potassium (K) is a macronutrient for plant 
growth and it is deficient in the soil due its availability in 
insoluble forms and sometimes the available potassium is 
leached out during irrigation runoff. Hence, in the agricul-
ture field, the potash fertilizer is used to increase potassium 
content in the soil for plant growth (Römheld and Kirkby 
2010). In addition to K content, the organic carbon (C) and 
water retention in soil is also important factors, as tropi-
cal countries experience only periodical rainfall. Hence, the 

addition of carbon (C) in the form of biochar can increase 
water retention due to its porosity and structure and also 
meet the soil’s carbon requirement (Suravi et al. 2021). The 
BPW is rich in the minerals such as potassium (K) and phos-
phorus (P) which can be retained during pyrolysis after the 
removal of the volatile substances and could use to improve 
the K content in soil. The elements present in the biomass 
such as sodium, magnesium, calcium, potassium and phos-
phorus are retained in biochar, which increases the soil nutri-
ent value when used as a soil conditioner. The biochar addi-
tion also varies the soil density and thus has a strong effect 
on the growth and morphology of the root (Suravi et al. 
2021). The porosity in biochar also increases the microbial 
activity in the soil. The microbial count in the soil would 
increase considerably and the soil turning would be higher. 
Hence, the root and formation of root hairs become easier 
(Jacoby et al. 2017). In addition, the availability of minerals 
in biomass is also concentrated in the biochar (Karim et al. 
2017).

The agriculture land is falling short of macro- and micro-
nutrients while on the other hand BPW has macro- and 
micro-nutrients that is disposed as waste in open dumps or 
landfills. The novelty of this study is to bridge the nutrient 
demand by using BPW as substrate to recover nutrients and 
carbon-rich biochar using pyrolysis process and to identify 
the optimized process parameter. This study can give a com-
plete treatment method for disposal of BPW in urban cities 
and reduce the emission of greenhouse gases due to disposal 
of BPW in large quantities in landfill or open dumpsites in 
addition to carbon capture by biochar.

The current objective of the study is to use an effective 
response surface methodology using central composite 
design (CCD) to determine the impact of pyrolytic process 
parameters (PT, HT and HR) on responses such as biochar 
yield, carbon content and pH of biochar. RSM enables sta-
tistical analysis of these responses resulting from multiple 
process parameters and their main and interaction effects 
(Brown and Brown 2012). Second-order quadratic regres-
sion model equations for responses is also obtained from 
central composite design (CCD) (Izadiyan and Hemma-
teenejad 2016). The detailed characterization of biochar 
obtained from the study was investigated for various poten-
tial applications.

Materials and methods

BPW (raw biomass) was collected from the wholesale 
vegetable market in Koyambedu, Chennai, and was then 
reduced in size to less than 20 mm using a shredder (Netzsch 
N-Mac). The shredded BPW is oven-dried and stored in 
airtight closed container at room temperature. Proximate 
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analysis, fiber content and ultimate analysis were carried 
out to characterize the BPW sample.

Pyrolysis of BPW is carried out using a custom-made 
lab-scale pyrolysis unit to get biochar. The flue gas from the 
pyrolysis unit is passed through a chiller line, and conden-
sable gases are collected as bio-oil. The schematic drawing 
of the lab-scale pyrolysis unit is shown in Fig. 1.

Pyrolysis of BPW at different process conditions 
using RSM

The response surface methodology using CCD has been car-
ried out using Minitab Software (version 14). Biochar sam-
ples were produced as a result of experiments carried out in 
a lab-scale pyrolysis unit at various pyrolysis temperatures 
(PT), holding times (HT) and heating rates (HR) conditions 
according to CCD. Biochar yield (%), carbon content (g) 
and pH of the biochar are the responses taken into account. 
Table 1 displays the experimental ranges of the independent 
process parameters (PT, HT and HR) investigated in accord-
ance with the design.

The biochar yield (%) is calculated by Eq. 1.

