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Abstract
Models that enable the estimation of crop yields and greenhouse gas (GHG) emissions concurrently are still lacking. This 
study develops a biophysical modelling framework encompassing a farm typology, a crop model, and a farm-focused GHG 
calculator to assess productivity (crop yield) and GHG emissions of crop management practices concurrently.  Using this 
modelling framework, the study developed cropping system scenarios based on the concept of conservation agriculture (CA) 
to identify and design cropping systems that deliver ecological intensification for different farm types. All farm types were 
found to be net sources of GHG with cropping system inefficiency across all farm types. However, the integration of CA-
based practices independently and in combination into farm-type maize-based cropping systems showed significant potential 
in improving crop yields and lowering GHG emissions across all farm types. CA-based practices in combination were more 
efficient and able to deliver ecological intensification with high productivity and ecosystem services which contribute to 
climate change regulation. This study concludes that the modelling approach identified intensification options that maintain 
or increase crop yields while reducing GHG emissions at the farm level. This can guide policy simulations and scenario 
analysis to tailor interventions for farm-type sustainability.
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DSSAT  Decision support system for agrotechnology 
transfer

EF  Emission factors
FP  Farmer practice
GHG  Greenhouse gas
GREET  Greenhouse gases, regulated emissions, and 

energy use in transportation
N  Nitrogen
NT  No till
RMSE  Root mean square of error
RT  Residue retention

Introduction

Issues of agricultural intensification and environmental 
sustainability have become highly topical because of food 
insecurity and climate change impacts in sub-Saharan Africa 
(SSA) (Rockstrom et al. 2017). Sustainable and ecologi-
cal intensification have been identified as viable means to 
increase food production and ensure environmental sustain-
ability in smallholder farming systems in SSA (Pretty et al. 
2018; Syampungani et al. 2021). At the same time, there is 
a growing global consensus that agricultural intensification 
should evolve in parallel with environmental sustainability 
(Gil et al. 2019), which must involve reducing emissions 
of greenhouse gases (GHG) from agriculture (Hunter et al. 
2017). GHG emissions in smallholder farming systems in 
SSA are significantly high as smallholders are responsible 
for contributing up to 32% of agricultural-related GHG 
emissions (Descheemaeker et al. 2016). Reversing or sim-
ply slowing down current trends of agriculture-driven GHG 
emissions will require transdisciplinary approaches such as 
efficient agricultural intensification pathways, increasing 
resource use efficiency, and changing current agricultural 
techniques to enhance soil carbon sequestration efforts (Wol-
lenberg et al. 2016). However, it remains unclear how inten-
sification options may affect whole-farm GHGs balances in 
SSA (Jin et al. 2017).

Conservation agriculture (CA) a land management con-
cept compromising of minimum soil disturbance, retention 
of crop residues, and crop diversification, has been identified 
as a key route to deliver both intensification and mitigation 
in smallholder cropping systems (Kassam et al. 2019). How-
ever, considerable debate whether CA is the best approach 
to intensify smallholder farming systems, and on whether 
CA can simultaneously address yield gaps, adaptation and 
mitigation challenges in smallholder agriculture exist (Giller 
et al. 2015). Several studies have shown that smallholder 
farmers rarely implement the full CA package and ques-
tion the suitability of CA in the smallholder context in SSA 
(Bouwman et al. 2021). Few studies have focused on the 
contribution of the different CA components to reducing 

GHG emissions. Most have focused on closing yield gaps 
and adapting to climate change (Thierfelder et al. 2018).

Data quantifying existing GHG emissions from small-
holder production systems is limited and only available for a 
handful of crops resulting in a huge data gap (Musafiri et al. 
2020). Quantification of GHG emissions must be consid-
ered in farming system design if smallholders are to achieve 
the goals of improving agricultural productivity and envi-
ronmental sustainability (Hunter et al. 2017). Most GHG 
emission studies, so far, highlight the emission reduction 
potential of farming practices, without concurrently paying 
attention to yield and livelihood impacts for smallholders 
(Rosenstock et  al. 2013). Quantification of GHG emis-
sions only is not helpful from a development perspective, 
if yield benefits of those options are ignored, because crop 
productivity and yield are inextricably linked to food secu-
rity of smallholder farmers in SSA (Linquist et al. 2012). It 
is therefore important to develop an integrated framework 
that can assess the impacts of crop management practices on 
both crop yields and GHG emissions simultaneously when 
designing sustainable cropping systems for smallholder 
farming systems.

Simulation models are useful tools to explore and would 
significantly increase our understanding of the impacts of the 
proposed interventions and help target those interventions 
which improve productivity and environmental sustainabil-
ity, using fewer resources and time than field experimenta-
tion (Masikati et al. 2017). Crop simulation models can be 
used to estimate crop yields (Holzworth et al. 2015) and can 
be used for strategic, tactical, or operational decision support 
in on-farm crop management (Webber et al. 2014). However, 
crop models are unable to simulate GHG emission conse-
quences of different cropping systems. GHGs calculators use 
simple accounting approaches based on a mix of emission 
factors and empirical models to calculate GHG emissions 
with minimal input data (Hillier et al. 2011). A wide range 
of calculators hase been developed to assess the greenhouse 
gas (GHG) emissions of agricultural products (Sykes et al. 
2017). However, these calculators often fail in their ability 
to consider any changes in agricultural management prac-
tices to estimate crop yield improvements (Peter et al. 2017). 
This is because the yield estimation of a particular crop-
ping system may not adequately reflect the yield estimate 
for a new cropping system. As a result, the predictions of 
GHG emissions by these calculators are characterized by a 
high level of uncertainty which also emanates from the lack 
of data in SSA, and calculators may fail in their ability to 
detect mitigation options along the production chain (Rich-
ards et al. 2016).

