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Abstract

Unlike previous research, this study develops an integrated inventory model for controllable lead time with defective items,
errors in inspection, and variable lead time considering sustainability. The research investigates the effect of controlling lead
time and capital investment in the setup cost. We assume that the buyer receives a lot size that may contain some defective
items with a known defective probability. The buyer’s inspector conducts a 100% quality inspection and may incorrectly
classify a non-defective item as a defective item (type one (I) error) or incorrectly classify a defective item as a non-defective
item (type two (II) error). The mathematical inventory model considering carbon emission cost is developed, and the solu-
tion procedure is designed using the heuristic algorithm to derive the optimal or near optimal solution. Finally, numerical
examples and sensitivity analysis are given to illustrate the results. The results show that the defective rate, and type I type
II inspection errors, have a significant impact on the shipment lot. This leads to the changes in the total cost, lead time, and
the carbon emissions. Our study provides cost savings of 4.39% and carbon emission savings of 28.44%.
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Introduction

54 Hui Ming Wee During the last decades, J.omt mvento.ry problem res;arcl?
weehm@cycu.edu.tw has received much attention (Heydari et al. 2017; Tiwari
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and globalization, many companies try to efficiently manage
their supply chains with the integrated joint inventory policy.
The focus in inventory integration in the supply chain system
is one of the ways to gain a competitive business advantage.

In recent years, the issues of economics and sustainabil-
ity in the supply chain have attracted considerable atten-
tion from governments, universities, and other non-profit
organizations. Over the decades, many researchers have
focused on extending the traditional inventory model to
consider coordination mechanisms of the channel members,
i.e., coordination between the vendor and buyer (Jauhari
2018; Tiwari et al. 2018b). Most of the traditional inventory
models assume perfect production processes and error-free
inspection. However, in the most production processes, some
defective items will be produced. To ensure good quality,
the buyer conducts a 100% quality check for all products
received from the vendor. In general, vendors make assump-
tion that the product is a perfect quality (zero defect). In
reality, it is rare to find 100% zero defect products from the
vendor's production process. Therefore, to identify possible
defective items and ensure good quality, the buyer screen
all products by 100% inspection (Khan et al. 2011; Jauhari
2016). During the inspection, some of the non-defective
items may be rejected as defective items (type I error) while
other defective items may be accepted as non-defective items
(type II error) (Khan et al. 2011; Hsu and Hsu 2012). The
earliest research of the EOQ model with defective items was
made by Salameh and Jaber (2000). They assumed a perfect
inspection to screen out and dispose of the defective items.
During the last two decades, other researchers have studied
defective items under various conditions. Goyal and Carde-
nas-Barrdn (2002) developed optimized the total profit of a
simple lot size model considering defective products. The
optimal integrated vendor—buyer inventory policy for defec-
tive quality items with a certain probability of occurrence
was investigated by Goyal et al. (2003). By minimizing the
expected total cost per item, Wang (2005) optimized the pro-
duction time frame and product inspection policy. Further-
more, Papachristos and Konstantaras (2006) maximized the
total profit considering the timing of imperfect quality goods
withdrawal from stock. An optimal inventory model for
goods with imperfect quality and insufficient initial orders
was studied by Wee et al. (2007). An EOQ model with no
backorders and several damaged items lots was developed by
Eroglu and Ozdemir (2007). Konstantaras et al. (2007) con-
sidered a production-inventory model with a random propor-
tion of defective units and imperfect quality items. Maddah
and Jaber (2008) investigated the effect of filtering speed
and variability of the supply process. Khan et al. (2011)
determined the optimal economic order quantity (EOQ) for
items with imperfect quality and inspection errors. Hsu and
Hsu (2012) extended Khan et al. (2011)’s model by assum-
ing the defective items in the inspection process are sold to a
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secondary market at a discounted price. Jauhari (2016) mod-
ified Khan et al. (2011)’s model by considering probabilistic
demand. Jauhari et al. (2017) developed an unequal-sized
shipment policy for a single-vendor and a single-buyer inte-
grated inventory model with deterministic demand, defec-
tive items, and errors in the inspection. Khan et al. (2017)
proposed a mathematical inventory model for a supply chain
system with stochastic lead time. Jauhari (2018) developed a
two-echelon inventory model with stochastic demand, defec-
tive items, and carbon emissions cost. Tiwari et al. (2018a)
proposed a vendor—buyer inventory model considering car-
bon emissions, deteriorating, and imperfect quality items.
Tiwari et al. (2018b) investigated the impact of the invest-
ment of ordering and setup cost reduction and controllable
lead time on the cost of the supply chain system. Wangsa
and Wee (2019) developed an integrated inventory model
considering freight cost and stochastic lead time. Recently,
Tiwari et al. (2020) investigated the impact of human errors,
variable lead time, and capital investment.