The carbon content (g) of the biochar samples was cal-
culated by multiplying the % of C from the CHNS analyzer 
and amount of biochar during the pyrolysis. The pH of the 
biochar samples was measured as per the ASTM (D4972-19) 
standards using pH meter (Eutech).

Based on the experimental investigations, the responses 
obtained at various process parameters were statistically 
analyzed in Minitab Software to obtain a regression equa-
tion linking the responses to process parameters.

The following polynomial regression expression relates 
the responses and the process conditions to estimate the pre-
dicted values. The typical regression equation for responses 
analysis is given in Eq. 2.

(1)

Biochar yield (%) =
Mass of biochar obtained (g)

Mass of dried BPW (g)
× 100

(2)

Y = �
0
+ �

1
PT + �

2
HT + �

3
HR

+ �
4(PT) ∗ (HT) + �

5(PT) ∗ (HR)

+ �
6(HT) ∗ (HR) + �

7(PT)
2

+ �
8(HT)

2 + �
9(HR)

2

Fig. 1  Schematic of lab scale 
pyrolysis unit

Table 1  Process parameters and 
their levels in CCD

Process parameters Unit  − 1.68  − 1 0  + 1  + 1.68

Pyrolytic temperature (PT) °C 331.8 400 500 600 668.2
Holding time (HT) min 25 80 160 240 294
Heating rate (HR) °C  min−1 6.6 10 15 20 23.4
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where Y  s the response, β0 is the intercept, β1 to β9 is the 
coefficient of the factors, PT is the pyrolysis temperature, 
HT is the holding time and HR is the heating rate.

Two-dimensional graphs displaying the reactions at 
various levels of independent process parameters for the 
responses were created. Furthermore, analysis of variance 
(ANOVA) was performed to compare the experimental 
and predicted responses (Behera et al. 2018) to validate the 
regression equation prediction.

The actual experimental results of biochar yield, carbon 
content and pH were obtained by carrying out the pyrolysis 
experiments with BPW at the optimum condition obtained 
from CCD, and the results are compared.

Characterization of BPW and biochar obtained 
from BPW (BPW–BC)

The characteristics of BPW and BPW–BC were analyzed 
by proximate analysis (moisture, dry matter and ash con-
tent, volatile matter, fixed carbon), ultimate analysis (CHNS) 
and fiber analysis (hemi-cellulose, cellulose, lignin). In 
addition, the BPW–BC obtained from BPW was analyzed 
for specific parameters such as pH, electrical conductivity, 
cation exchange capacity, determination of surface func-
tional groups using FTIR and scanning electron microscopy 
(SEM).

Proximate and ultimate analyses

The moisture and dry matter content were determined in 
accordance with the ASTM standard (D 3173). Volatile 
matter (VM) was determined by measuring the weight loss 
after combustion of the samples in a furnace at 550 °C for 
2 h as per APHA standards (Shafiq 2017). CHNS analysis 
is performed using a CHNS analyzer (Eurovector-EA3000 
model).

Fiber analysis

The Van-Soest fiber analysis method (Wolfrum et al. 2009) 
was used to determine the neutral detergent fiber (NDF) and 
acid detergent fiber (ADF). The following formula was used 
to compute the hemicellulose, lignin and cellulose contents.

Determination of functional groups and surface 
morphology

Functional groups in the raw BPW samples and BPW–BC 
were analyzed using JASCO FTIR-4700 equipment. Fourier 

NDF = Hemicellulose + Cellulose + Lignin

ADF = Cellulose + Lignin

transform infrared was carried out with wavelength range 
from 400 to 4000   cm−1 with a resolution of 4   cm−1. 
Similarly, scanning electron microscopy (SEM) was used 
to determine the surface morphology of raw BPW and 
BPW–BC (TESCAN-CLARA model).