Therefore, developing approaches that integrate crop 
models and GHGs calculators and are capable of incorpo-
rating relevant controls to predict crop yield and greenhouse 
emissions across a range of scales could better inform the 
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selection of agricultural intensification options, which seek 
to address the joint yield gap and mitigation challenges 
in smallholder agriculture. Integrated modelling has been 
used to model interactions of agricultural systems at vari-
ous scales. For example, McNider et al. (2015) coupled the 
Decision Support System for Agrotechnology (DSSAT) with 
a hydrologic model to examine the benefits of irrigation, 
cost of irrigation, and the impact of irrigation water extrac-
tion on surface water resources. In another study, Kadiyala 
et al. (2015) integrated a crop simulation model DSSAT 
and the geographical information system (GIS) to assist in 
agronomic decision-making. Whilst there are many of these 
studies on the integrated assessment modelling in agricul-
tural systems few have attempted to evaluate agricultural 
productivity and GHG emissions in agricultural systems. 
For example, Anderson et al. (2018) integrated DSSAT with 
Greenhouse gases, Regulated Emissions, and Energy use 
in Transportation (GREET) model to assess the environ-
mental impacts of biofuel production in the United States 
of America (USA). In another study in China, Tian et al. 
(2021) integrated DSSAT with the DeNitrification-DeCom-
position (DNDC) model to assess food-water-GHG emis-
sions trade-offs to offer a viable solution for policymakers 
and stakeholders. While these kinds of assessments and tests 
performed well in developed countries, they have largely 
been missing in SSA, especially in smallholder agricultural 
systems which are diverse, thus presenting a large research 
gap. Hence, in this study, a biophysical modelling frame-
work that combines a crop simulation model and a farm-
focused GHG calculator is proposed to explore and assess 
the productivity (yield) and sustainability (GHG mitigation) 
potential of current and redesigned cropping systems in het-
erogeneous smallholder farming systems and communities 
in South Africa.

The study used the concept of CA as a guide to remod-
elling cropping systems to deliver ecological intensifica-
tion in smallholder cropping systems. This article provides 
evidence that simulation models can be integrated to iden-
tify and design environmentally sustainable and productive 
cropping systems. The outcomes of the study are useful 
for understanding the role simulation models can play in 

farming system design which will serve as a reference for 
policymakers and stakeholders to identify and tailor effec-
tive CA packages and interventions for ecological intensi-
fication to suit farm type level needs to improve farm type 
sustainability.

Materials and methods

Study area and data on farm typologies 
and cropping systems attributes

The data for this study was obtained from Ha Lambani, 
Limpopo and Amathole, Eastern Cape, South Africa. The 
study sites were selected because they typify smallholder 
farming areas that are less developed and less-resourced 
and that can, in similar forms, be encountered in other 
villages and districts in the Eastern Cape and Limpopo 
provinces of South Africa. The farm typologies and related 
cropping system attribute data used in this study come 
from Rusere et al. (2019) and Mkuhlani et al. (2020) and 
are based on a survey of representative smallholder farms, 
in consultation with local experts in the two study regions. 
In the surveys, smallholder farms and farmers which fitted 
in the typologies developed by Rusere et al. (2019) and 
Mkuhlani et al. (2020) were identified through snowball 
sampling. The farmers who fitted in these farm types were 
interviewed through a semi-structured interview schedule. 
The data collected during the field surveys included farm 
size, types of crops grown, planting dates, tillage practices, 
planting patterns, fertiliser types and amounts, irrigation, 
harvesting dates, crop residue management practices, 
and farm power sources. A more detailed description of 
the survey is found in Rusere et al. (2019) and Mkuhlani 
et al. (2020). The data was analysed, and this resulted in 
the development of a prototype cropping systems for the 
farm types in study locations defined in Tables 1 and 2. 
The farm-type cropping systems were validated through 
focus group discussions with the local agricultural experts 
(mainly agricultural extension officers) in the study areas.

Table 1  Description of the cropping system patterns and agronomic practices in different farm types in Ha Lambani, Limpopo, South Africa

Farm type Crop Power source Tillage Fertilizer type and application rate Crop residue management

Cereal and livestock Maize Draught power Ox drawn ploughing Cattle manure @ 5000  kgha−1

Compound fertiliser 2:3:2@ 50  kgha−1

Ammonium
Nitrate (AN) @ 50  kgha−1

Removed to feed livestock

Horticulture Maize Tractor Ploughing and disking Cattle manure @ 5000  kgha−1

Compound fertiliser 2:3:2 @ 250  kgha−1

Ammonium Nitrate (AN) @ 150  kgha−1

Ploughed in

Off farm income Maize Draught power Ox drawn ploughing Cattle manure@ 2000  kgha−1 Left in the field
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Models used and their description

DSSAT model

The Decision Support System for Agrotechnology Transfer 
(DSSAT v4.7) is a comprehensive framework of more than 
28 biophysical models (Hoogenboom et al. 2019). The main 
structure of DSSAT is designed as a matrix of simulation 
treatments that select crop and soil models to describe the 
changes in plant and soil variables that occur in a specific 
field in response to weather and management. A detailed 
description of DSSAT and how it functions are given by 
Jones et al. (2003) and Hoogenboom et al. (2019). DSSAT 
simulates crop growth and yield as a function of many input 
parameters such as physiological crop parameters, climate, 
soil and management conditions. DSSAT extensive use as a 
tool to compare different crop management practices under 
diverse soil, and climate conditions (Webber et al. 2014), 
its experimented capacity to integrate with other models in 
the past (Anderson et al. 2018), and previous performance 
of the DSSAT in simulating maize yield under conservation 
agriculture (Corbeels et al. 2016), makes it suitable for our 
application.