Our contribution

In this paper, we consider a joint optimization model with
inspection errors, defective items, stochastic demand, con-
trollable lead time, carbon emissions, setup cost reduction,
and freight cost. The lead time demand follows a normal
distribution, and the setup cost is a logarithmic function
of the capital investment. The purpose of this study is to
minimize the joint total cost (JTC) by optimizing the order
quantity, lead time, safety factor, number of deliveries, and
setup cost. This paper presents carbon emissions as a func-
tion of the transportation and defective items. By consider-
ing carbon emissions from these sources, we investigate how
the defective items and mode of transportation affect the
optimal solution. This paper combined the elements of sto-
chastic demand, defective items, inspection errors, control-
lable lead time, and setup cost reduction from Tiwari et al.
(2020)’s work, as well as the elements of carbon emission
and freight cost from Wangsa (2017)’s work and Wangsa and
Wee (2019)’s work. Our study is different from the model
by Fallahi et al. (2021), Oztiirk (2021) and Zhu (2021) who
considered sustainable production-inventory model with
defective items, inspection errors, preventive maintenance
and inspection errors under demand probabilistic, as well
as investigating the impact of a price-sensitive demand and
temporary price reduction on the total profit. The research
gaps are illustrated in Table 1 where the uniqueness of our
study with an integrated inventory model considering the
stochastic demand, defective items, inspection errors, con-
trollable lead time, carbon emission, setup cost reduction,
and freight cost is highlighted. This study can provide mana-
gerial insights for logistic managers in their decision making
and system improvement.
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Table 1 Research gap:

. Researcher(s) Demand type  Inspec- Crashing  Setup cost  Carbon Freight cost
comparison between the X tion lead time  reduction emission
proposed model and previous errors
models

Hsu and Hsu (2012) Deterministic \/ - - - -
Jauhari (2016) Probabilistic \/ - - - -
Wangsa (2017) Probabilistic ~ — - - Vv Vv
Jauhari et al. (2017) Deterministic \/ - - - -
Khan et al. (2017) Probabilistic \/ - - - -
Jauhari (2018) Probabilistic ~ — - - v Vv
Tiwari et al. (2018a) Deterministic ~ — - - \/ \/
Tiwari et al. (2018b) Probabilistic ~ — Vv Vv - -
Wangsa and Wee (2019)  Probabilistic 1/ - - - Vv
Tiwari et al. (2020) Probabilistic 4/ v Vv - -
Fallahi et al. (2021) Deterministic ~ / - - Vv Vv
Oztiirk (2021) Probabilistic 4/ - - v
Zhu (2021) Deterministic 4/ - - Vv
Proposed model Probabilistic 4/ Vv Vv Vv Vv

The rest of the paper is organized as follows. “Notations &,

and assumptions” section provides the notation and assump- A
tions. “Model development” section develops the proposed  C

mathematical model and algorithm to derive the optimal  x

solution. “Numerical example and sensitivity analysis” sec-

w
tion presents the numerical example and sensitivity analy- e,
sis. Finally, the conclusions and future research directions e,
are given in “Conclusions and future research directions”  y
section. B,
B,
Notations and assumptions Cpp
C,,
Notations C,
0
The notations used to develop the model are listed below: d,
Decision variables: d,
u
QO the size of shipments from the vendor to the buyer w
(units). a
m the number of deliveries (times). F,
k  safety factor, the factor to determine safety stock due to
fluctuating demand (times). F,
S setup cost per setup ($/setup).
L lead time (unit time). W,
Wy
Parameters: T
Cghg
D average demand (units/unit time). AT,
P production rate of the vendor, P > D (units/unit time). AT,
o standard deviation of demand (units/unit time). €.,
A ordering cost per order ($/order). Seo
So initial setup cost per setup ($/setup). he,

buyer’s holding cost ($/unit/unit time).

vendor’s holding cost ($/unit/unit time).

inspection cost ($/unit).

inspection rate (units/unit time).

cost of producing defective item ($/unit).
probability of Type I inspection error.

probability of Type II inspection error.

