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Abstract
The direct measurement of the resilience (resistance to disturbances) of an ecosystem’s current regime (or “alternative stable 
state”) remains a key concern for managing human impacts on these ecosystems and their risk of collapse. Approaches which 
utilize statistics or information theory have demonstrated utility in identifying regime boundaries. Here, we use Fisher information 
to establish the limits of the resilience of a dynamic regime of a predator–prey system. This is important because previous studies 
using Fisher information focused on detecting whether a regime change has occurred, whereas here we are interested in deter-
mining how much an ecological system can vary its properties without a regime change occurring. We illustrate the theory with 
simple two species systems. We apply it first to a predator–prey model and then to a 60-year wolf–moose population dataset from 
Isle Royale National Park in Michigan, USA. We assess the resilience boundaries and the operating range of a system’s param-
eters without a regime change from entirely new criteria for Fisher information, oriented toward regime stability. The approach 
allows us to use system measurements to determine the shape and depth of the “cup” as defined by the broader resilience concept.

Graphic abstract
The direct measurement of the resilience (resistance to disturbances) of an ecosystem’s current regime remains a key concern 
for managing human impacts on these ecosystems and their risk of collapse. Here, we use Fisher information to establish 
the limits of stability of a dynamic regime of a predator–prey system. The region of stability is represented by the “floor of 
the canyon” in the adjacent graphic. While the theory is illustrated with an ecosystem example, it is applicable in its present 
form to dynamic systems in general.
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Introduction

Ecosystems are dynamic and constantly interact with a 
range of external and internal drivers including species 
extinction, climate change, human activity, and other causes 
(Valiente-Banuet and Verdú 2013; Suding et al. 2015; Sed-
don et al. 2016). The resilience of an ecosystem, as defined 
by the system’s ability to remain within a particular regime 
in the presence of disturbances, determines how and to 
what magnitude ecosystems will change in response to 
these drivers (Holling 1973; Grimm and Wissel 1997; Car-
penter et al. 2001; Dai et al. 2015; Gao et al. 2016). To 
measure the vulnerability of systems to regime-changing 
disturbances, it is essential to understand the mechanisms 
of ecological resilience to natural and anthropogenic distur-
bances (Veraart et al. 2012; MacDougall et al. 2013; Suding 
and Hobbs 2014; Suding et al. 2015; Levine et al. 2016). 
This knowledge then contributes to effective environmen-
tal policy, identifying pressure points in the system which 
can be influenced through policies which reduce stressors 
(such as pollutants, invasive species or diseases, or land 
use change) or boost stabilizing factors (such as increasing 
native species populations).

Regime change, or the movement of a system from one 
regime (or alternative stable state) to another, can be trig-
gered by exogenous disturbances (such as fire or the intro-
duction of disease), or internal causes (e.g., loss of spe-
cies, increased mortality, etc.; Spanbauer et al. 2014). The 
likelihood of regime change is determined by the system’s 
resilience to that disturbance and, in other words, its ability 
to maintain itself in that regime through internal feedbacks 
and interactions (Scheffer and Carpenter 2003; Folke et al. 
2004). Note that in this paper, we will only be focused on 
one regime as our measure of resilience, and not multiple 
regimes or the recovery of a system to a previous regime 
after disturbance [where recovery time is an alternative 
measure of resilience; see Grimm and Wissel (1997)]. The 
identification of the location of regime boundaries, also 
known as thresholds or tipping points, is of critical impor-
tance as early warning systems for the management and sus-
tainability of coupled human–environment systems (Guttall 
and Jayaprakash 2009; Scheffer et al. 2009; Scheffer 2010; 
Horan et al. 2011; Spanbauer et al. 2014; Suding and Hobbs 
2014).