Determination of pH, EC, CEC and organic carbon

The pH, electrical conductivity (EC), organic carbon and 
cation exchange capacity (CEC) were also analyzed. The pH 
of the BPW–BC was measured as per the ASTM standard 
(D4972-19) using pH meter (Eutech), and EC of biochar 
was analyzed as per ASTM standard (E1004-17) using con-
ductivity meter (Hach) (Han et al. 2022). The organic car-
bon was analyzed using the Walkley and Black technique 
(Enang et al. 2018). The barium acetate method was used 
to determine the cation exchange capacity (CEC) (Batista 
et al. 2018).

Results and discussion

Characterization of banana peduncle waste (BPW)

The results of proximate, ultimate and fiber content analysis 
of banana peduncle waste (BPW) are given in Table 2. It 
is also observed that the VS content is about 6.1% of wet 
weight (approx. 75% of the total solids). It was found 
that lignocellulosic substances (cellulose, hemicellulose 
and lignin contents) in BPW contribute to about 70% 
of total solids. It is observed that the presence of higher 
lignocellulosic content in the BPW requires pretreatment 
methods either mechanically or enzymatically for biological 
treatment (Kumar and Sharma 2017). Higher lignocellulosic 
content indicates that BPW is better suited for thermal 

Table 2  Characteristics of BPW

# Parameters Values

1 Moisture content (%) 91.4 ± 0.70
2 Total solids (TS) % of wet weight 7.9 ± 0.69
3 Volatile solids (VS) % of TS 77.21 ± 0.40
4 Fixed solids (FS) % of TS 24.05 ± 0.12
5 Carbon (C) % of TS 50.37
6 Hydrogen (H) % of TS 7.39
7 Nitrogen (N) % of TS 6.88
8 Sulfur (S) % of TS 2.14
9 Total phosphate as  P2O5% of TS 7.07%
10 Total potash as  K2O % of TS 17.43%
11 Cellulose % of TS 32.5 ± 13.8%
12 Hemicellulose % of TS 20.3 ± 6.4%
13 Lignin of % of TS 17.9 ± 11.7%
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treatment methods compared to conventional biological 
process (Zhang et al. 2018). The analysis results have also 
confirmed that the biochar obtained from the BPW is rich 
in potash and phosphates than other biomasses which acts 
as macronutrients to the plants when used as fertilizer in 
the soil.

It is observed that there were wide variations in the cellu-
lose, hemicellulose and lignin contents of triplicate samples 
indicated by higher standard deviation and it is mainly due to 
the presence of different varieties of BPW samples available 
and collected from market.

Optimization study of pyrolysis process parameters

Based on lab scale pyrolysis experiments with BPW, the 
responses obtained in terms of biochar yield (%), carbon 
content (g) and pH of the biochar from 20 experimental 
conditions. RSM was used to develop second-order quad-
ratic regression models that relate responses (biochar yield, 
carbon content and pH) to experimental conditions (PT, HT 
and HR). The experimental and the predicted values of the 
responses-based models equations are given in Table 3.

The different process parameters for 20 combinations 
of experimental runs were obtained from the CCD and 
the pyrolysis of BPW was carried out at the experimental 

conditions. The impact of pyrolysis process parameters on 
responses such biochar yield, carbon content and pH of the 
collected biochar is clearly confirmed by the main effect plot 
in Figs. 2, 3 and 4.

The highest biochar yield of 54.6% was obtained at 
pyrolysis condition PT of 500 °C, HT of 25.45 min and 
HR of 15 °C  min−1 and the lowest biochar yield of 32.3% 
was obtained with pyrolysis condition PT of 600 °C, HT 
of 240 min and HR of 20 °C  min−1. Similarly, the high-
est carbon content of 3.6 g was obtained with pyrolysis 
conditions PT of 500 °C, HT of 25.45 min and HR of 
15 °C  min−1 and the lowest carbon content of 2.2 g was 
obtained with pyrolysis conditions PT of 600 °C, HT of 
240 min and HR of 10 °C  min−1.