The cool farm tool

The Cool Farm Tool (CFT) (Hillier et al. 2011) is a GHG 
calculation model that consists of several modules that inte-
grate several globally determined empirical models into a 
GHG calculator (Hillier et al. 2011). The modules consist 
of a generic set of empirical models that are used to estimate 
GHG emissions based on a mix of IPCC Tier 1, Tier 2, and 

simple Tier 3 approaches. Due to the complexity of the CFT 
model and its many sub-models, on how the IPCC Tier 1, 
Tier 2 and Tier 3 methods are used and in which modules 
and on how the sub-models calculate GHG emissions are 
found in detail in Hillier et al. (2011). The model recognises 
context-specific factors that influence GHG emissions such 
as pedo-climatic characteristics, production inputs and other 
management practices at the farm level. The tool also has 
strong farm-scale focus and was identified as the highest-
ranking tool that is available in the public domain (Whit-
taker et al. 2013). The tool has also been applied in several 
studies that range from model comparisons (Colomb et al. 
2013) to product assessments (Aryal et al. 2015) and inves-
tigations of mitigation strategies at the global scale (Hillier 
et al. 2011). The CFT allows us to assess the performance of 
a cropping systems at the farm level both in terms of land-
use efficiency and efficiency per unit of product. Its detailed 
crop submodule, which can account for land-use changes, 
fertiliser applications, and management changes such as till-
age or cover cropping, fits the study ambition of integration 
with a management-sensitive crop model.

Intensification pathway scenario analysis

The cropping system for each farm type described in 
Tables 1 and 2 defines the baseline scenario and is referred 
to as the current farmer practice (FP). The CA principles 
of no till (NT), crop residue retention (RT), and cover 
cropping (CC) were considered as the varying manage-
ment scenarios under investigation, given their potential to 
deliver ecological intensification in smallholder cropping 
systems in the different farm types. Their productivity, 

Table 2  Description of the cropping system patterns and agronomic practices in different farm types in Amathole, Eastern Cape, South Africa

Farm type Crop Power source Tillage Fertilizer type and application 
rate

Crop residue management

Cereal and livestock Maize Draught power Ox drawn ploughing Cattle manure @ 5000  kgha−1

Compound fertiliser 2:3:2@ 50 
 kgha−1

Ammonium Nitrate (AN) @ 50 
 kgha−1

Removed to feed livestock

Horticulture Maize Tractor Ploughing and disking Cattle manure @ 5000  kgha−1

Compound fertiliser 2:3:2 @ 
250  kgha−1

Ammonium Nitrate (AN) @ 
100  kgha−1

Ploughed in

Cooperative Maize Tractor Ploughing and disking Cattle manure@ 2000  kgha−1

Compound fertiliser 2:3:2 @ 
150  kgha−1

Ammonium Nitrate (AN) @ 50 
 kgha−1

Left untreated in heaps and pits 
to make compost

Social welfare dependent 
and struggling subsist-
ence

Maize Hoeing Cattle manure@ 2000 
 kgha−1Compost @ 250 
 kgha−1

Left untreated in heaps and pits 
to make compost
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GHG emission, or sequestration potential was quantified 
to determine their suitability in redesigning those small-
holder cropping systems deliver ecological intensifica-
tion. The scenarios were as follows, scenario 1, consid-
ers the adoption of minimum soil disturbance through no 
till (FP + NT). Scenario 2 (S2), considers the adoption of 
crop residue retention only in cropping fields (FP + RT). 
Scenario 3 (S3), considers the adoption of cover crops 
only (FP + CC). Scenario 4 (S4), considers the adoption 
of cover crops and minimum soil disturbance through no 
till (FP + CC + NT). Scenario 5 (S5), considers the adop-
tion of residue retention and minimum soil disturbance 
through no till (FP + RT + NT). Scenario 6 (S6), consid-
ers the adoption of residue retention and residue retention 
and cover cropping no till (FP + CC + RT). Scenario (S7), 
considers the adoption of the full CA package of residue 
retention, cover cropping and no till to the current farmer 
practice (FP + CC + NT + RT). Additional information on 
the scenarios simulated is provided in the supplementary 
material Table 6.

Modelling framework

Our central hypothesis was that coupling the Cool Farm 
Tool (CFT) with crop yield data from the Decision Support 
System for Agrotechnology Transfer (DSSAT) (Hoogen-
boom et al. 2019), can help identify and package together 
individually proven ecological intensification farming prac-
tices which can simultaneously support both productivity 
and environmental sustainability in smallholder cropping 
systems. The two stand-alone models, DSSAT and CFT 
are run separately but in coordination, as crop yield out-
put from DSSAT is used as input data in the CFT (Fig. 1). 
DSSAT predicts crop yield under different cropping sys-
tems and agroecological conditions. The yield outputs from 
DSSAT are fed into CFT. CFT uses yield data to predict soil 
and atmospheric carbon dynamics under different regimes. 
Maize, a common crop in all farm types was used to illus-
trate the utility of the modellling framework. The impact 
of agroecological practices of CA individually and in com-
bination for both crop yield improvement and GHG emis-
sions were explored at the farm scale. This allowed us to 
identify management practices that enhance productivity 

Farm type

DSSAT

CROP MANAGEMENT
Previous crop 

Tillage

Planting date

Seeding rate

Fertilizer type& rate 

Pesticide type and application 

rate

Irrigation 

Harvesting date

Crop residue management

ENVIRONMENT FACTORS 
Climate
Soil
Crop genetic data

Simulated 
Yields

CFT

GHG Es�mates

Fig. 1  A conceptual flow diagram of the biophysical modelling approach used to investigate crop yields and GHG emissions in maize-based 
cropping systems in different farm types in rural South Africa
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and environmental sustainability in smallholder cropping 
systems.

Modelling crop yields with DSSAT at the farm level

DSSAT model input data

DSSAT requires at least four sets of data encompassing crop, 
crop management, soil and daily weather to simulate crop 
yields.

Daily weather data The minimum weather input require-
ments for the model include daily maximum and mini-
mum temperatures (oC), rainfall (mm), and solar radiation 
 (MJm−2d−1). Those variables were obtained from the South 
African Weather Service (SAWS) for the period 2000–2015 
for both Ha Lambani and Amathole.