probability of defective items (defect rate).
defective items in each shipment size of Q (units).
returned items from market in each shipment size of
0 (units).

buyer’s post-sales for each defective item ($/unit).
vendor’s post-sales for each defective item ($/unit).
cost of rejecting a non-defective item ($/unit).
additional cost for pick-up policy ($/trip).

the vendor’s distance to the freight (miles).

the freight’s distance to the buyer (miles).

fuel consumption of a truck (L/mile).

weight of product (Ibs/unit).

discount factor for LTL shipments, 0 < a < 1(%).
cost of freight based on full truckload (FTL) ($/1b/
mile).

cost of freight based on less-than-truckload ($/1b/
mile).

full truckload (FTL) shipping weight (Ibs).

actual weight of shipping (W, < W, ) (Ibs).

buyer’s backorder cost ($/unit).

carbon emission cost ($/ton-CO,).

buyer’s indirect emission factor (ton-CO,/L).
buyer’s direct emission factor (ton-CO,/Ib).
electricity energy consumption (kWh).

steam energy consumption (kKWh).

heating energy consumption (kWh).
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cooling energy consumption (KkWh)

L energy loss rate (%).

AV, vendor’s indirect emission factor (ton-CO,/kWh).
AV, vendor’s direct emission factor (ton-CO,/unit).

Y annual fractional cost of capital investment ($/unit
time).

I(S) capital investment in setup cost reduction ($).

I3 the percentage decrease in S per dollar increase in /(S)

¢ minimum duration of ith lead time component (unit
time).

d; normal duration of ith lead time component (unit
time).

e; crashing cost per days of ith lead time component ($/
unit time).

JTC joint total cost ($/unit time).
Assumptions
The following assumptions are used to develop the model:

1. This research considers a single item with a single-
vendor and a single-buyer.

2. The demand follows a normal distribution with mean
D and standard deviation o.

3. The vendor manufactures a batch of mQ units and ships
O (units) to the buyer in each of the m times. The setup
cost § is paid by the vendor for each production run,
and the ordering cost A is paid by the buyer for each
order of quantity Q.

4. The vendor produces the items with a finite production
rate P is higher than the demand rate D.

5. The lead time L consists of n mutually independent
components. For each ith lead time component, d; is
the normal duration, c; is the minimum duration, and
e; is the crashing cost per unit time. We rearrange e,
such that e; <e, < ...¢;. The lead time reduction
should first occur on component 1 (i.e., ordering time)
where lead time 1 is the initial total lead time minus
the crashing of component 1. Lead time 2 is lead time 1
minus the crashing of component 2 (i.e., process time)
and so on.

6. The crashing cost is paid by the buyer if a shorter lead
time is requested.

7. The capital investment /(S) in reducing the vendor’s
setup cost is a logarithmic function of the setup cost,

S. That is, I(S) = Bln(%)forO < S < S,where B = é

(Tiwari et al. 2018b, 2020).

8. The vendor’s production processes may produce defec-
tive items with the defective percentage y and prob-
ability density function of f(y). The lot received by
the buyer receives a 100% quality check for all items
by the inspector with a screening rate x. The screen-
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ing rate is assumed to be greater than the demand rate,
x> D.

9. The buyer’s inspector will inspect all incoming items
from the vendor. There are two type of classification
errors. The inspector may incorrectly classify non-
defective items as defective (e, ) with a probability
density function of f (el) and may incorrectly accept
defective items as non-defective ( 62) with a probability
density function of f (e2 )

10. The cost of producing defective item (Cw) and the cost
of rejecting a non-defective item (C,) are paid by the
vendor.

11. Shortages are allowed and fully backordered.

12. The items will be scheduled to be picked up by the
freight and delivered to the buyer’s site. This cost (sur-
charge cost per shipment, 6) is paid by the buyer for the
pick-up.

13. The freight cost is paid by the buyer.

14. Defective items will be returned to the vendor at the
end of the inspection process.

Model development

In this paper, we develop a sustainable integrated inven-
tory under a vendor—buyer system taking into account the
crashing lead time, defective items, inspection errors, freight
cost, and investment for setup cost reduction. Liao and Shyu
(1991) developed an inventory model where lead time can
be decomposed into several components; and the lead time
for each component may be reduced with a crashing cost.
An equal-sized shipment policy is adopted by the system to
deliver the items. The vendor produces a batch of items (mQ)
with a percentage of defective items. The vendor delivers the
lot to the buyer over m shipments.

