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Abstract
Blade element momentum theory is extensively used to design and characterize the performance of the wind turbine. Aero-
dynamic characteristics of the airfoils used in the blades of the wind turbine are one of the crucial parameters of the blade 
element momentum theory. The aerodynamic characteristics of airfoil can be significantly influenced by Reynolds number 
besides the angle of attack. Thus, an inadequate consideration of Reynolds number for aerodynamic characteristics of the 
airfoil can result in discrepancy in the optimum design and performance evaluation capability of the blade element momen-
tum theory. Several mathematical models, and semi-empirical relations to parameterize the aerodynamic characteristics of 
two-dimensional airfoil in blade element momentum theory, inherently lack dependency on Reynolds number and thus open 
a scope for uncertainty. An artificial neural network-based model is proposed to predict the lift and drag coefficient of airfoil 
as a function of not only the angle of attack but also the Reynolds number. A series of six in-house developed airfoils for 
small wind turbine have been considered for the present study. The computational fluid dynamic results of the airfoil with 
a range of Reynolds number (100,000–2,000,000) and angle of attack (0°–20°) were utilized to develop the model. A high 
coefficient of determination and low root-mean-square error of the developed models for a test dataset suggests the robust 
capabilities and effective topology of the artificial neural network-based model to predict the lift and drag coefficient of the 
airfoils with respect to a given angle of attack and Reynolds number. The developed model can then be used to replace the 
traditional analytical or semi-empirical model for mathematical representation of airfoil in the blade element momentum 
theory and thus reduce the uncertainty on account of inadequate consideration of Reynolds number for aerodynamic char-
acteristics of airfoil in design and performance evaluation.
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Introduction

For the aerodynamic design and performance evaluation of 
the wind turbine, various computational approaches such 
as blade element momentum (BEM) theory (Hassanzadeh 
et al. 2016), vortex wake method (Chattot 2003) and com-
putational fluid dynamic (CFD) (Bai and Wang 2016) have 
been developed. However, the blade element momentum 
theory, due to its simplicity and accuracy, is widely used 
amongst scientific and industrial communities (Lanza-
fame and Messina 2007). Blade element theory requires 
the division of blade into multiple sections. The aerody-
namic forces on each section are calculated by assuming 
the aerodynamic forces acting on two-dimensional airfoils 
subjected to local flow conditions, and thus the thrust and 
torque acting on the blade are obtained. Thus, the per-
formance evaluation of a wind turbine blade is greatly 
dependent on the aerodynamic characteristics of the two-
dimensional airfoil subjected to local flow conditions. 
Moreover from a design aspect, which primarily deals with 

determining the optimum chord and twist distribution, the 
aerodynamic characteristics of the two-dimensional airfoil 
play a crucial role in the aerodynamic design of wind tur-
bine rotor blade. El-Okda (2015) had compared various 
chord distribution models which primarily depends on the 
aerodynamic characteristics of the two-dimensional airfoil.

Since the design and performance evaluation of the 
wind turbine rotor blade is significantly dependent on the 
two-dimensional airfoil aerodynamic data, it is imperative 
to account for the factors that may influence the aerody-
namic performance of the airfoils. The aerodynamic char-
acteristics of two-dimensional airfoil, besides depend-
ing on the angle of attack, Reynolds number also had a 
significant influence on the aerodynamic characteristics 
of the airfoils (Zhu et  al. 2014). Although the studies 
accounting the angle of attack are widely covered in con-
junction to studies with blade element momentum theory, 
the studies with Reynolds number largely remains lim-
ited. Ceyhan (2012) investigated the influence of very high 
Reynolds number on the rotor design and performance, 
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and suggested that at higher Reynolds number considera-
tions, a rotor design with up to 20% reduction in chord 
can be achieved as a result of increase in lift coefficient 
and decrease in drag coefficient. MaTavish et al. (2013) 
experimentally investigated the influence of Reynolds 
number on the thrust coefficient and near wake influence 
for a small-scale wind turbine and the results indicates that 
wake expansion and thrust coefficient may not match the 
scaled version of the same rotor, suggesting the influence 
of Reynolds number. Ge et al. (2015) studied the influ-
ence of Reynolds number on the aerodynamic design of 
a wind turbine and suggested that a wind turbine design 
using airfoil data base with mismatch in Reynolds number 
from the actual one may result in an incorrect estimation 
of load and annual energy prediction. Miller et al. (2019) 
investigated the power and thrust coefficient of a scaled 
turbine model as a function of Reynolds number in a spe-
cialized compressed air wind tunnel and observed a strong 
dependency of power coefficient with Reynolds number.