Soil profile data Soil data describing soil texture, organic 
matter content, mineral and nutrient, and soil water dynam-
ics is also required to run DSSAT. This data was not readily 
available for the different farm types and was obtained from 
previous studies done in the study area. Soil characteristics 
data were extracted from the International Soil  Reference 
and Information Centre (ISRIC) global soil database (Pog-
gio et al. 2021). Additional data on soil physical and chemi-
cal properties were derived from Choruma et al.(2021) and 
Choruma et  al. (2019) for Amathole, Eastern Cape, and 
from Mzezewa et al. (2011) and Mzezewa and van Rensburg 
(2011) for Ha  Lambani, Limpopo. Tables  3 and 4 below 

summarises the soil characteristics data for the two loca-
tions used in this study.

Crop management data The model requires information 
on tillage systems, planting dates, planting density, planting 
depth and row spacing, type of fertilizer applied, amount 
and frequency of fertilizer application, irrigation amount 
and frequency, and harvesting dates. The data are summa-
rised in Tables 1 and 2 with detailed information in supple-
mentary material Tables 2 and 3.

Crop data Effective calibration of the DSSAT model would 
include evaluation of the model’s ability to simulate phe-
nological aspects such as emergence, silking and maturity 
dates for each crop and season and location. The data were 
collected from farmers during household surveys and focus 
group discussions. In cases where such data was of poor 
quality, relevant literature such as Ncube et al. (2016), Ziny-
engere et al. (2014) and Zinyengere et al. (2015) were used 
in this study.

Simulation of crop yields at the farm level

The study utilised soil data, crop management, grain, and 
above-ground biomass yield to parameterise and calibrate 
the DSSAT model for each of the different farm types at each 
location. The root mean square error (RMSE) approach was 
utilised to evaluate the DSSAT models’ ability to simulate 

Table 3  Soil data characteristics 
used to calibrate the DSSAT 
v4.7 model for Ha Lambani, 
Limpopo

 Soil profile Depth 

Soil characteristics 0–5 (cm) 5–15 (cm) 15–30 (cm) 30–60 (cm) 60–100 (cm) 100–200 (cm)
pH 6.8 6.8 6.9 7.2 7.2 7.1
Phosphorus (P) mg  kg−1 15.7 9.17 3.55 2.17 1.55 0.17
Potassium (K) mg  kg−1 264.3 325 163 159 163 59
Calcium (Ca) mg  kg−1 2700 1270 1212 879 212 97
Magnesium (Mg) mg  kg−1 712.4 809.8 599.8 539 261 189
Zinc (Zn) mg  kg−1 2.8 2.2 1.6 1.1 0.7 0.2
Manganese (Mn) mg  kg−1 30.4 27.3 19.9 17.7 8.3 4.1
Copper (Cu) mg  kg−1 5.7 5.1 4.3 3.8 2.2 0.7
Total nitrogen (N) mg kg-1 114 75 73 59 42 32
Organic carbon (%) 1.33 0.88 0.67 0.53 0.45 0.39
Clay (%) 26.7 26.8 31.9 36.4 34.5 33.8
Silt (%) 15.3 15.4 14.3 13.9 14.6 14.7
Sand (%) 58 57.8 53.8 49.7 50.9 51.5
Soil texture Sandy clay loam
Organic matter (%) < 1.72
Drainage good
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the current cropping systems conditions. The RMSE com-
pared farmer measured grain and biomass yields with model-
simulated yields for the three growing seasons 2000/1 to 
2002/3. The RMSE values were computed using the Eq. (1):

where n is the total number of data, S and M represent the 
simulated and measured values, respectively.

Calibration of DSSAT model undertaken in this study 
showed that the RMSE across all parameters, crops and loca-
tions were under 30%, with some even under 10% (Sup-
plementary material Tables 4 and 5) This highlighted the 
calibrated model’s ability to effectively simulate crop yields. 
The calibrated DSSAT model was used to simulate maize 
yields based on local parameterisation and farm type agro-
nomic characteristics. Crop yields were simulated for each 
farm type cropping system for the 15 growing seasons run-
ning from 2000/01 to 2014/15. Depending on the scenario, 
crop yields for each scenario were simulated by resetting 

(1)RMSE =

�

∑n

i=1
(Si −Mi)

2

n

either the tillage component or the crop management aspect 
of either residue retention or cover cropping. DSSAT simu-
lated for the same period potential yields for each of the 7 
scenarios in each farm type at both locations. Farm type and 
scenario yield results were compared using a one-way analy-
sis of variance (ANOVA). Differences between farm types 
and scenarios in farm types were performed using Fisher’s 
least significant difference (LSD) when P < 0.05.

Assessing GHG emissions with the CFT at the farm 
level

CFT model input data

The CFT requires the following information to estimate 
GHG emissions from cropping systems (i) location, climate, 
soil parameters (soil moisture, drainage, pH, soil organic 
matter); (ii) material and energy inputs to farming, i.e. fer-
tiliser and pesticide types and amounts and energy used on-
farm and (iii) crop yields and harvested area.

Table 4  Soil data characteristics 
used to calibrate the DSSAT 
v4.7 model for Amathole, 
Eastern Cape

Soil characteristics 0–5 (cm) 5–15 (cm) 15–30 (cm) 30–60 (cm) 60–100 (cm) 100–200 (cm)

pH 6.2 6.2 6.3 6.4 6.6 6.7
Phosphorus (P) mg  kg−1 51.07 55.85 42.67 36.47 12.76 7.46
Potassium (K) mg  kg−1 172.08 265.33 133.75 108.4 75.33 18.41
Calcium (Ca) mg  kg−1 2248.6 2303.6 1221.9 1003 912.34 250
Magnesium (Mg) mg  kg−1 503.83 515.83 460.42 349.8 224.6 194.56
Zinc (Zn) mg  kg−1 0.94 1.51 0.85 0.28 0.17 0.03
NO3-N mg  kg−1 1.09 1.28 0.88 0.85 0.43 0.27
NH4-N mg  kg−1 0.82 1.21 0.74 0.32 0.19 0.03
Total mineral nitrogen (N) mg  kg−1 256 180 129 70 90 39
Soil organic carbon (%) 3.25 2.16 1.24 0.85 0.69 0.68
Clay (%) 24.7 25.3 30.4 32.9 33.3 32.4
Silt (%) 20.7 20.8 20 19.1 20 20.5
Sand (%) 54.6 53.9 49.6 48 46.7 47.1
Soil texture sandy clay loam
Organic matter (%) < 1.72
Drainage good