From the results, it is observed that there will be 
a decrease in the biochar yield and carbon content 
with increase in PT from 331 to 668 °C. This is due to 
volatilization of organic matters and free carbon molecules 
present in substrates and hence the reduction in the biochar 
yield and carbon content is observed. On the other hand, 
the highest pH of the biochar is observed with PT of 
668 °C, HT of 160 min and HR of 20 °C  min−1 and the 
results are quite evident that the pH of biochar increases 
with an increase in the PT and HT. Higher pH is observed 

Table 3  Experimental design and results of complete factorial central composite design

Experi-
mental 
runs

Process parameters Experimental values Predicted values

Pyrolysis tem-
perature (PT) 
(°C)

Holding time 
(HT) (Min)

Heating 
rate (HR) 
(°C  min−1)

Biochar 
yield (%)

Carbon 
content 
(g)

pH of biochar Biochar 
yield (%)

Carbon 
content 
(g)

pH of biochar

R1 400 80 10 51.9 3.5 10.1 51.7 3.4 10.2
R2 600 80 10 46.2 3.2 12.0 46.1 3.1 12.0
R3 400 240 10 41.2 2.7 10.9 41.2 2.7 11.3
R4 600 240 10 32.8 2.3 11.9 32.1 2.2 11.9
R5 400 80 20 51.9 3.3 10.0 52.2 3.4 10.0
R6 600 80 20 46.6 3.0 11.8 46.3 3.1 11.8
R7 400 240 20 41.8 2.8 11.2 41.6 2.9 11.1
R8 600 240 20 32.3 2.2 11.9 32.2 2.3 11.6
R9 331 160 15 47.8 3.5 10.3 47.7 3.4 10.2
R10 668 160 15 34.7 2.6 12.0 35.2 2.6 12.2
R11 500 25.45 15 54.6 3.6 11.0 54.6 3.6 10.9
R12 500 294 15 33.5 2.5 11.6 34.0 2.4 11.7
R13 500 160 6.6 42.2 2.5 11.6 42.7 2.6 11.5
R14 500 160 23.4 43.2 2.9 10.8 43.2 2.7 11.1
R15 500 160 15 43.0 2.6 11.8 42.4 2.6 11.7
R16 500 160 15 42.3 2.6 11.9 42.4 2.6 11.7
R17 500 160 15 42.1 2.5 11.5 42.4 2.6 11.7
R18 500 160 15 42.4 2.6 11.6 42.4 2.6 11.7
R19 500 160 15 42.2 2.7 11.7 42.4 2.6 11.7
R20 500 160 15 42.5 2.4 11.7 42.4 2.6 11.7
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due to increase in ash content with increase in PT and HT 
(Mohamed Noor et al. 2019; Zheng et al. 2013).

Main effect plot

The main effect plots for the effect of three process param-
eters (PT, HT & HR) on the responses biochar yield, carbon 
content and pH are shown in Figs. 2, 3 and 4, respectively. 
According to Fig. 2, the drop in biochar yield from 47.7 
to 34.6% was obtained when the PT is raised from 331 to 
668 °C which could be due to the greater volatility and 
breakdown of the cellulose and hemicellulose components 

present in the BPW (Uzun et al. 2010). Further, the biochar 
yield is also reduced from 54.6 to 33.5% as the HT increased 
from 25 to 294 min and similar trends were reported by 
other researchers also (Sevgi 2015; Siddiqui 2017). It was 
hypothesized that as the pyrolysis temperature is raised, the 
amount of volatile matter drops and the amount of fixed 
carbon rises and causes a drop in the O/C ratio of the biochar 
generated (Te et al. 2021). It can be seen that the HR in the 
pyrolysis does not show any significant effect on biochar 
yield as shown in Fig. 2.