Despite the experimental studies suggesting the sig-
nificance of Reynolds number, the numerical studies with 
blade element momentum theory has been largely limited to 
a range of specific Reynolds number which may not exactly 
corresponds to the actual variation of Reynolds number 
on the rotor blades. Bai et al. (2017), suggested average 
Reynolds number distribution for the entire length of the 
blade, obtained by considering average chord distribution. 
Although strategy has been devised to account the local 
Reynolds number variation along the length of the blade in 
the blade element momentum theory for integrated design 
and performance evaluation (Wang et al. 2012), a lack of 
attempts to investigate the local variation of Reynolds num-
ber attributes to the inadequate mathematical representa-
tion of two-dimensional airfoil data. For the mathematical 
representation of the two-dimensional airfoil aerodynamic 
data, various analytical or semi-empirical methodologies 
have been proposed. Lanzafame and Messina (2007) imple-
mented a fifth-order logarithmic polynomial equation to fit 
lift and drag coefficient of S809 airfoil for angle of attack 
ranging from − 6° to 20°. Bavanish and Thyagarajan (2013) 
have suggested different linear equations to represent the lift 
coefficient for symmetric and circular arc airfoils. Bai et al. 
(2016) utilized a second-order and third-order polynomial 
equations to represent lift and drag coefficient of S822 and 
S823 airfoils for angle of attack less than stall angle, respec-
tively. Other linear, nonlinear, lookup tables and direct curve 
fitting techniques to represent the aerodynamic characteris-
tics of airfoils are also discussed (Leishman 2006).

Although the above-mentioned analytical or semi-empiri-
cal methodologies provide qualitatively correct results, how-
ever, due to inherent difficulty in modeling highly nonlinear 
aerodynamic phenomenon near to stall angles, as well as 
the frequent need to interpolate between the population of 

aerodynamic data obtained through different mediums and 
lack of dependency on Reynolds number, the numerical 
results are quite unreliable. An aerodynamic module based 
on artificial neural network (ANN) may offer certain advan-
tages as it utilizes the results of the training set by means of 
adequately trained and validated neural networks. In recent 
years, ANN had shown its capability to effectively predict 
the behavior of complex and non-linear system (Gue et al. 
2020). It basically comprises of an input layer that receives 
data, a hidden layer that processes the data, and an output 
layer that sends the computed information. These layers have 
the capability to learn, memorize and establish a relationship 
between inputs and outputs and thus make ANN a better 
alternative to empirical model (Wallach et al. 2006).