Holling (1973) adopted a quantitative view of the behav-
ior of ecological systems (Carpenter et al. 2001). Perspec-
tives on ecosystem resilience have been expanded and 
refined since Holling (1973) to explicitly consider nonlin-
ear dynamics, boundaries, uncertainty and unpredictability, 
and how such dynamics interact across different time and 

spatial scales (Carpenter et al. 2001; Folke 2006; Brand and 
Jax 2007; Scheffer 2010; Veraart et al. 2012; Scheffer et al. 
2015). Generally, resilience may be estimated by comput-
ing the eigenvalues of the system at its equilibrium (Lade 
and Niiranen 2017), but this approach does not provide any 
information about the behavior of a system right before the 
patterns decay.

Neubert and Caswell (1997) investigated several meas-
ures of a transient response, such as the maximal possible 
growth rate that directly follows the perturbation, the big-
gest proportional deviation that can be generated by any per-
turbations, and the time at which the amplification occurs. 
Scheffer et al. (2015) presented methods based on the critical 
slowing-down phenomena, which implies that recovery from 
small perturbations becomes slower as a system approaches 
a regime threshold. They also characterized the resilience of 
alternative regimes in probabilistic terms, measuring criti-
cal slowing down by using generic indicators related to the 
fundamental properties of a dynamic system (Scheffer et al. 
2015). Levine et al. (2016) reported contradictory predic-
tions in the sensitivity and ecological resilience of Amazon 
forests to changes in climate, sometimes resulting in biomass 
stability, other times in catastrophic biomass loss; transitions 
between regimes was continuous (no thresholds observed). 
Other drivers, including fire disturbances, grazing, logging, 
or other anthropogenic activities, are also capable of ampli-
fying these climate change-driven transitions between forests 
and savanna globally (Mayer and Henareh Khalyani 2011). 
The identification of these ecosystem transitions depends 
upon the availability of long-term data, which is expensive 
and resource intensive.

Information theory has been applied to assess the sus-
tainability of dynamic systems (Eason and Cabezas 2012), 
mainly to detect transitions from one dynamic regime to 
another (Mayer et al. 2006; Karunanithi et al. 2008; Span-
bauer et al. 2014; Eason et al. 2016; Sundstrom et al. 2017; 
Vance et al. 2017). The “ball and cup” mental model has 
been central to this work (Gunderson 2000). As a common 
analogy for dynamic regimes, a system (the ball) moves 
within a cup—a specific regime. The ability of the ball to 
remain in that same cup (or basin of attraction) is the resil-
ience of the system (Grimm and Wissel 1997). To function-
ally relate resilience to regimes and regime change, we must 
determine (1) how large the cup is (regime resilience) and 
(2) whether the system is in the cup or outside of it (regime 
shift). In this paper, we apply Fisher information to identify 
the boundaries of the regime (the size and depth of the cup) 
relative to the position of the ecological system (the ball) 
from actual values of system variables. This is important 
because it moves the state of the science beyond discussing 
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symbolic cups meant to represent basins of attraction to 
working with the actual basin of attraction for the system. 
Unlike in prior studies (e.g., Sundstrom et al. 2017), where 
boundaries were identified post-regime shift, we identify 
regime boundaries before the system has a regime change. 
Knowing the size and shape of the basin of attraction makes 
it possible to take remedial action, to keep the system away 
from the regime boundaries before a shift has occurred. (Or, 
conversely in a restoration attempt, how far a system will 
need to be pushed in order to flip it into a more desirable 
regime). We illustrate the concept with a simple modeled 
system and with a two-species predator–prey system (the 
wolves and moose of Isle Royale National Park, Michigan, 
USA). We further show that Fisher information can deter-
mine the range of predator–prey abundance over which 
the ecosystem remains in one regime and hence exhibits 
resilience.

Fisher information theory

The concept now known as Fisher information was first 
introduced by the statistician Ronald Fisher (1922) in the 
context of fitting a parameter to data. Starting from the semi-
nal work of Fisher, an expression for computing the Fisher 
information (Mayer et al. 2007) from time series has been 
developed with the form of,

where p(s) is now the simple probability density for observ-
ing particular values of s and dp(s)∕ds is the slope of p(s).