The buyer’s inspector screens out the defective items
from the shipment lot with two types of mistakes: classify-
ing non-defective items as defective items (el) and classify-
ing defective items as non-defective items (e, ). The four
possible cases may be found during an inspection process.
They are:

e (Case I:
Number of items which are non-defective but are
rejected as defective items=(1 — y)Qe,
e (Case 2:
Number of items which are non-defective are
accepted=(1 —y)Q(1 —¢,)
e (Case 3:
Number of items which are defective but are accepted
as non-defective items=yQ(1 — e;)
o (Case 4:
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Number of items which are defective are
rejected=yQe,

Further, the development of the expected total cost for the
buyer, expected total cost for the vendor, and the joint total
expected cost are formulated in the following subsections.

Expected total cost for the buyer

In this section, we modify Wangsa and Wee (2019)’s model
by considering emission cost. The ordering cost, surcharge

As described in the previous section, this study consid-
ers two types of inspection errors. Let e, and e, denote the
probabilities of classifying a non-defective item as defec-
tive, and a defective item as non-defective, respectively.
To formulate the cost of type II error and the buyer’s hold-
ing, we refer to the formulations developed by Wangsa
and Wee (2019).

DCpbyez
(1=-y(1-¢)

Type II error cost =

(6)

Buyer’s holding cost = £,
x(1 - y)(l - el)

DO[(1 = e, +7(1—e,)] .\ O[1— (e, +7) +7(e; +2e)].A =) (1 —¢)) +ka\/Z} .

20 =p)(1—e)

By considering the above-mentioned costs (Egs. 1-7), the
buyer’s expected initial total cost (TEC, ) is given by:

D[A +0 + R(L) + mao\/Ly (k) + mQ(C, + Cpbyez)]

TEC,(Q, k, L, m) = mQ(1 —y)(1—e¢,)
— —e

+h,
®)

{DQ[(l —7)e, +y(1 —ez)] N Q[l - (61 +7) +7’(€1 +2€2)]-(1 _7)(1 —el) +k0'\/Z}

x(1 - y)(l - el)

20=p)(1—e)

cost, lead time crashing cost, shortage cost, inspection cost,
type II error cost, and the holding cost are given by the fol-
lowing equations:

. DA
Ordering cost = (1
mQ(1 —y)(1~e;)
Surcharge cost = Do )

mQ(1 —y)(1 —e)

Lead time crashing cost = DR(L) 3
mo(1—p)(1-e¢))

D Ly (k

Shortage cost = M @

01 -1)(1-e¢)

I ti t DCS

nspection cost = ————— s
d-n(-e) ©)

The logistic provider offers pick-up services at a
freight cost rate (Fx). Wangsa and Wee (2019) devel-
oped freight cost based on the actual shipping weight,
W, =0w(l - y)(l —e ) Therefore, the buyers expected
freight cost can be expressed by:

_ DmaF,W,(2dy.d,)
Cmo(l-p)(1-e)

, +D(1 — )F w(2dy,d,)  (9)

Furthermore, this study also considers the carbon emis-
sion cost. The cost is divided into 2 categories, namely direct
and indirect emissions. To derive the carbon emission cost
equation, we refer to Wangsa (2017)’s equation. The expres-
sion of carbon emission cost is given by:

AT,u(2dy,d,)
mQ(1—y)(1-¢)

CE, = DC,, + AT,w (10)

By considering and combining the buyer’s expected ini-
tial total cost in Eq. (8), the freight cost in Eq. (9), and the
carbon emission cost in Eq. (10), the buyer’s expected final
total cost can be rewritten as follows:

@ Springer
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A+ 6 + R(L) + mao\/Ly (k) + mQ(
+(maF W, + Cy,, AT u)(2dy,d,)

’

C, + Cpbyez)

TEC Jk,L, =
oG KoL m0( - (1—e)