In the present work, in an effort to contribute to the 
research on the influence of Reynolds number on the design 
and performance evaluation of the wind turbine rotor, ade-
quate mathematical model to represent the two-dimensional 
airfoil data as a function of not only the angle of attack but 
also the Reynolds number is proposed. An ANN-based 
meta-model is proposed, which would provide the necessary 
lift and drag coefficient of the airfoil at a given Reynolds 
number and angle of attack, to be utilized in the blade ele-
ment momentum theory for design and performance evalu-
ation of the wind turbine rotor blade, as shown in Fig. 1 
and thus reducing the uncertainty in optimum design and 
performance evaluation on account of inadequate considera-
tion of Reynolds number. The ongoing in-house research on 
small wind turbine has been utilized for the present work. 
A series of six in-house developed airfoils, namely SV1, 
SV2, SV3, SV4, SV5, and SV6, encompassing a range of 
geometric attributes has been utilized and thus also attempt-
ing to develop a comprehensive scheme. The meta-models 
based on ANN has been developed for each airfoil which 
are capable of predicting the lift and drag coefficient of the 
airfoil under consideration over a range of Reynolds num-
ber (100,000–2,000,000) and also over a range of angle of 
attack (0°–20°). To train the ANN models, the necessary 
dataset has been obtained from the numerical simulation 
of the airfoils. One of the key challenges in developing the 
ANN model is establishing the adequate topology i.e., the 
number of layers, number of neurons and adequate activa-
tion functions. Through this work an adequate topology for 
the ANN models for describing the lift and drag coefficient 
of the airfoils as function of Reynolds number and angle of 
attack is also suggested.

Materials and methods

The development of ANN-based meta-models to predict 
the lift and drag coefficient of the concerned airfoils for a 
given range of Reynolds number and angle of attack begins 
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with generating a training dataset. The training dataset com-
prises of the lift and drag coefficient of the airfoils at a given 
Reynolds number and angle of attack, obtained by numerical 
simulation of the airfoils. With the training dataset, a suit-
able topology of the ANN which describes the number of 
hidden layers, neurons and activation function is obtained 
by trial and error method. Finally, the developed models 
were validated with a set of test dataset which had not been 
utilized in the training of the model.

Airfoils

The airfoils under consideration, i.e., SV1, SV2, SV3, SV4, 
SV5 and SV6 are in-house developed airfoils for its applica-
tion in small horizontal axis wind turbine. The airfoils under 
consideration extend over a range of thin to thick airfoils. 
Generally, an airfoil with maximum thickness in the range 
of 0.11c to 0.15c is categorized as thin airfoils, whereas the 
airfoils with maximum thickness in the range of 0.16c to 
0.21c is categorized as thick airfoils (Tangler and Somers 
1995). The maximum thickness and maximum camber of the 
given airfoils ranges from 0.2091c to 0.1035c and 0.0864c to 
0.0673c , respectively, where c is the chord length of the air-
foil. This given range of maximum thickness and maximum 

camber signifies the diversity of the airfoils. Figure 2 shows 
the graphical representation of the given airfoils. Table 1 
shows the geometric features of the given airfoils. 

Numerical simulation

The numerical simulations of the airfoils were carried out 
using commercially available CFD code ANSYS® Flu-
ent (2013). For the numerical simulation, a general-type 
computational case was formulated, comprising of compu-
tational domain with C–H topology, which extends from 
25c in downstream to 15c in the upstream. For the analy-
sis, SSTk − � turbulence model along with coupled pres-
sure velocity coupling scheme was employed (Reggio et al. 
2011). The adequate mesh elements for the computational 
domain were obtained by grid independence test. For the 
precise simulation of the boundary layer, Y+, a non-dimen-
sional distance from the wall to first node of the mesh, is 
suggested to be less than 1 (Belamadi et al. 2016). However 
to account for the change in the Reynolds number during 
the analysis over the range of operating conditions, variation 
of lift and drag coefficient was observed with change in the 
average Y+ and an adequate first layer height of the mesh 
elements was obtained. For the validation of the numerical 

Fig. 1  Proposed ANN-based meta-model in blade element momentum theory
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simulation, due to the lack of the experimental results, the 
above-mentioned formulated computational case was uti-
lized for the numerical simulation of range of airfoil, i.e., 
S809, NACA 4412 and E387, over a range of operating con-
ditions. The numerical results of these airfoils were then 
compared with experimental results obtained from literature 
at corresponding operating conditions to assess the robust 
capability of the formulated computational case.