Fisher information is also closely related to the concept 
of order in dynamic systems. A very ordered dynamic sys-
tem is one where repeated observations of the system yield 
about the same result. In the case of a system with one 
observable variable s , this means that repeated measure-
ments of s give about the same value. In that case, p(s) is 
very narrow and sharp around the mean value of s , and the 
slope dp(s)∕ds is a high number. Since the Fisher informa-
tion is proportional to dp(s)∕ds squared, the Fisher infor-
mation has a correspondingly high value as well. In the 
extreme example of a system where the measurable vari-
ables are constant, the system is said to be perfectly orderly, 
dp(s)∕ds → +∞ , and the Fisher information is positive 
infinity. In the case of a very disorderly dynamic system 
with again one observable variable s , each measurement 
of s yields a more or less different value. Therefore, p(s) 
is broad and relatively flat, and the slope dp(s)∕ds of p(s) 
is near zero. Correspondingly, the Fisher information for a 
very disorderly dynamic system is near zero. In the extreme, 

(1)I = ∫ 1

p(s)

[
dp(s)

ds

]2
ds

of a system completely lacking order, each measurement of 
s yields a different value. Then,p(s) is flat, dp(s)∕ds is zero, 
and the Fisher information for this completely disorderly 
system is exactly zero. In summary, the Fisher information 
of an ordered system is high and that of a disordered system 
is low. One should also note that work of Al-Saffar and 
Kim (2017) explored the mathematical behavior of Fisher 
information under different perturbations and oscillatory 
regimes with possible implications for small populations 
of one species.

For systems that have more than one observable variable, 
the aforementioned arguments apply, except that s now rep-
resents an n-dimensional state of the system which depends 
on all of the observable variables of the system. Hence, a 
state of the system s for a dynamic system with n measurable 
variables x1, x2,… xn is defined by a particular value of each 
of the n variables. Even two states that differ by the value of 
only one variable are different states of the system. Note that 
this can lead to a very large number of states of the system, 
each one being unique.

To develop a practical and computable expression for 
Fisher information, consider that for a sequence of obser-
vations of s that have been taken over a time period, there 
is a one-to-one correspondence between observations and 
the time at which they were taken. Hence, p(s)ds = p(t)dt 
where t is time, and p(t) is the probability density for sam-
pling at a particular time. Now, T = ∫ dt is the total time 
over which the observations were made. For a cyclic sys-
tem, T should generally be at least equal to one cycle, if 
it is desired to capture changes in system behavior. Since 
sampling at any time point is equally probable, p(t) = 1∕T  . 
Then, p(s) = (1∕T)∕(ds∕dt) where now ds∕dt is the transit 
speed of the system in s space. Inserting these results into 
Eq. 1 gives the following expression for Fisher information 
after some manipulations,

where R� ≡ ds∕dt is the speed and R�� ≡ d
2s∕dt2 is the 

acceleration. For the case where s
(
x1, x2,… xn

)
 depends on 

n measurable variables, R′ and R′′ can be calculated from 
the Euclidean metric in a linear space where the coordinates 
are again time and the measurable variables x1, x2,… xn . We 
call this linear space the system phase space. Then, R′ can 
be calculated from,

and R′′ can be calculated from,

(2)I =
1

T

t+T

∫
t

[
R��

]2

[R�]4
dt�

(3)R� ≡ ds

dt
=

√√√√
n∑

i=1

[
dxi

dt

]2
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where R′ and R′′ are the speed and acceleration tangential to 
the path of the system in its phase space.