1D
o DO[(1 =y)e; +7(1 —e,)] . O[1 = (e, +7)+7(e;+2¢,)].d=1)(1—¢) koL
b o
x(l—y)(l—el) 2(1—7/)(1—61)
+D[(1 — a)F w(2dy,d,) + Cpp, ATyw]
E DC,y
xpected total cost for the vendor Rework cost = ——— W% (16)
(I=n(1-e)
The expected initial total cost for the vendor consists of
holding cost, setup cost, rework cost for defective items,
type I error cost, and type II error cost. The average inven- 17)
tory of vendor per cycle equal to [bold area] minus [shaded Type I error cost = DG, — 1y
area] and can be formulated by: (1-7)(1-¢)
202 DC we
[nQ<2+(n— 1)T> - ﬂ] _T[Q+20+ - +(n-1)0] Type Il error cost = —— 2~ > (18)
P 2P
IV= T (l—y)(l—el)
n
(12) Thus, the vendor’s initial expected total cost per unit time
is given by:
D{S+mQ|C,y + C.(1 =y)e; +C,ve )
rEC, 0. m = 25+ Grell ) fe, modely b (19)
mQ(1 = y)(1-¢) 2 2 (A =n(1=e)P
By substituting T = %(l_e‘) into Eq. (6) and then sim- Capital investment to reduce setup cost is regarded as

plifying the equation, one has:

{no]¢+m-nEnad] 22 _7i0 420+

the most effective means of minimizing the vendor’s total

=+ (= DY]

I =
! nQ(1-r)(1-¢)
D
cost. In this paper, we optimize the initial setup cost (S), and
_ )2 n-20 D o : : \
I, = 5 + 2 1- " ] (13)  assume the capital investment /(S) in reducing the vendor’s
a- y)( e ) P setup cost is a logarithmic function of the vendor’s setup cost

The vendor’s holding cost per unit time is given by the
following expression:
1=
[ =9 ] }

(14)

Next, the vendor’s setup cost, rework cost for defective

items, type I error cost, and type II error cost are given in
the following equations:

Q

(m-2)Q
>+

2

D
(l—el)P

Vendor’s holding cost = hv{

DS
mQ(1—y)(1-¢)

Setup cost =

5
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(Tiwari et al. 2018b, 2020).

0

3)

iS) = Bln< 0)
Subject to: 0 < S < S; where B = %; ¢ is the percentage
decrease in S per dollar increase in I(S). If Y is the vendor’s
fractional setup cost technology investment, then the formu-
lation is:
So
ISC, = YI(S) = YBln 5 2n

Similarly, the buyer’s emission cost and the vendor’s
carbon emission cost are divided into 2 categories, namely
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direct and indirect emissions. The vendor’s carbon emission
cost equation is given by:

CE, = DC,,

AV, (em +s.,+h,, + cm)L C
ghg

M+ DAV,C

mQ(1 —y)(1—¢))
(22)
Thus, the vendor’s expected final total cost per unit
time can be formulated by combining the vendor’s initial
expected total cost in Eq. (19), the investment for reducing

setup cost in Eq. (21), and the vendor’s carbon emission cost
in Eq. (22). One has:

b { S+mQ[C,r + C,(1 = Y)ey + Cpyrey] }

AV, (€0 + Sep + ey + €y ) L Cop

TEC,(Q.m,S) =
o mo( =) (1 =e)

0 (m-20 D
h = 1-
’ V{2+ 2 [ <1-y>(1—el>P]}

SO
+ DAV, Cy, + YBln<§>

(23)

Joint total cost

The joint total cost for the vendor—buyer system is the sum-
mation of the buyer’s expected final total cost given by
Eq. (11), and the vendor’s expected final total cost given by
Eq. (23). One has:

A+S+0+R(L) +mro\/Ly k)

Y (m,S,L) =A+ S+ 6 + R(L)
+ (maF W, + Cy,AT\u) (2dy,d,)  (28)

+ AVl (eco + Sco + hco + Cca)Lnghg
Y, =C,+7[e,(Cpp + Cpp) +C, ] + Co(1 = pe, (29)

Z<m>={1+<m—2>l1—_3]} 30)
XIP

— SO
Y,(8) = D[(1 — a)F, w(2dy,d,) + Cpe (AT,w + AV, )| + YBIn 5

(31
Then, Eq. (24) can be reduced to:
D [Tl(m, S,L) + mmf\/Zu/(k) + mQY_Z]

JTC(Q,k,L,m,S) = —
mQX;

+hy [DQ_XZ + 26 +ko\/2] + B0 )

X, 2 2
(32)

Solution methodology

The joint total cost in Eq. (32) is formulated as a function of
(Q,k,L,m,S). Here, a methodology is suggested to find the
solutions of the proposed model. First, for a fixed value of

pl me{C+7[ex(Cp+ C) + C ]+ Cl = 1)y}

+(maF W, + C,, AT,u)(2dy,d,)

FAV (€ + e + Py + € )L, Cop

JTC(Q, k,L,m,S) =

mQ(1 — y)(l — el)

Q[l - (el +y) +;/(el +2€2)].(1 —y)(l —el)