The numerical simulation of the S809 airfoil was uti-
lized to determine the adequate mesh elements and their 
first layer height. The domain and mesh generation was 
performed using the commercially available tool ANSYS® 
ICEM-CFD (2015). Figure 3a-b shows the variation of lift 
and drag coefficient with change in mesh elements. From 

Fig. 3a, b it can be observed that after 29,452 mesh ele-
ments, the lift and drag coefficient seems to be independ-
ent of mesh elements. From Table 2, the lift and drag coef-
ficient corresponding to 59,466 mesh elements changes 
by 0.08% and − 0.07% with respect to lift and drag coeffi-
cient corresponding to 29,452 mesh elements, respectively. 
However, with a conservative approach, 116,216 elements 
with difference in lift and drag coefficient of − 0.05% and 
− 0.14% with respect to lift and drag coefficient corre-
sponding to previous mesh elements (i.e., 59,466 mesh 
elements), were adopted for further analysis. Figure 3c-d 
shows the variation of lift and drag coefficient with aver-
age Y+ and is also tabulated in Table 3. From Fig. 3c-d 
it can be observed that up to an average Y+ of 1.61, the 
lift and drag coefficient is more or less remains the same. 
Thus to ensure the average Y+ does not exceed the 1.61 
during the numerical simulations over the range of Reyn-
olds number, the first layer height (0.00002 m) of the mesh 
elements corresponding to a conservative Y+ of 0.48 is 
chosen. Figure 4 shows the comparison of the numerical 
results and the experimental results at corresponding oper-
ating conditions for S809, NACA 4412 and E387 airfoils, 
which also demonstrate the capability of the formulated 
computational case to produce results with qualitatively 
fair degree of agreement with the experimental results.   

Fig. 2  Schematic view of in-house developed airfoils

Table 1  Geometric features of the in-house developed airfoils

Airfoil Maximum thick-
ness

Position Maximum camber Position

SV1 0.2025c 0.264c 0.0836c 0.367c
SV2 0.2091c 0.257c 0.0864c 0.383c
SV3 0.1833c 0.284c 0.0705c 0.374c
SV4 0.1506c 0.276c 0.0673c 0.408c
SV5 0.1160c 0.278c 0.0673c 0.460c
SV6 0.1035c 0.359c 0.0684c 0.499c
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Artificial neural network (ANN)

There are varieties of ANN models available; however, 
among them, the multilayered perceptron (MLP) networks 
with back propagation training algorithm is the most popu-
lar network for prediction purposes (Behera et al. 2015). 
Generally, a MLP structure is characterized by a network of 
input layer, hidden layer, and output layer with each layer 
consisting of different number of processing elements, also 
known as neuron (Chakraborty et al. 2013). For the present 
work, the inputs comprises of two operating parameters, i.e., 
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Fig. 3  Grid Independence test and average Y+ variation test a lift coefficient versus mesh elements, b drag coefficient versus mesh elements, c 
lift coefficient versus Y+ (average), and d drag coefficient versus Y+ (average)

Table 2  Various ANN models 
based on the number of neurons

Mesh elements Lift coefficient Difference (in%) Drag coefficient Difference (in %)

13,156 0.11571 – 0.01458 –
29,452 0.11389 − 1.57 0.01393 − 4.46
59,466 0.11398 0.08 0.01392 − 0.07
116,216 0.11392 − 0.05 0.0139 − 0.14
228,165 0.11381 − 0.10 0.01388 − 0.14
450,660 0.11375 − 0.05 0.01389 0.07

Table 3  Lift and drag coefficient variation with average Y+

Y+ (average) Lift coefficient Drag coefficient

0.16 0.11352 0.01399
0.48 0.11392 0.0139
0.8 0.11408 0.01386
1.12 0.11409 0.01386
1.45 0.11401 0.01388
1.61 0.1139 0.01391
3.27 0.11013 0.01472
4.9 0.10947 0.0149
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Reynolds number and angle of attack, whereas the outputs 
comprises of aerodynamic characteristics, i.e., lift and drag 
coefficients. Thus, each input and output layer has two neu-
rons, respectively. The input and output are linked to each 
other through the hidden layer and the output layer. The 
input and output layer has fixed two neurons, whereas the 
hidden layer has a different number of neurons for different 
cases and thus results in various ANN models.