From Fig. 3, it is observed that the carbon content of bio-
char also got reduced with an increase in PT and HT while 

Fig. 2  Main effect plot for 
biochar yield

Fig. 3  Main effect plot for 
carbon content (g)
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the HR did not show much impact similar to biochar yield 
response. The main effect plot showed that there is a con-
siderable drop in carbon content till 500 °C and thereafter 
showed that there is less reduction (Söderqvist 2019; Weber 
and Quicker 2018). At higher PT and HT, the free carbon 
present in the BPW gets volatized which was reflected in 
decrease in carbon content as observed in Fig. 3 (Cao and 
Harris 2010; Safdari et al. 2019). However, O/C ratio will be 
decreased due to increase in carbon content from the biochar 
which interprets the carbonization and aromaticity reveals 
how to interact with the soil. Interaction of biochar with the 
soil helps the microorganisms present in the soil to break 
down organic matter and indirectly influences nitrogen min-
eralization (Haryati et al. 2018).

From Fig. 4, it is observed that an increase in PT also 
increases the pH of the biochar due to a decrease in acidic 
functional groups. The biochar obtained at higher pyrolysis 
temperatures becomes more alkaline due to an increase in 
ash content (Rajkovich et al. 2012; Zea et al. 2016). Similar 
to PT, HT also showed a similar trend, i.e., an increase in HT 
increases pH of the biochar. The biochar is more alkaline at 
a higher holding time which could be due to the separation 
of minerals present in the biochar from the organic content 
(Wang et al. 2018). The main effect plot of the pH of biochar 
showed slight reduction in pH from 11.6 to 10.75 with an 
increase in HR.

The central composite design also gives the individual 
and interaction effects of the process conditions and their 
impact on responses analyzed by t test and the results are 
given in Table 4.

Based on the results of the student’s t test, the sig-
nificance of process parameters on the responses is 

determined. From the results, it is evident that the pro-
cess parameters PT and HT showed significant effects 
on biochar yield and carbon content (p < 0.05), whereas 
the factor HR did not show any significant effect on these 
responses (p > 0.05). In respect of pH response, PT, HT 
and HR showed significant effects (p < 0.05). The nega-
tive t-values indicate their negative effect of PT and HT 
on the responses biochar yield and carbon content. The 
positive t-value indicates the positive effect of HR on the 
pH of the biochar response. It could be observed that the 
interaction effects of PT and HT also showed a significant 
impact on the response biochar yield and pH (p < 0.05). It 
is also observed that the other interaction effects of process 
parameters are not significant for any of the responses with 
higher p values (p > 0.05).

The regression model equations for biochar yield, carbon 
content and pH of the biochar with three independent pro-
cess parameters are given in Eqs. 3, 4 and 5, respectively.

(3)

Biochar yield (%) = 42.40 − 3.74 PT − 6.14HT

+ 0.16 HR − 0.33 PT *PT

+ 0.67 HT ∗ HT + 0.19 HR ∗ HR

− 0.87 PT ∗ HT

− 0.08 PT ∗ HR − 0.04 HT ∗ HR

(4)

Carbon content (g) = 2.57 − 0.23 PT − 0.35 HT + 0.03 HR

+ 0.16 PT ∗ PT + 0.16 HT ∗ HT

+ 0.02 HR ∗ HR − 0.06 PT ∗ HT

− 0.02 PT ∗ HR + 0.05 HT ∗ HR

Fig. 4  Main effect plot for pH
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The predicted values of the responses were determined 
using regression analysis derived equations. R2 and adjusted 
R2 values (also known as the coefficient of determination) 
are used to assess the effectiveness of regression models.

The R2 values of the polynomial regression equations are 
0.99 for biochar yield, 0.95 for carbon content and 0.96 for 
pH of the biochar implying that only 1%, 5% and 3% of vari-
ations in the responses are not explained by the regression 

(5)

pH of biochar = 11.67 + 0.58 PT + 0.23 HT − 0.13 HR

− 0.17 PT ∗ PT − 0.13HT ∗ HT

− 0.14HR ∗ HR − 0.33PT ∗ HT

− 0.02PT ∗ HR − 0.01HT ∗ HR

analysis model. In a similar manner, the difference between 
the adjusted R2 and projected R2 is determined to be 0.0117 
for biochar yield, 0.1908 for carbon content and 0.135 for 
pH all of which are less than 0.2, showing that the evaluated 
model fit the experimental data according to the output of 
the Minitab Software.