Table 5  Simulated maize crop 
yields, GHGs emissions per 
hectare and per unit of crop 
yield in Ha Lambani, Limpopo

Means with different letters in the same column are significantly different at P < 0.05
LSD, least significant difference

Farm type Simulated average 
yields  (kgha−1)

Estimated GHG emissions 
per hectare  (kgCO2eha−1)

Estimated GHG emis-
sions per tonne crop yield 
 (kgCO2et−1)

Cereal and livestock 865a 572a 660a

Horticulture 1039a 1012b 970a

Off farm income 458b 378c 830a

LSD 245 33 460
P value 0.00 0.00 0.085
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Data for characteristics of the study area Data for charac-
teristics of the study area were obtained from Ubisi et  al. 
(2017) for Ha Lambani and from Chari et  al. (2018) for 
Amathole (Supplementary material Table 1).

Soil characteristics Majority of the soils in the Eastern Cape 
are associated with low organic matter content thus pre-
senting challenges for agricultural production (Nebo et al. 
2020). However, in Amathole District, in the Eastern Cape, 
the most predominant soils are Oak leaf (SCWG 1991) 
and classified as Haplic Cambisol according to the Inter-
national Union of Soil Sciences working group. According 
to the Department of Agriculture, Forestry and Fisheries 
(DAFF 2011) the soils in the area are very deep and sandy 
which allows the farmers to exercise their farming practices, 
especially for both livestock and cropping activities. Other 
soil characteristics data was extracted from Choruma et al. 
(2021) and Choruma et al. (2019).

Majority of soils in Lambani were identified as suitable 
or ideal for crop production (Petja et al. 2010). Soils in Ha 
Lambani are classified as Hutton, Pinedene, Clovelly, Ava-
lon, and Oakleaf according to the South African soil clas-
sification system (Francis and Botha 2012). According to 
Francis and Botha (2012), the average soil depth in Ha Lam-
bani is 1035 mm with a clay content of up to 40%. The soils 
in the study area are slightly acidic to more alkaline. Thus, 
the soils are generally good and suitable for crop production. 
Additional soil characteristics data used in this study were 
extracted from Mzezewa et al. 2011 and Mzezewa and van 
Rensburg (2011).

Crop management Crop management information was 
obtained from the field surveys and farmer interviewers and 
is summarised in Tables  1 and 2 and more details are in 
the supplementary material. In our case, only cooperative 
farms, in Amathole and horticulture-based farms in the two 
study areas use tractor-drawn implements while all the other 
farm types rely on animal draught power for field opera-
tions. Although livestock is not carbon neutral, the CFT 
does not consider entries directly related to crop production, 
such as livestock. This is a limitation as most communal 
area growers use animal draft power. As such, animal draft 
power as a source of energy was not included in the calcu-
lation for these types of farms. Irrigation was not included 
as these farmers operate under dryland conditions. DSSAT 
simulated maize yields for each farm type were input into 
CFT.

Calculation of greenhouse gas emissions at the farm level

The above-mentioned data and crop yields from DSSAT 
were coupled into the CFT to calculate farm-type GHGs 
emissions of current farm practices (FP) to identify the 

emissions at the farm-type level. In the estimation of GHG 
emissions, a boundary was set to estimate emissions from 
the field only. Within the set boundaries crop, soil inputs 
applied, fuel, and energy and carbon and sequestration 
changes were used to estimate the GHG emissions for each 
cropping system scenario. The irrigation and transport mod-
ule components of the CFT were not included in the calcula-
tion of GHG emissions. This is because in these study areas 
maize is grown under rainfed dryland conditions and trans-
port was not included as were only interested in GHG emis-
sions at the field level. Each farm type was run separately 
and the mean GHGs emissions were computed. The study 
accounted for GHG emissions related to crop management 
and did not account for processing or transport beyond the 
farm gate. Two metrics were determined for each agricul-
tural season running from 2000/01 to 2014/15 namely, the 
quantity of greenhouse gases emitted per hectare and the 
quantity of greenhouse gases emitted per unit crop yield. 
The maize yields simulated under CA scenarios described 
above were input into CFT to estimate the GHG emissions 
or sequestration potential per hectare and per crop yield of 
the various cropping system scenarios for each farm type. 
GHGs emissions were compared among different farm types 
and scenarios results using one-way analysis of variance 
(ANOVA). Differences between farm types and between 
scenarios within farm types were explored using Fisher’s 
least significant difference (LSD) when the ANOVA showed 
a significant difference between groups (P < 0.05).

Land use efficiency

To assess the potential of cropping systems to ecologically 
intensify across farms, the land-use efficiency indicator was 
used. It estimates the amount of land required to produce a 
unit of crop yield. Instead of measuring tonnes produced per 
hectare, land use efficiency measures the number of hectares 
required to produce a tonne of the crop.