The expressions in Eqs. 2, 3, and 4 are the practical 
expressions that will be used to compute Fisher information. 
If a differential equation model is available as in the case of 
the prey–predator system used in this work, the derivatives 
dxi∕dt and d2xi∕dt2 can be computed from the model equa-
tions directly. In cases where a differential equation model 
is not available, the derivatives can be approximated with 
finite difference methods (see Hamming 1973). There are 
also many cases including this study where computing the 
integral in Eq. 2 is not possible analytically, and a numeri-
cal approximation is necessary. For such cases, the Fisher 
information can be approximated from

Resilience from Fisher Information

The resilience of an ecological system has been defined by 
Holling (1973) as the ability of the system to continue func-
tioning within the same dynamic regime despite externally 
inflicted perturbations. Within the same regime, the system 
can be very resilient to some kinds of disturbances over a 
long period of time, and not at all resilient to others. The 
resilience of an ecological system in a regime can change 
over time, such as with the loss of species or gradually 
changing external conditions, at the same time that stability 
can appear constant. (The system does not change regimes.) 
Regime shift occurs when one or more thresholds have been 
reached (e.g., a catastrophic disturbance, or the loss of too 
many species). In previous research, Fisher information has 
been used retroactively, to identify regime thresholds after 
regime shifts have occurred (Mayer et al. 2006; Sundstrom 
et al. 2017; Vance et al. 2017). Identifying regime thresholds 
without first observing a regime shift is a different problem.

Consider that it is possible to compute Fisher informa-
tion for an ecosystem as a function of any of its charac-
teristic parameters (species mortality, growth rate, etc.). A 
perturbation or perturbations can be represented as changes 
in the characteristic parameters—note that the characteristic 
parameters of an ecosystem can change for other reasons as 
well. However, the Fisher information would be relatively 
low within the range of parameter values consistent with 
the existence of a functioning ecosystem since the system is 
dynamic, and the Fisher information would have a relatively 
high value for the range of parameter values leading to a 

(4)R�� ≡ d

dt

[
ds

dt

]
=

1

R�

n∑

i=1

dxi

dt

d
2xi

dt2

(5)I =
1

T

t+T∑

t

[
R��

]2

[R�]4
Δt.

non-functional or static and dead system. A Fisher infor-
mation calculation, however, is an observational process. 
It provides information about the system dynamic regimes 
and the changes in those regimes. It can provide hints at 
what changes in the system parameters may be driving the 
changes, but its primary purpose is not to determine cause 
and effect. That requires either an explicit mathematical 
model of the system such as the prey–predator model, or an 
implicit model such as the observations for the moose–wolf 
population data for Isle Royale, both of which are discussed 
later.

In the specific case of one system parameter being per-
turbed, a two-dimensional plot of Fisher information versus 
the parameter values would appear as a “cup” with steep 
walls. The systems with parameter values at the bottom of 
the “cup” are dynamic and functioning, and those on the 
steep wall have very low resilience as they can “flip” into 
a different regime. If two parameters are being simultane-
ously perturbed, a three-dimensional plot of Fisher infor-
mation versus the two parameters would generally appear 
as a “canyon” with steep walls, and again the systems with 
parameter values at the bottom of the “canyon” are dynamic 
and functioning systems and those on the steep walls have 
low resilience. In the transition where the system is not func-
tioning well and has lost resilience, the observable variables 
of the system would fluctuate beyond the values normally 
seen in a healthy functioning ecosystem. This means that the 
measurable values of the system variables would fluctuate 
more widely about their mean leading to a broadening and 
flattening of p(t) , and a Fisher information lower than that 
of a resilient and orderly system and much lower than that 
of a system with very low resilience. Hence, if we were to 
continuously compute the Fisher information as a system 
transitions from resilient to less so, we would see a nonzero 
value for the Fisher information of the resilient system, a 
much lower value for the system in transition, and a high 
value after the ecosystem has shifted out of the regime and 
into a new one. This is important, because we can “see” the 
system moving toward a new regime before it has done so. 
Such a detailed calculation requires either a model capable 
of representing the transition or finely grained data captur-
ing the transition. However, consistent with the Sustainable 
Regimes Hypothesis of Fath et al. (2003), we can state the 
following criteria:

(6a)⟨I⟩�h > 0 and
d⟨I⟩
dt

����h
≅ 0

(6b)⟨I⟩�t ≪ I�h and
d⟨I⟩
dt

����f
≠ 0

(6c)⟨I⟩�d ≫ I�h and
d⟨I⟩
dt

����d
= 0
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where the average Fisher information ⟨I⟩ over some time 

interval t is defined by ⟨I⟩ ≡ 1∕T

T∫
0

I(t)dt , and the subscripts 

h, f, and d refer to ecosystems that are healthy, in flux or 
transition, and totally dysfunctional, respectively. It is 
important to note that the prey–predator model system that 
is described later is unable to represent the transition since 
it is too simple of a model, and because the Heaviside step 
function applied to the model system eliminates the stage 
where the system goes from living to dead.

The aforementioned conjectures can be summarized 
mathematically by proposing the hypothesis that the aver-
aged Fisher information of a stable system does not sig-
nificantly change with changes in the value of the system 
parameters under a perturbation. For the specific case of a 
system with one parameter (�) , for example, the mortality 
rate of a species, a perturbation can be expressed by:

For the case of two system parameters ( � and � ) per-
turbed, for example, the mortality rate and the growth rate, 
the expression can be generalized to:

Finally, for the general case of an arbitrary number (n) 
of ecosystem parameters 

(
�i
)
 under perturbation, the cor-

responding expression is:

where I  is now the average Fisher information defined 
for the one perturbed parameter case of Eq.  7 by 
⟨I⟩ ≡ ∫ [I(�)d�]

�∫ d� , for the two parameter case of Eqs. 8  
b y  ⟨I⟩ ≡ �∫ ∫ I(�, �)d�d�

��∫ ∫ d�d�   ,  a n d 
for the general case of Eq.  9 by ⟨I⟩ ≡ � ∫ ∫ …

∫ I
(
�1�2 … �

n

)
d�1d�2 … d�

n

]/∫ ∫ … ∫ d�1d�2 … d�
n
.

The image for the behavior of Fisher information as a 
function of three or more model parameters would lie in 
a four- or higher-dimensional space. This is unfortunately 
outside the range of human perception. But the mathemati-
cal approach is still valid. The algorithm that one would 
pursue in investigating such a system would be similar 
to the one used here for one and two parameter systems. 
Hence, we could start by varying parameter �1 over the 
range of interest while holding all parameters �i≠1 constant 
at some predetermined value. One would then proceed to 

(7)
d⟨I⟩
d�

≅ 0

(8a)
�⟨I⟩
��

�����
≅ 0

(8b)
�⟨I⟩
��

�����
≅ 0

(9)
�⟨I⟩
��i

�����j≠i
≅ 0 i = 1, 2,… n

varying �2 while holding all parameters �i≠2 constant. At 
the end, we would have a set of Fisher information val-
ues that depend on the aforementioned n parameters, i.e., 
I
(
�1, �2,… �n

)
 . The process for identifying the parameter 

range over which the system is resilient would involve 
looking for regions where the Fisher information is flat 
in this n parameter space. These are ranges of parameter 
values where the Fisher information does not significantly 
vary as given in Eqs. 7, 8, and 9.

The result of these conjectures emanating from Fisher infor-
mation considerations is that of providing the mathematical 
machinery that is necessary to estimate how much the system 
parameters can vary, without inducing a change in the dynamic 
regime of the system. One would then argue that the wider the 
range of parameter variation that can be tolerated without a 
regime change, the more resilient the system.