The input signal 
(
Xi

)
 , i.e., the Reynolds number and the 

angle of attack, are generally scaled 
(
xi
)
 , as given by Eq. (1), 

are perceived by the input neurons. The weighted input sig-
nal (x) i.e., synaptic weight times the output of the input 
neuron and coupled with a bias are processed through a sig-
moidal (tansig) transfer function, as given by Eq. (2), in the 
hidden layer. The weighted output from the hidden layer, 
i.e., the synaptic weight associated with neuron at output 
layer times the output from the neuron at the hidden layer, 
coupled with bias are perceived by the neurons of the output 
layer and are also processed with sigmoidal transfer func-
tion in the output layer. Finally, the output signals from the 
output layer are received by the output neurons. The output 
signals 

(
Ch

)
 from the output neurons are later again scaled (

ch
)
 , given by Eq. (3), to produce the predicted aerodynamic 

characteristics, i.e., lift and drag coefficients.

where, Xmin and Xmax represents the minimum and maximum 
of the input signal, whereas Cmin and Cmax represent the mini-
mum and maximum of the output signal.

Due to the unidirectional nature of signal flow from input 
to output neuron, the network is known as the feed-forward 
network. The errors are calculated by comparing the data 
from the output layer with the original target data. The 
weight and bias of each neuron in the hidden and output lay-
ers are updated based on the calculated error and the process 
is repeated till an acceptable error is obtained. The process 

(1)xi =
2
(
Xi − Xmin

)
(
Xmax − Xmin

) + 1

(2)tansig(x) =
2

1 + e−2x
− 1

(3)ch =

(
Cmax − Cmin

2

)(
Ch + 1

)
+ Cmin

(4)MSE =
1

n

n∑
m=1

(
Ym,actual − Ym,output

)2
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of obtaining the acceptable error is achieved using a back 
propagation learning procedure during the data training in a 
supervised learning environment. For the present work, the 
Levenberg–Marquardt training algorithm is employed and 
the errors in conjunction to the used training algorithm are 
computed in the form of mean square error (MSE), as given 
by Eq. (4), (Howard and Mark 2004). The performance of 
ANN model is assessed by statistical parameters such as 
coefficient of determination (R2) (Arslan and Yetik 2014), 
given by Eq. (5) and root-mean-square error (RMSE) (Tugcu 
and Arslan 2017), given by Eq. (6), where Youtput is output 
value, Youtput is average output value, Yactual is actual value, 
Yactual is average output value, and n is the total number of 
data.

Results and discussion

Numerical dataset

For the development of the meta-model based on ANN, the 
results from the numerical simulations were utilized as the 
necessary dataset for the training of the ANN model. The 
numerical simulations of the airfoils have been carried out 
utilizing the validated computational case. The numeri-
cal simulation of each of the airfoil has been carried out 
for a range of Reynolds number ranging from 100,000 to 
2,000,000 at an interval of 100,000 and over a range of angle 
of attack ranging from 0° to 20° at an interval of 2°. Thus 
for each airfoil, a total of 220 numerical simulations has 

(5)RMSE =

�∑n

m=1

�
Ym,output − Ym,actual

�2
n

(6)

R2 =

⎡⎢⎢⎢⎢⎣

∑n

m=1

�
Ym,output − Ym,output

��
Ym,actual − Ym,actual

�
�∑n

m=1

�
Ym,output − Ym,output

�2 ∑n

m=1

�
Ym,actual − Ym,actual

�2

⎤⎥⎥⎥⎥⎦

2

.