Results and discussion

Current yields and GHG emissions in different farm 
types and locations

Maize-based cropping systems from the different farm types 
in Amathole and Ha Lambani were compared to provide a 
baseline for exploration of alternatives that concurrently lead 
to higher crop yields per unit area and lower GHG emis-
sions. The simulated maize crop yields using the suite of 
farming practices described in Sect. 3 varied significantly 
in different farm types (P < 0.05) and were low in all farm 
types ranging from 0.2 to 1.1  tha−1 and 0.4 to 1 t  ha−1 in 
Amathole and Ha Lambani, respectively (Tables 5 and 6). 
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The simulated yields indicate that there is an opportunity 
to improve agricultural productivity through intensifying 
cropping systems on the current agricultural land. Maize 
yields simulated using farming practices described above 
were estimated to have a positive (undesirable) GHG emis-
sions, both based on per hectare and per unit grain yield pro-
duced (Tables 5 and 6). The estimated GHG emissions per 
unit crop yield were high and varied significantly (P < 0.05) 
across all farm types. The magnitude of GHG emission per 
unit crop yield ranged from 440 to 4 090  kgCO2e  t−1 and 
from 660 to 970  kgCO2e  t−1 across farms in Amathole and 
Ha Lambani, respectively. In Amathole, cooperative farms 
and the struggling subsistence and social welfare depend-
ent farms were estimated to have the highest emissions 
per hectare of 1538  kgCO2e  ha−1 and 932 kg  CO2e  ha−1, 
respectively. In Amathole, cereal and livestock farms 
were estimated to have the lowest emissions per hectare of 
351  kgCO2e  ha−1 while in Ha Lambani the off-farm income-
dependent farms were estimated to have the lowest emis-
sions per hectare of 378  kgCO2e  ha− 1. However, in Amat-
hole and Ha Lambani the estimated GHG emissions per unit 
crop yield showed that cereal and livestock farms have the 
lowest GHG emissions per unit crop yield of 660  kgCO2et−1 
and 440  kgCO2et−1, respectively.

These results are generally similar and within range to 
those of other low input smallholder systems in SSA found 
by Ortiz-Gonzalo et al. (2017). The heterogeneity in crop 
management resulted in variation of these emissions among 
farm types. Fertilisation, tillage and crop residue manage-
ment were the major emission hotspots that contributed to 
the magnitude of the emissions. In Amathole, the social wel-
fare and struggling subsistence farms and the cooperative 
farms poor residue management contributed significantly to 
the high GHG emissions per unit area. In these farms crop 
residues are usually left in heaps or pits for composting thus, 
the decomposition of crop residue contributes significantly 
to GHG emissions. In cooperative and horticulture-based 
farms, tillage, fertiliser use, and fossil fuel energy mostly 

contributed to the high GHG emissions. In these farms, the 
use of inorganic fertilisers is relatively high when compared 
to the other farm types. In addition, machinery-drawn imple-
ments associated with the burning of fossil fuels contributed 
significantly to high the GHG emissions whilst the plough-
ing in of crop residue in horticulture creates favourable 
conditions for organic matter oxidation and mineralisation, 
resulting in soil carbon loss and further contributing to GHG 
emissions.

The lowest crop yields per hectare and the highest GHG 
emissions per unit area observed in social welfare and strug-
gling subsistence confirm the inefficiency of the production 
process despite having low inorganic N application rates 
and no use of fossil fuels which are the major drivers for 
GHG emissions in cropping systems are. These results are 
in agreement with Bellarby et al. (2014) who found out that 
smallholder farms with exceptionally low yields in Kenya 
had very high GHG emissions per tonne of maize. In these 
farms, poor management of crop residue contributes signifi-
cantly to the estimated high GHG emissions thus contrib-
uting significantly to the inefficiency of the cropping sys-
tem. The low greenhouse gas emission per unit crop yield 
observed in cereal and livestock-based farms maize-based 
cropping systems emanates from the fact that in these farms 
crop residues are exported to feed livestock hence crop resi-
dues do not contribute significantly to GHG emissions in 
such maize-based cropping systems hence these systems are 
comparatively more efficient when compared to cropping 
systems in other farm types.

Our results reveal that even farms (horticulture and 
cooperative-based farms) that are well resource endowed, 
i.e. farms with high N application rates compared to the 
other farm types (although limited), there are still experi-
encing low yields and high GHG emissions in their maize-
based cropping systems. This means the currently available 
resources in these production systems are being used ineffi-
ciently, as evidenced by low yields and high GHG emissions. 
There is, however, a risk that in such smallholder farming 

Table 6  Simulated maize crop 
yields, GHGs emissions per 
hactare and per unit of crop 
yield in Amathole, Eastern 
Cape

Means with different letters in the same column are significantly different at P < 0.05
LSD, least significant difference

Farm type Simulated average 
yields  (kgha−1)

Estimated GHG emissions 
per hectare  (kgCO2eha1)

Estimated GHG emis-
sions per tonne crop yield 
 (kgCO2et−1)

Cereal and livestock 796a 350a 440a

Horticulture 1122a 712b 630b

Cooperative 528b 1538c 2910c

Social welfare and 
struggling subsist-
ence

228d 932b 4090d

LSD 258 241 110
P value 0.00 0.00 0.00
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systems agriculture intensification based on high external 
input use may further lead agricultural to an increase of 
GHG emissions leading to further environmental degrada-
tion, amplified climate change, and overall unsustainable 
development of SSA agricultural systems. This current 
relationship of low crop yields and high GHG emissions 
in smallholder farms can be reversed by using eco-efficient 
intensification solutions such as ecological intensification 
that utilise ecological processes to improve the efficiency of 
the limited external input resources, productivity (yield) and 
ensure reduced GHG emissions.

The impact of conservation agriculture practices 
on yield and GHG emission

CA is being promoted as an agroecological approach to 
deliver both sustainable and ecological intensification in 
smallholder cropping systems. The study opted to rede-
sign the cropping systems with CA to deliver ecological 
intensification because of limited access, affordability and 
minimal inorganic fertiliser use, which is way below the 
recommended fertiliser application rates of the study areas. 
Figures 2 and 3 show yield per hectare on the y-axis and 
GHG emissions per hectare on the x-axis of the various 
crop management scenarios. They illustrate on the right-
hand side crop management scenarios that are positive emit-
ters of GHG (undesirable cropping scenarios) while on the 
left-hand side crop management scenarios that are negative 
emitters of GHG (desirable cropping scenarios). A combi-
nation of high yield and negative emissions, “desired crop 
management scenarios” would be on the top left and a com-
bination of low yield and high emissions, “undesired crop 
management scenarios” would be on the bottom right. The 
trend building up from Figs. 2 and 3 show farmer practices 
(FP) on the bottom right (undesired) and the full CA pack-
age (FP + NT + CC + RR) on the top left (desired), illustrat-
ing concurrent yield and GHG emission improvement from 
integrating CA practices to the farmer practices.