Analysis of variance analysis of biochar yield, carbon 
content and pH

The predicted values of the responses based on quadratic 
regression models and experimental values were analyzed 
using analysis of variance (ANOVA) and statistical mod-
els were tested with F-values and lack of fit. The results 
obtained from the analysis of variance for three responses 
are given in Table 5.

F-values calculated on the regression models are 416.12, 
19.32 and 31.30 for biochar yield, carbon content and pH of 
biochar, respectively, as shown in Table 5, which is found to 
be higher than the F tabular value of 2.82. The p values were 
also less than 0.05, confirming that the confidence levels 
are more than 99%, indicating that the analyzed regression 
models are exceptionally well fitted to the experimental data. 
The models’ lower p values and higher F-values also imply 
that the independent factors and responses are in a good 
relationship. In this regression models, p values of the lack 
of fit are greater than 0.05 indicating that the experimental 
data obtained fit in the regression model and that there is 
significantly less chance that the F-values could be more 
significant due to noise (Wong et al. 2015).

The typical two-dimensional plots for biochar yield, 
carbon content and pH for significant process conditions 
are shown in Fig. 5. From Fig. 5a, it was observed that 
the biochar yield reduces with an increase in PT and HT 
confirming the results obtained from the main effect plot and 
student t tests. Similarly, the carbon content of biochar also 
showed a similar trend with PT and HT shown in Fig. 5b. 
In case of pH response, a slight increase in pH is observed 
in Fig. 5c.

Optimal process parameters prediction 
and experimentation

Based on the biochar yield, carbon content and pH of the 
biochar responses, it was observed that higher PT and HT 
reduced the biochar yield and carbon content. In respect of 
pH, higher PT and HT resulted in alkaline biochar, whereas 
HR did not show any significant effect on all three responses. 
Further, the optimum conditions obtained from output of 
central composite design (CCD) using Minitab Software 
are 462 °C, 82 min and 10 °C  min−1 for the production 
of biochar. The theoretical responses for the optimum 

Table 4  Regression analysis of responses (Biochar yield, carbon 
content and pH of biochar)

Terms Coefficients ‘t’-Value p Value

Biochar yield
 Constant 42.40 236.87 0.00
 PT  − 3.74  − 31.49 0.00
 HT  − 6.14  − 51.70 0.00
 HR 0.16 1.38 0.20
 PT*PT  − 0.33  − 2.89 0.02
 HT*HT 0.67 5.76 0.00
 HR*HR 0.19 1.67 0.13
 PT*HT  − 0.87  − 5.61 0.00
 PT*HR  − 0.08  − 0.51 0.62
 HT*HR  − 0.04  − 0.28 0.79

Carbon content
 Constant 2.57 46.51 0.00
 PT  − 0.23  − 6.17 0.00
 HT  − 0.36  − 9.80 0.00
 HR 0.03 0.82 0.43
 PT*PT 0.16 4.41 0.00
 HT*HT 0.16 4.48 0.00
 HR*HR 0.02 0.49 0.64
 PT*HT  − 0.06  − 1.24 0.24
 PT*HR  − 0.02  − 0.44 0.67
 HT*HR 0.06 1.15 0.28
 pH

Constant 11.67 179.05 0.00
 PT 0.58 13.52 0.00
 HT 0.23 5.20 0.00
 HR  − 0.13  − 2.90 0.02
 PT*PT  − 0.17  − 4.12 0.00
 HT*HT  − 0.13  − 3.12 0.01
 HR*HR  − 0.14  − 3.37 0.01
 PT*HT  − 0.32  − 5.60 0.00
 PT*HR  − 0.02  − 0.38 0.72
 HT*HR  − 0.01  − 0.20 0.85
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Table 5  Analysis of variance for biochar yield, carbon content and 
pH of biochar