been carried out. Prior to the development of meta-models 
for all the airfoils, the development of the meta-model for 
single airfoil, i.e., SV1 is carried out. Upon the successful 
development of the model for SV1 airfoil, the same topol-
ogy of the ANN model is followed for the rest of the airfoils. 
Before using the numerical results for the training of the 
neural network for SV1 airfoil, all the numerical results of 
the SV1 airfoil were first randomly arranged, and a separate 
pool of 20 results was created for further testing and valida-
tion purpose. Thus with only 200 numerical results (70% for 

Table 4  Performance of various ANN model with lift coefficient as 
output

ANN models Neurons 
in hidden 
layer

Training Testing

R2 RMSE R2 RMSE

1 2 0.95412 0.04067 0.88915 0.05839
2 3 0.98761 0.01907 0.98431 0.02190
3 4 0.99389 0.01362 0.99551 0.01417
4 5 0.99803 0.00842 0.99644 0.00978
5 6 0.99818 0.00812 0.99639 0.01107
6 7 0.99813 0.00805 0.99697 0.00841
7 8 0.99806 0.00839 0.88702 0.01350
8 9 0.99929 0.00497 0.99879 0.00618

Table 5  Performance of various ANN model with drag coefficient as 
output

ANN models Neurons 
in hidden 
layer

Training Testing

R2 RMSE R2 RMSE

1 2 0.95308 0.01414 0.93179 0.01753
2 3 0.99066 0.00658 0.99200 0.00539
3 4 0.99906 0.00202 0.99874 0.00201
4 5 0.99844 0.00254 0.99827 0.00298
5 6 0.99855 0.00234 0.99866 0.00247
6 7 0.99949 0.00149 0.99962 0.00146
7 8 0.99687 0.00352 0.99505 0.00469
8 9 0.99962 0.00124 0.99972 0.00124

Fig. 5  Topology of the ANN 
model
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training, 15% for validation and 15% for testing), the devel-
opment of various ANN models for SV1 airfoil was carried 
out. However, for the development of the ANN models for 
other airfoils, complete dataset with adequate pool distribu-
tion for training, validation, and testing is utilized. For the 
development of ANN models for other airfoils, the quota of 
dataset for validation and testing is increased to 20% and 
thus only 60% of 220 dataset is utilized for the training of 
the ANN models.

ANN model

The present ANN models are developed using the neural 
network toolbox of MATLAB®(R2015a) (2015). The ANN 
model utilizes a feed-forward network based on the back-
propagation learning procedure. Out of the 200 CFD results, 
140 data (70% data) were utilized for the training process, 30 
data (15% data) were utilized for the validation process, and 
the remaining 30 data (15% data) were utilized for the testing 
process. The optimum number of neurons for the hidden layers 
was estimated by trial and error (Maleki et al. 2019). A total of 
nine ANN models were developed based on the number of the 
neurons (2–10) in the hidden layer. The performance of each of 
the model is characterized by the statistical parameters such as 
coefficient of determination (R2) and root-mean-square error 
(RMSE). Table 4 and 5 show the statistical evaluations of the 
models for lift and drag coefficient, respectively. From Table 4, 
it can be observed that the ANN model with nine neurons in 
the hidden layer has maximum R2 of 0.99929 and 0.99879 for 
training and testing dataset and minimum RMSE of 0.00497 
and 0.00618 for training and testing dataset, respectively. Simi-
larly, from Table 5, it can be observed that the ANN model 
with nine neurons in the hidden layer has maximum R2 of 
0.99962 and 0.99972 for training and testing dataset and mini-
mum RMSE of 0.00124 and 0.00123 for training and testing 
dataset, respectively. Hence, the optimal ANN model is framed 
as input with two input variables (i = 1, 2) , hidden layer with 
nine neurons (j = 1, 2, 3,… 9) , and output layer with two neu-
rons (h = 1, 2) for the two output parameters. The topology of 
the ANN model is shown in Fig. 5. The output parameter 