(24)

L d P -netr(i-a)]
’ x(1-p)(1-¢)

0, m-20 D
h,{ = 1-
R Tl

(AT, w+ AV,)] + YBln<%>

+D[(1 - e)F,w(2dy,d,) + C

ghg

+ka\/Z}

20-7)(1-¢)

To simplify the notation, we let:

X, =(-y)(1-e) (25)
X,=(1—p)e;+7(1-e) (26)
Xy=1=(e;+7)+7(e; +2¢) 27)

(L, m), by finding the first partial derivative of the joint total
cost with respect to (Q, k, S) and by setting these equations
equal to zero, we have:

ATC(Q,k,L,m,S)

50 0 (33)
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-D [?l(m, s, L)+ mro \/Zy/(k)]
+

szil

DX, X, — 2
2| =2+ S ) +hFam) =

xX,

DX, X\ hYim
2+_3>+v3(>

— =0
x, 2 2

D [Yl(m, s,L) + mro \/Zy/(k)]

mQ’X,

20 [mm D 4 zoy/L l,l(k)]

o= | T (34)
2hb<712 + 73> + th3(m)
6JTC(Q,01]€€, L,m,S) -0 35)
Dm”"\/—[ 1+ O] +hyo VL =0
mQX,
[_1 +(D(k*)] — M
Dmm)'\/z

o1 th)_(l 36

Ok )=1 D (36)

Table 2 Input data

Input values

Input values

D =10,000 units/year
0 =300 units/year

P =40,000 units/year
x=65,200 units/year
A=3$30

So=$1400
hy,=$8/unit/year
h,=$3/unit/year
0=$14

7=$50/unit
C,=$0.5/unit
C,,,=$200/unit
C,,,=$300/unit
C,,=$50/unit
C,=$100/unit
$=0.04

6=0.04

p=0.04

a=0.11246

w=22 Ibs/unit
F,=$0.000040217/1b/mile
W,=46,000 lbs

d, =50 miles

d,=600 miles

Y =0.10/$/year

B=3500

AV,=0.02264 ton-CO,/kWh
AV,=0.00965 ton-CO,/unit
AT,=0.01268 ton-CO,/L
AT,=0.00250 ton-CO,/lb
u=0.63569 L/mile

e.,= 154,566 kWh
5eo=115.917 kWh
h,,=38.639 kWh
¢.,=77.278 kWh

L=1%

C,pe=$20/ton-CO,

@ Springer

Table 3 Lead time data

Lead time com- Normal dura- Minimum dura-  Unit crashing

ponent (i) tion, d; (day) tion, c; (day) cost, ¢; ($/
day)
20 6 0.40
20 6 1.20
16 9 5.00
daJTC(Q,k,L,m,S)
=0
oS 37
D_ _ E -0
mox, S
g = mQYBX, (38)
D

Solution procedure

The following solution procedure to derive the optimal order
quantity, safety factor, lead time, setup cost, and the number
of shipments in one production cycle is developed. We pro-
pose a solution procedure which is developed based on the
ideas from Wangsa and Wee (2019) and Tiwari et al. (2020).
A solution procedure is provided as follows:

Step 1 Setm = 1.
Step 2 For each L, perform (2.1)-(2.7),i=0, 1,2, ..., j

(2.1) Start with S; =S, and k; =0 [implies
u/(kil) =0.39894, which can be obtained
by checking the standard normal table
@(k;y) = 0.39894 and @ (k;; ) = 0.5].

(22) Substitute w(ky). S into

Y1 (m.s.L)

Xl ———+7n0 Ll[/(k)]

2hb<%+%>+h‘,)’3(m)
(2.3) Check the actual shipping weight, (Wy = Qw); if
(Wy > W,) is not satisfied then revise the lot

0=

to evaluate Q;,.

quantity (Qn = %) and go to the next step. Oth-
erwise, (W, < W, ), we go on to the next step.
(2.4) Utilize Q;;, and then determine the value of
_ h7QX __ mQYBX
®(kyp) =1-2tand S = ==
(2.5) Repeat (2.2)— (2.4) until no change in the value
of (Ql, " )