Predator–prey model system

Our simple ecological system model is a predator–prey model 
adopted from the work of Fath et al. (2003). The initial param-
eter values are also those used by Fath et al. (2003). The popu-
lation is naturally fluctuating in time, and the populations are 
depending on one another as well as on other parameters, like 
the mortality rate or reproduction rate of the predator and the 
growth or density rate of the prey. The system is defined by 
a Lotka–Volterra-type mathematical model. The model vari-
ables and parameters are as follows:

y1	� Population mass of the prey [mass]
y2	� Population mass of the predator [mass]
g1	� Growth rate of prey [1/time]
l12	� Loss rate to prey due to predator feeding [1/time]
g21	� Feeding rate of predator [1/time]
m2	� Mortality rate of predator [1/time]
k	� Density dependence of prey [mass]
�	� Reproduction rate of predator [mass/mass]

Definition of the population fluctuation:

Since this pure mathematical model is able to increase the 
population even from an infinitesimally small population 
number, which is biologically impossible, it is necessary to 
force the model to set the population exactly to zero after it 
reaches a lower limit where the system is biologically not 
sustainable. Hence, we set the values of y1 and y2 to zero 

(10a)
dy1

dt
= g1

(
1 −

y1

k

)
y1 −

l12y1y2

1 + �y1

(10b)
dy2

dt
=

g21y1y2

1 + �y1
− m2y2
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when they became 1 or less. This is reflected in Eq. 11 where 
a Heaviside step function is applied to both y1 and y2.

By solving Eq. 10 with the logic statement from Eq. 11, 
we get the values for y1 and y2 in each time step. Replacing 
the values of the population into the Eq. (10), we get the 
values for dy1∕dt and dy2∕dt also in each time step. In order 
to be able to calculate the Fisher information, we also need 
the values of d2y1∕dt2 and d2y2∕dt2 . Therefore, we need to 
express the second time derivative of Eq. (10).

In summary, for purposes of this study of a model 
prey–predator system, we compute the Fisher information 
from Eq. 5 setting Δt = 1 and using y1 and y2 computed as a 
function of time from Eqs. 10 and 12.

Results for a model prey–predator system

Based on the research of Fath et al. (2003), the default posi-
tion of our calculation was a parameter set where the sys-
tem has a stable limit cycle behavior for the populations of 
the prey and predator species (Fig. 1): g1 = 1 , l12 = 0.01 , 
g21 = 0.01 , m2 = 1 , k = 625 and � = 0.005 . Equations 11a 
and 11b are implemented in MATLAB solved by the ODE15 
solver for 300 time steps, with initial values 5 and 15 for y1 
and y2 , respectively. Note that the initialization is not impor-
tant, since the system populations become independent from 
the initial values as the system migrates to its steady-state 
regime. The resulting values of y1 and y2 were imported into 
the Excel spreadsheet software, and all further calculations, 
namely the values of the first and second derivatives as well 
as the numerical assumption of the Fisher information, were 
executed in Excel. The value of the Fisher information for 
this specific parameter set and model system in its steady-
state regime is around 0.00,015. However, it is the rela-
tive values of Fisher information and the relative changes 

(11a)y1 =

{
0 if

(
y1 − 1

)
< 0

y1 if
(
y1 − 1

) ≥ 0

(11b)y2 =

{
0 if

(
y2 − 1

)
< 0

y2 if
(
y2 − 1

) ≥ 0

(12a)d
2y1

dt2
= g1

dy1

dt
− 2

g1

k
y1
dy1

dt
−

(
1

1 + �H
(
y1 − 1

)
y1

)[
l12y2

dy1

dt
− l12y1

dy2

dt

]
+ l12y1y2

(
1

1 + �y1

)2

�
dy1

dt

(12b)d
2y2

dt2
= g21y2

dy1

dt

(
1

1 + �y1

)
+ g21y1

dy2

dt

(
1

1 + �y1

)
− g21y1y2

(
1

1 + �y1

)2

�
dy1

dt
− m2

dy2

dt

in Fisher information values that are critical here, not the 
value itself.