(
Ch

)
 

is evaluated by using Eqs. (7)–(10).
The input 

(
Aj

)
 to the neuron (j) of the first hidden layer is 

given by Eq. (7), whereas the output 
(
Oj

)
 of neuron (j) from 

the hidden layer is given by Eq. (8). The operational structure 
of the neurons at the hidden layer is shown in Fig. 6. The 

Fig. 6  Operational structure of neurons of the hidden layer
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associated weights 
(
wji

)
 and bias 

(
bj
)
 of neurons of the hidden 

layer is shown in Table 6.

Now, the input (Bh) to the neuron h of the output layer is 
given by Eq. (9), whereas the output (Ch) of the neuron h from 
the second hidden layer is given by Eq. (10). The operational 
structure of the neurons at the output layer is shown in Fig. 7. 
The associated weights 

(
whj

)
 and bias 

(
bh
)
 of neurons of the 

output layer is shown in Table 7.

The predicted lift and drag coefficient outputs from the 
ANN model were compared with the separate pool of data 
that were kept aside earlier and had not contributed to the 
development of the ANN model. Table 8 shows the separate 
pool for data and its comparison with the ANN outputs. Fig-
ures 8a and 9a show the predicted lift and drag coefficient for 

(7)Aj =

2∑
i=1

xiwji + bj

(8)Oj =
2

1 + e−2Aj

− 1

(9)Bh =

9∑
j=1

Ojwhj + bh

(10)Ch =
2

1 + e−2Bh

− 1

SV1 airfoil from the ANN model in comparison with actual 
CFD results for the separate pool of data. A high coefficient 
of determination with 0.99632 and 0.99934, and low root-
mean-square error of 0.01332 and 0.00164 for the predicted 
lift and drag coefficient suggests the capabilities of the ANN 
model to predict the performance of the airfoil at different 
operating conditions.  

With the similar topology of the ANN model, the ANN 
models for the rest of the airfoils are also developed. Fig-
ure 8b–f shows the comparison of the ANN predicted lift 
coefficient and CFD lift coefficient for test dataset compris-
ing of 20% of the dataset which has not been utilized in the 
development of the ANN model. Similarly, Fig. 9b–f shows 

Fig. 7  Operational structure of 
neurons of the output layer

Table 7  Associated weights and bias of the output layer

Neuron ( h) Neurons of the output layer

1 2

Weights (whj)
 wh1 − 1.373 0.6648
 wh2 − 0.159 − 0.2895
 wh3 0.6384 0.5264
 wh4 1.1014 − 0.1301
 wh5 − 3.283 − 0.7093
 wh6 4.0987 − 2.3709
 wh7 − 4.404 − 0.7533
 wh8 3.6444 0.0899
 wh9 − 2.383 0.3058

Bias 
(
bh
)

− 4.686 3.0237
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Table 8  A comparison of the 
predicted outputs from ANN 
model with the separate pool of 
test data

Reynolds number Angle of 
attack

Coefficient of lift Coefficient of drag

Actual ANN predicted Actual ANN predicted

1,500,000 2 0.906 0.9052 0.0181 0.0176
1,000,000 18 1.0977 1.1183 0.174 0.1723
100,000 10 0.8266 0.8347 0.1079 0.1088
100,000 0 0.5401 0.5683 0.0309 0.0289
1,100,000 14 1.2123 1.1962 0.1066 0.1081
1,000,000 20 1.0912 1.1053 0.2073 0.2099
800,000 0 0.6854 0.6846 0.0181 0.0185
1,700,000 2 0.9127 0.9107 0.0177 0.0174
2,000,000 4 1.098 1.0766 0.0203 0.0182
600,000 6 1.0664 1.0476 0.0388 0.0415
600,000 14 1.0933 1.0930 0.1203 0.1198
1,900,000 4 1.0951 1.0773 0.0205 0.0185
1,900,000 16 1.2614 1.2668 0.1241 0.1229
1,700,000 16 1.2407 1.2467 0.1267 0.1254
2,000,000 14 1.3067 1.2922 0.095 0.0959
1,900,000 2 0.9184 0.9150 0.0174 0.0173
300,000 6 0.9478 0.9540 0.0493 0.0496
1,200,000 0 0.7038 0.7048 0.0167 0.0180
900,000 6 1.1332 1.1151 0.0332 0.0370
1,500,000 20 1.1623 1.1579 0.1973 0.1981
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the comparison of the ANN predicted drag coefficient and 
CFD predicted drag coefficient for the test dataset. A high 
value of coefficient of determination and low root-mean-
square error for the predicted lift and drag coefficient sug-
gests the effective capability of the developed ANN models.