(2.6) Compare the decision variables of S; and S,
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Tab!e 4 The Optimal_rGSUhS of Parameter Buyer’s independent  Integrated model Saving
the independent and integrated decision
models
QO(units) 2070.95 1603.53
W,(1bs) 45,560.94 35,277.64
L(days) 21 21
m 1 4
k 1.85 1.97
S($) 69.61 215.60
B (units) 81.18 62.86
B,(units) 0.83 0.64
TE(ton-CO,) 0.1115 0.0798 0.04 (28.44%)
Buyer's total expected cost ($) 33,973.26 31,705.02 2268.25 (6.68%)
Vendor's total expected cost ($) 45,005.78 43,808.63 1197.16 (2.66%)
Joint total cost ($) 78,979.04 75,513.64 3465.4 (4.39%)
Fig. 1 Sensitivity analysis for 141,000
defects, type I error, and type II 133.000
error on the JTC ($/year) ’
125,000
117,000 —O— Defective
109,000 —/—Type I Error
§ 101,000 Type II Error
>
9\3 93,000
O
= 85,000
77,000 -~

69,000
61,000

53,000
45,000

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14

(1. IfS; < S, then the optimal solution for the
givenL;. We denote the optimal solution by
(0%, k*,5.%).

@ii). IfS;>S,then we set S;* =S, and utilize
Eqgs. (34) and (36) to determine the new
(O:*, k;*) by the same procedure (2.2)—(2.4)

then the result is denoted (Q,*, k;*, S;*).

(2.7) Calculate JTC using Eq. (32).

Step 3 Find min,_,, JTC for each model. Let JTC
optimal is min,_,, JTC then the decision variables
are the optimal solution for fixed m.

Step 4 Set m = m + 1, repeat steps 2 and 3 to get JTC
with fixed m.

Probability

Step 5 If JTC( gL

.
> Kmy? <m)’m’S<m>> =JIC

* * * %
( (m_l),k(m_l),L(m_l),m - l,S(m_l) , then go to Step 4,
otherwise go to step 6.
Step 6 The optimal decision varia-

bles.gm ke, Lr,m", 57 = (Q?m—l)’kztm—l)’Lz;nfl)’m -1 zkmfl))’

then (Q*, k*, L*, m*, §*) is the optimal solution.

Numerical example and sensitivity analysis

To illustrate the above-proposed solution procedure, we con-
sider an integrated inventory system with the data (Table 2)
adopted from Saga et al. (2019), Wangsa and Wee (2019),
Tiwari et al. (2020). The lead time data are shown in Table 3.

Similar to Khan et al. (2011, 2017), Wangsa and
Wee (2019), and Saga et al. (2019), we assume that the

@ Springer
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Fig.2 Sensitivity analysis for
defects, type I error, and type
II error probabilities on the B,
(units)

Fig.3 Sensitivity analysis for
defects, type I error, and type

II error probabilities on the B,
(units)

Fig.4 Sensitivity analysis for
defects, type I error, and type
1I error probabilities on the TE
(ton-CO,)

@ Springer
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probability of defective items and inspection errors follows
a uniform distribution, so one has:

0<e <6
fler) =

0, otherwise

0<e<p

==

0, otherwise 0, otherwise

then, we have

and remain almost unchanged when the type I error prob-
ability increases. We also observe from Figs. 2 and 3 that
the values of B, and B, increase due to the increase in the
defective probability. Figure 4 shows the impact of type I
error, type II error, and defective item probabilities on total
emissions released from the supply chain. The result shows
that if the defects and type I error probabilities increase

B 5
Ely] = /Vf(y)dy = _E[el =/ If €] del = gE[ez] =/ezf<62)de2 =3
0 0

Apply the solution procedure with defective items shape
parameter, type I error, and type Il erroras f = 6 = p=0.04,
respectively, the optimal solutions can be derived. We obtain
the JTC as $75,513.64/year, Q* = 1603.53 units, k* = 1.97,
m* =4, Wy* = 35,277.64 pounds, lead time (L*) = 21 days,
defective items based on screening process (Bl*) = 62.86
units, defective items returned from the market (Bz*) =0.64
units, and the total emissions (TE*) = 0.0798 ton-CO,.

Next, we compare the results of the integrated optimal
policy with those of the independent policies. In the inde-
pendent model, the players optimize their total cost policy
separately. The result shows that the optimal order quan-
tity is Q* = 2070.95 units, safety factor k* = 1.85, Wy* =
45,560.94 1bs., L* = 21 days, B;* = 81.18 units, B,* = 0.83
units, TE* = 0.1115 ton-CO,_and the buyer’s total expected
cost is $33,973.26/year. The vendor’s total expected cost is
$45,005.78/year. Thus, the total expected cost for the inde-
pendent policy is $78,979.04/year. The comparison analysis
between independent and integrated decisions is shown in
Table 4. The integrated decision provides a cost saving by
$3465.40/year or 4.39% and emission saving by 0.04 ton-
CO, or 28.44%.