Source Degree of 
freedom

Sum of 
squares

Mean 
square

F-Value p Value

Biochar yield (%)
 Model 9 721.348 80.150 416.12 0.000
 PT 1 190.948 190.948 991.37 0.000
 HT 1 514.794 514.794 2672.72 0.000
 HR 1 0.366 0.366 1.90 0.198
 PT * PT 1 1.604 1.604 8.33 0.016
 HT * HT 1 6.393 6.393 33.19 0.000
 HR * HR 1 0.540 0.540 2.80 0.125
 PT * HT 1 6.065 6.065 31.49 0.000
 PT * HR 1 0.050 0.050 0.26 0.623
 HT * HR 1 0.015 0.015 0.08 0.787
 Error 10 1.926 0.193
 Lack-of-

fit
5 1.454 0.291 3.08 0.121

 Pure error 5 0.472 0.094
 Total 19 723.274

Carbon content (g)
 Model 9 3.19273 0.35475 19.32 0.000
 PT 1 0.69878 0.69878 38.05 0.000
 HT 1 1.76323 1.76323 96.00 0.000
 HR 1 0.01245 0.01245 0.68 0.429
 PT * PT 1 0.35700 0.35700 19.44 0.001
 HT * HT 1 0.36901 0.36901 20.09 0.001
 HR * HR 1 0.00440 0.00440 0.24 0.635
 PT * HT 1 0.02821 0.02821 1.54 0.244
 PT * HR 1 0.00359 0.00359 0.20 0.668
 HT * HR 1 0.02417 0.02417 1.32 0.278
 Error 10 0.18366 0.01837
 Lack-of-

fit
5 0.11814 0.02363 1.80 0.267

 Pure error 5 0.06552 0.01310
 Total 19 3.37639

pH
 Model 9 7.19392 0.79932 31.30 0.000
 PT 1 4.66709 4.66709 182.75 0.000
 HT 1 0.69134 0.69134 27.07 0.000
 HR 1 0.21548 0.21548 8.44 0.016
 PT * PT 1 0.43453 0.43453 17.01 0.002
 HT * HT 1 0.24813 0.24813 9.72 0.011
 HR * HR 1 0.28987 0.28987 11.35 0.007
 PT * HT 1 0.80011 0.80011 31.33 0.000
 PT * HR 1 0.00361 0.00361 0.14 0.715
 HT * HR 1 0.00101 0.00101 0.04 0.846
 Error 10 0.25538 0.02554
 Lack-of-

fit
5 0.18110 0.03622 2.44 0.175

 Pure error 5 0.07428 0.01486
 Total 19 7.44930
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conditions for biochar production result in 50% of biochar 
yield, 3.198 g of carbon content and pH of 11 from CCD. 
Under these conditions, high biochar yield and carbon 
content can be maintained without damaging the structure 
of biochar due to PT and HT (Yu et al. 2022). Biochar 
production values of 49.9%, carbon content of 3.014 g 
and pH values of 10.78 were observed from the laboratory 
experimental, which are extremely close to the results for 
the optimum conditions from CCD. This confirms that the 
generated regression model was acceptable and significant 
(Fig. 6).

Characterization of BPW and BPW–BC

FTIR analysis of BPW and BPW–BC

The existing functional groups of the BPW and 
BPW–BC under optimum conditions were analyzed using 
the FTIR spectrum with wave numbers ranging from 4000 
to 400  cm−1. A broad peak at wave number 3297  cm−1 in 
BPW is caused by O–H stretching in intermolecular bond-
ing water molecules or indicates the presence of carbox-
ylic, phenolic or alcoholic groups (Qian et al. 2013). The 
peak at wave number 2922  cm−1 was due to C–H stretching 
bands along with aliphatic functional groups or denotes the 
presence of elements with the series  CHn (Siddiqui 2017). 
The peaks at wave numbers 1637 and 1387  cm−1 represent 
the aromatic ring and carboxylate groups. These peaks are 