Figures 10 and 11 shows the variation of lift and drag 
coefficient with angle of attack for a range of Reynolds num-
ber, obtained by the ANN-based models and CFD simula-
tions, respectively. From Figs. 10 and 11, it can be observed 
that for any given airfoil, even at higher angles of attack 
where the nonlinear characteristics are predominant, the 
ANN-based models had sufficiently predicted the results 
with a reasonable degree of accuracy. This characteristic of 
ANN model is also consistent at different Reynolds number. 
This indicates not only the capability of the ANN model to 
effectively model the highly nonlinear characteristics but 
also suggests a general topology of the ANN model for pre-
dicting the lift and drag coefficient at any given Reynolds 
number and angle of attack from a predefined range. 

The aerodynamic design of wind turbine rotor needs to 
be appropriately adjusted on account of change in airfoil 
database because of different Reynolds number considera-
tion (Ge et al. 2016). The flexibility to accommodate for the 

variation of Reynolds number, which had not traditionally 
accounted by the analytical or semi-empirical mathematical 
models, is achieved through ANN-based models. Thus, the 
ANN-based models can be effectively utilized in the blade 
element momentum theory and the aerodynamic charac-
teristics of the airfoil can be obtained at local Reynolds 
number instead of an approximated Reynolds number and 
hence reducing the uncertainty on account of inadequate 
consideration of Reynolds number on integrated design and 
performance evaluation of wind turbine.

Conclusion

The development of ANN-based meta-models has been 
carried out to predict the lift and drag coefficient of the 
in-house developed airfoils, namely SV1, SV2, SV3, 
SV4, SV5, and SV6 for a given range of Reynolds num-
ber (100,000–2,000,000) and angle of attack (0°–20°). The 
training dataset for the development of the ANN models has 
been obtained by the numerical simulation of each of the 
airfoils for the given range of Reynolds number at an interval 
of 100,000 and also at the given range of angle of attack at 
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Fig. 10  Variation of lift coefficients with the angle of attack obtained from ANN models and CFD results over a range of Reynolds number for a 
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an interval of 2°. Prior to the development of ANN models 
for all the given airfoils, initially, an ANN model for only 
SV1 is developed. Upon the successful development of the 
ANN model for the SV1 airfoil with coefficient of determi-
nation of 0.99632 and 0.99934 for lift and drag coefficient, 
respectively, for a separate pool of random data which has 
not been utilized in the model development, the topology of 
the developed ANN model has been adopted for the devel-
opment of rest of the ANN models. With a testing dataset 
comprising of 20% of the randomly arranged overall dataset, 
high coefficient of determination and low root-mean-square 

error for lift and drag coefficient for all the airfoil suggest 
an effective topology of general ANN model for predicting 
lift and drag coefficient of an airfoil for a given range of 
Reynolds number and angle of attack. Upon comparing the 
variation of ANN predicted lift and drag coefficient with 
angle of attack for a range of Reynolds number with the 
CFD results for all the airfoils, the capabilities of the ANN 
model to effectively model highly nonlinear aerodynamic 
characteristics of airfoils was also observed.
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