More specifically, our simulations (Figs. 2 and 3) show 
that integrating conservation agricultural practices of no till 
(NT), residue retention (RR), and crop diversification and 
associations through rotations, intercropping, or cover crop-
ping (CC) to the current farmer practice (FP) alone or in 
combination significantly impacts both crop yield and GHG 
emissions in cropping systems. Simulations showed that 
integration of residue retention (FP + RR) and cover crop-
ping (FP + CC) to the current farmer practice (FP) alone 
significantly improved crop yields (P < 0.05) while the no 
till (FP + NT) practice resulted in lower yields when com-
pared to the current farmer practice across all farm types and 
locations. The result for the no till (FP + NT) practice is in 
agreement with Rodenburg et al. (2020) who observed that 
crop yields were generally lower in no till systems. However, 

the results for the integration of cover crops (FP + CC) prac-
tice are in agreement with Mupangwa et al. (2017) observed 
that legume cover crops improved maize grain yield and 
the maize crop benefitted from the residual soil fertility 
contributed by legume cover crops. With regards to resi-
due retention our results concur with Rusinamhodzi et al. 
(2015) who observed yield gains in maize cropping systems 
of smallholder farmers with different resource endowments. 
With regards to GHG emissions, our estimates show that 
integrating the no till (FP + NT) practice and cover cropping 
(FP + CC) significantly lowers GHG emissions and results 
are in agreement with Rutkowska et al. (2018) who observed 
that  CO2 emissions were significantly lower in no till sys-
tems compared to conventional tillage systems. A similar 
trend of lowering of GHG emissions was also observed 
with the integration of cover crops in cropping systems by 
Schipanski et al. (2014). However, the residue retention 
practice (FP + RR) significantly contributed to increased 
GHG emissions when compared to current farmer prac-
tices. These results are in agreement with Pugesgaard et al. 
(2017) who found crop residues to significantly stimulate 
GHG emissions in cropping systems with restricted access 
to fertilizers or manure.

Our results showed that when CA practices are used in 
combination for example when residue retention and cover 
cropping (FP + CC + RR), or when residue retention and no 
till (FP + RR + NT) or when cover cropping and no till and 
(FP + CC + NT) are combined and included in the current 
farming practices, crop yields are significantly improved 
(P < 0.05) across all farm types and GHG emissions are sig-
nificantly lowered. Beyond understanding the impact offered 
by the integration of single CA practices, our results con-
firm that when CA practices are used in combination, crop 
yields are significantly improved and GHG gas emissions 
are significantly lowered when compared to when CA prac-
tices are used alone. For example, when no till is integrated 
with residue retention (FP + RR + NT) or when integrated 
with cover crops (FP + CC + NT) significant yield gains and 
GHG emissions are lowered when compared to FP + NT. 
A similar trend was observed for the following cropping 
scenarios FP + RR + NT and FP + CC + RR when compared 
to FP + RR and when FP + CC + NT and FP + CC + RR are 
compared to FP + CC cropping scenarios. Ultimately, the 
full CA package (FP + NT + CC + RR) showed to be the 
most desired cropping scenario (found on the top left of 
Figs. 2 and 3) as it showed significant potential to improve 
crop yields (P < 0.05) and lower GHG emissions (P < 0.05) 
in all farm types across the locations. These results are in 
agreement with other studies on smallholder farms that have 
focussed on the effects of CA on maize yield (Thierfelder 
et al. 2015). As regards GHG emissions, these findings add 
to previous studies by Thierfelder et al. (2017), showing that 
using a combination of CA practices may help sequester 
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carbon in the soil and significantly increase soil carbon 
content.

Impact of conservation agricultural practices 
on land use efficiency per unit yield and GHG 
emissions per unit yield

Figures 4 and 5 show land-use efficiency per tonne produced 
on the y-axis and GHG emissions per tonne on the x-axis of 

the various crop management scenarios. They illustrate on 
the right-hand side crop management scenarios that are posi-
tive emitters of GHG per tonne produced (undesirable crop 
management scenarios) while on the left-hand side are crop 
management scenarios that are negative emitters of GHG per 
tonne produced (desirable crop management scenarios). A 
combination of high land-use efficiency and negative GHG 
emissions per tonne produced would be on the bottom left 
(desired crop management scenarios) and a combination of 

Fig. 2  Modelled impact of different crop management scenarios on maize crop yields and GHG emission per hectare in Ha Lambani: a cereal & 
livestock farms, b horticulture farms and c off farm income-based farms
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low land-use efficiency and high GHG emissions per tonne 
produced, would be on the top right (undesired crop man-
agement scenario). The trend building up from Figs. 3 and 4 
show farmer practices (FP) on the top right (undesired) and 
the full CA package (FP + NT + CC + RR) on the bottom 
left (desired), illustrating concurrent land-use efficiency and 
GHG emission (carbon sequestration) improvement from 
integrating CA practices to the farmer practices. More spe-
cifically, our results show that CA practices can contribute to 

reducing pressure on land and help deliver agricultural inten-
sification with low GHG emissions per unit yield. Figures 4 
and 5 show that the integration of cover crops (FP + CC) 
and the integration of residue retention (FP + RR) have the 
potential to produce a tonne of maize on a smaller land area 
as compared to the normal farmer practice (FP) across all 
farms and locations. Although FP + RR scenario maybe 
associated with crop yield gains and land-use efficiency, 
the increased GHG emissions and associated trade-offs for 

Fig. 3  Modelled impact of different crop management scenarios on maize crop yields and GHG emission per hectare in Amathole: a cereal & 
livestock farms, b horticulture farms, c cooperative farms, and d social welfare and struggling subsistence farms
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crop residue use as a livestock feed or as mulch for soil cover 
in cropping systems may make it an unsuitable cropping 
scenario to redesign smallholder cropping systems for eco-
logical intensification in farms with livestock. However, the 
integration of no till (FP + NT) is expected to require a larger 
land area to produce a tonne of maize, compared to the nor-
mal farmer practice (FP) across all farms and locations mak-
ing the practice unsuitable for agricultural intensification 

despite its potential in lowering GHG emissions in cropping 
systems.