recorded due to stretching of C=C, aromatic ring compo-
nents, and stretching of C=O, conjugated ketones, chinones, 
quinones, amide and amine (Soja and Bielsk 2021; Street 
2010). The extensive peak at 1022  cm−1 confirms the cellu-
lose, hemicellulose and lignin content present in BPW (Pang 
et al. 2014). However, in BPW–BC, only two considerable 
peaks were observed. The spectrum peak at wave number 
3437  cm−1 of less intensive biochar confirms the presence 
of dehydrated water molecules (Siddiqui 2017), which could 
be due to the absorption property of BPW–BC toward water 
molecules. The peaks at wave number 1608  cm−1 are due to 
the presence of aromatic compounds associated with ketones 
and quinones. The aromatic compounds are retained in the 
biochar during cellulosic compounds degradation (Barrera-
zapata 2017).

SEM analysis of BPW and BPW–BC

The SEM images of BPW and BPW–BC obtained to 
understand the visual and surface morphology are shown 
in Fig. 7. From the SEM image of the BPW Fig. 7a, the 
continuous structure morphology was observed, while many 
pores were observed in the BPW–BC Fig. 7b, because of 
thermal degradation of the lignocellulosic content and 
repeated to increase the surface area (Azmier et al. 2014). 
Many researchers have reported similar observations that 
thermal degradation occurs in two stages, i.e., degradation of 
hydrocarbons and increase in pores sizes due to the removal 
of organic contents (Ma et al. 2016).

Fig. 6  FTIR spectra of BPW 
and BPW–BC
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pH, electrical conductivity, CEC and organic carbon BPW–
BC and its potential application

The pH of BPW–BC obtained from laboratory experiments 
with optimum conditions is 10.78 which is alkaline in 
nature. This is due to the disappearance of acidic functional 
groups and alkalic groups from carbonates and inorganic 
salts (Tomczyk et al. 2020). The presence of the inorganic 
salts is also confirmed by higher electrical conductivity (EC) 
of 5.040 ± 0.15 mS/cm. The BPW–BC has high amount 
of cation exchange capacity with CEC value of 82 ± 0.24 
 cmolc/kg. The organic carbon of the BPW–BC is found to be 
6.78 ± 0.54% of the dry weight. These characteristics of bio-
char obtained from the study are useful for soil reclamation 
applications. The soil found in the earth are mostly acidic in 
nature which is due to anthropogenic activities. Hence, the 
addition of this alkaline BPW–BC can be used to reduce the 
acidity of soil (Geng et al. 2022). In addition, BPW–BC can 
also increase the water holding capacity of the soil in the 
tropical regions (El-Naggar et al. 2019). The use of biochar 
in the soil can also act as carbon sink which reduces the 
greenhouse gases emission which is found to be sustainable 
method for disposing of BPW. The inorganic salts present in 
the BPW–BC act as macro- and micronutrient to the crops 
and the BPW–BC also reduces the leaching of nutrient in 
water during surface runoff (Allohverdi et al. 2021).

Conclusion

From the present investigation on the pyrolysis of BPW at 
various pyrolysis parameters, it can be concluded that PT 
and HT have a significant effect on biochar yield, carbon 
content and pH of the biochar, but the HR does not have 
any significant effect on all three responses. Higher PT 
and HT have decreased the biochar yield and improved the 
presence of carbon content in the biochar. All these process 

parameters (PT, HT and HR) have a significant effect on 
the biochar and alkaline biochar was obtained. The alkaline 
biochar produced from BPW from this study has potential 
application for reclamation of acidic soil, water retention 
capacity in soil reclamation and in agriculture as fertilizer.

From the results of lab scale batch reactor studies, it is 
concluded that the biochar could be produced at optimum 
condition for using it as valuable product. Further continu-
ous studies in pilot scale need to be carried out for scale up 
and large-scale production of biochar from BPW. Currently, 
pilot scale implementation is under progress as conversion 
of BPW to valuable biochar could efficiently decrease green-
house gas emissions and store the carbon in biochar meeting 
the objectives of sustainable development goals—climate 
action (SDG13).
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