Figure 1 depicts the impact of type I error, type II error,
and defects probabilities on JTC. The analysis is examined
by changing each of the parameters from — 75 to+250%.
The results show that JTC has increased the sensitivity to
the variation in the defects as well as the type I error prob-
abilities. This is due to the higher number of rejected items
and the rework cost. It is also observed that the type I error
has a greater impact on the JTC than that of type II error.

Next, we analyse the effect of these parameters on the
defective items after screening (B, ) and on after-sales from
the market (B, ), for which the results are shown in Figs. 2
and 3. The analysis is examined by changing each of the
parameters from — 75 to +250%. The results from Fig. 2
show that B, significantly increases as the defects and type
I error probabilities increase. In contrast to the type I error
change for B, the effect of the changes in type II error on B,
seems to be insignificant. Yet in Fig. 3, B, increases signifi-
cantly as the type II error and defects probabilities increase

@ Springer

gradually; the total emissions drastically increase. The total
emissions seem to remain unchanged due to the increase in
the type II error probability.

Table 5 and Figs. 5, 6 and 7 show that the total expected
cost, lot size, safety factor, the number of deliveries, lead
time, and setup cost are sensitive to changes in parameters:
D,P,p,6,p,hy,h,,x,S,7Y,and Cghg. In the sensitivity anal-
ysis, the parameter values are varied from — 50 to+ 50%, and
the comparison between independent and integrated deci-
sions is provided to show which policy has a better perfor-
mance in minimizing the total cost of the supply chain. Fig-
ures 5, 6, and 7 show the cost saving between the JTC and
the independent total cost. The results shows the cost saving
increases as the buyer’s holding cost (%,), demand (D), setup
cost reduction investment (Y), and carbon emission cost
(Cghg) increase (3.74-6.63%; 4.3-5.6%; 4.24-4.54%; and
1.63-6.87%, respectively). The cost savings are insignificant
for increasing defective rate probability, type I inspection
error probability, type II inspection error probability, and
initial setup cost (7, e}, e,, and S;). However, the cost saving
decreases from 6.61 to 3.75%, 6.90 to 2.75% and 4.46 to
4.36%, respectively, as the parameters P, h, and x increase
from — 50 to+50%.

Conclusions and future research directions

This paper investigates an integrated inventory model for
a single-vendor and single-buyer system with defective
items, inspection errors, setup cost reduction, controllable
lead time, and carbon emissions. We consider two types of
inspection errors; namely, type I error (if the inspector incor-
rectly classifies non-defective items as defective items) and
type II error (if the inspector incorrectly classifies defective
items as non-defective items). In addition, the freight cost
and emission cost are also incorporated and analyzed in the
proposed model. The freight cost is derived as a function
of the weight of shipping and the vendor’s distance to the
buyer. The emission cost is formulated as a function of direct
and indirect emissions that are generated from vendor and
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Fig.5 Sensitivity analysis of D,
P, hy, h,, and C,,, on cost sav-
ings for the independent and the
integrated optimal policies

Fig.6 Sensitivity analysis of
x and Y on cost savings for the
independent and the integrated

optimal policies

Fig.7 Sensitivity analysis of
7, €}, €5, and S, on cost savings
for the independent and the inte-

grated optimal policies
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buyer activities. The objective is to minimize the joint total
cost incurred by the supply chain. The analysis is performed
to study the effect of changes in demand, production rate,
probability of defective items, probability of type I error,
probability of type II error, screening rate, holding cost, ini-
tial setup cost, investment, and carbon emission cost on the
optimal solutions.

The results obtained from the numerical example show
that the defective rate and inspection errors have a pro-
nounced impact on costs, lead time, and total carbon emis-
sions. The changes in type I error and type II error probabili-
ties have a significant impact on the shipment lot size, which
affects the total cost and the total emissions. Thus, in view of
the changing inspection errors, management needs to care-
fully control the system to ensure that the total cost and the
total emissions be maintained at the appropriate level. Fur-
thermore, the results show that the integrated policy more
cost effective when compared with the independent policy.
For future research, this study can be extended to consider
the effect of learning to decrease the Type I and Type II
errors probability. Further study may consider the impact of
returned products, as well as considering multiple vendors
and buyers.
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