Furthermore, our results (Figs. 4 and 5) show that using 
a combination of CA practices, for example, FP + RR + NT, 
FP + CC + NT, FP + CC + RR or FP + NT + CC + RR has the 
potential to significantly intensify maize cropping systems 
across farm types and location. Beyond understanding the 
impact offered by the integration of single CA practices 
our results confirm that when CA practices are used in 

Fig. 4  The potential impact of different crop management scenarios on land use efficiency and GHG emissions per tonne of maize in Ha Lam-
bani. a cereal and livestock-based farms, b horticulture-based farms; and c off-farm income-based farms
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combination, land-use efficiency is significantly improved, 
and GHG emissions per unit crop yield are significantly low-
ered when compared to when CA practices are used alone. 
For example, when residue retention is integrated with no till 
residue (FP + RR + NT) or when integrated with cover crops 
(FP + CC + RR) land-use efficiency is significantly improved, 
and GHG emissions per unit yield are significantly lowered 
when compared to FP + RR. Ultimately, results showed that 
the full CA package of FP + NT + CC + RR has the potential 

to significantly improve land-use efficiency and GHG emis-
sions per unit yield when compared to the farmer practice 
and other cropping scenario combinations across the farms 
and locations. Thus, our results agree with several authors 
such as Giller et al. (2015) and Jat et al. (2020) advocating 
for conservation agriculture as a pathway to low carbon agri-
cultural intensification in sub-Saharan Africa.

Fig. 5  The potential impact of different crop management scenarios on land use efficiency and GHG emissions per tonne of maize in Amathole. 
a cereal and livestock-based farms, b horticulture-based farms; c cooperative based farms and d social welfare and struggling subsistence farms
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Perspectives on the modelling framework

The study was based on crop management data from Ha 
Lambani and Amathole obtained through an expert-based 
farm typology. The number of farms surveyed for each farm 
type were small and this may have caused imperfect match-
ing and bias of cropping systems attributes. However, the 
typologies were able to show the heterogeneity of the maize 
cropping systems in smallholder farming systems. This can, 
however, be improved by increasing the sample size of sur-
veyed farm types. In this study, DSSAT was used to simu-
late crop yields from detailed farm management practices, 
allowing simulations to reflect detailed farm management 
strategies in cropping systems. DSSAT requires a large data 
set for correct parameterisation, calibration and validation 
procedures which were sometimes not available for the study 
areas. The study relied on secondary data from other sources 
for calibrations to improve the accuracy and reliability of 
our crop yield simulations. The CFT was the best able to 
calculate on-farm emissions using our data and it was best 
able to incorporate the different strategies for the different 
farm types. However, GHG calculators are usually fed with 
default emission factors (EF) and model parameters coming 
from developed countries as such GHG calculators may not 
be accurate when compared against field measurements and 
thus may not accurately estimate GHG emissions (Richards 
et al. 2016). However, it should be recognised that any posi-
tive or negative bias is of less importance when comparing 
samples from the same region with each other. Overall, the 
modelling framework allowed for the identification of prac-
tices that may improve crop yields and environmental sus-
tainability through GHG efficient production systems.

Conclusion

Our research developed a biophysical modelling approach 
encompassing DSSAT a crop model and the CFT a farm-
focused GHG calculator. Data from farm typologies were 
used to model the impacts of current farming practices and 
CA practices on crop yields and GHG emissions in maize-
based cropping systems using this modelling approach. The 
stepwise assessment of CA practices alone or in combina-
tion also showed significant potential to deliver ecological 
intensification in circumstances where trade-offs associated 
with CA prevent the uptake of one of the three practices. 
Our analysis suggests that productivity and environmental 
sustainability may be improved through proper agronomic 
management (tillage, crop associations and proper crop 
residue management) even when fertiliser rates are not 
increased. Therefore, rather than agricultural intensifica-
tion focusing on increasing the use of inorganic fertilisers 

and agrochemicals, the focus should be on improving the 
resource use efficiency of current resources in cropping 
systems.

The findings on the key drivers of sustainability in 
smallholder cropping systems will help agricultural scien-
tists, policy-makers and other agricultural stakeholders to 
identify and tailor effective CA packages and interventions 
for ecological intensification to suite farm-type level need 
to improve farm type sustainability. Overall, the research 
provided an environmentally oriented indicator of cropping 
system efficiency in the form of GHGs emissions which has 
been lacking to capture farmers’ initiatives towards mitiga-
tion and minimizing the negative impacts of their practices 
on the environment. In addition to the benefits stated above 
the integrated modelling framework presented in this study 
hold great potential to assess future agricultural systems in 
achieving these aims of the sustainable development goal 
(SDG) number 2 which aims to end hunger, achieve food 
security, and promote sustainable agriculture and the Paris 
Agreement which also aims to substantially reduce green-
house gas emissions in an effort to limit global warming, 
thus enabling maximization of synergies and minimization 
of trade-offs in order to ensure policy coherence with the 
SDG number 2 and the Paris Agreement. The study recom-
mends that future research on crop yield and GHG emission 
quantification tools to improve the accuracy of simulated 
crop yields and estimated GHG emissions. This may include 
field experiments to provide data for correct parameterisa-
tion, calibration and validation procedures.
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