The system depicted in Fig. 1 represents a typical eco-
logical system which is alive and functioning with both 
species present and a finite and steady value of its Fisher 
information. If the value of the parameter k were changed 
enough—increased and decreased—the fluctuation of the 
populations eventually ceases because one of the species 
becomes extinct. If the parameter k reaches a lower border 
value of around 395, the predator ( y2 ) immediately dies out 
and the prey population grows to its upper limit (Fig. 2). If 
the parameter k is increased until it reaches its upper border 
of about k ≈ 1325 , the same phenomena are perceptible but 
delayed; that is, after a period of fluctuation, the predator 
dies out and the prey population grows to its upper limit 

(Fig. 3). At both of the edges, the value of the Fisher infor-
mation grows to a relatively high value (Fig. 4). The reason 
why Fisher information reaches a high value is that with 
m2 = 1 , the system becomes a static ecosystem (Fig. 2) when 
the value of k is above the upper limit ( k > 1325 ) or below 
the lower limit ( k < 395 ). As Fisher information is a meas-
ure of order, a static system has very high order and high 
Fisher information.

When the stable range of the parameter k had been 
defined, we started to vary the m2 parameter (the mortality 
of the predator) in the middle of the stable k range when 
k = 860 . It was found that the system is much more sensitive 
to variation in mortality; it has a stability range. The param-
eter m2 can be varied between 0.38 and 1.045. If m2 reaches 
its lower end and k is in the middle, the prey dies out earlier; 
therefore, the predator also dies out soon afterward (Fig. 5). 
These kinds of collapses occur where one of the species dies 
out on the edges, immediately or after one or two periods. 
Our study showed that order of the Fisher information is 
around 10−3 if the system has stable dynamics, and it grows 
suddenly when the system collapses as species populations 
start going to zero. Out of the stability range, the value of 
the Fisher information is over the order of 1015 (Figs. 6; 7). 
It is important to note that these system collapses define a 
different system (Mayer et al. 2006), one lacking at least one 
of the two species.
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Strange inverse peaks appear outside of the stability range 
that can be seen on the right side of Fig. 6 or on the left side 
of Fig. 7. (And another one appears on the other side of 
the canyon.) These peaks come from numerical problems 
with the calculation method. Since we have discrete time 

steps and values of y1 and y2 in each time step, technically 
Eq. (3) becomes a sum instead of an integral. This is shown 
in Eq. (6), note that we set Δt = 1 . The state of the system 
where these peaks appear is dysfunctional, namely the prey 
population dies out after a period. Therefore, the predator 

Fig. 1   The fluctuation of the 
model populations of prey ( y

1
 ) 

and predator ( y
2
 ) in time with 

default parameter values of 
k = 625 , m

2
= 1

Fig. 2   The fluctuation of the 
populations ceases, the predator 
( y

2
 ) immediately dies out, and 

the prey ( y
1
 ) stops growing 

when k it reaches its lower limit 
( k = 395 , m

2
= 1)
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population dies out as well after this first period (see Fig. 8). 
Practically, in these cases R′ becomes exactly zero, but in 
mathematics division by zero has no meaning. Therefore, 
while calculating the Fisher information, we can only con-
sider those time steps where the division is valid, i.e., while 
the value of R′ is over zero. In the specific case shown in 
Fig. 8, the division is valid until t ≈ 26 , and the system is 
functional between t = 0 and t = 26.

Results for a real prey–predator ecosystem

To study the application of the methodology, we include in 
our analysis the case of a real predator–prey system repre-
sented by the wolf–moose (Canis lupis, Alces alces) system 
from Isle Royale National Park in the USA. The data origi-
nate from a 60-year research project (1957 to present) of the 
dynamics of wolf and moose populations (and their impacts 
on the vegetation) on Isle Royale, a remote 540 km2 island 
in Lake Superior (Vucetich and Peterson 2012; Mlot 2017). 
The population sizes of wolves and moose are surveyed each 
winter; the dataset includes the precise number of wolves 
and estimated number of moose. The system has been in 
the news in the past several years after the wolf population 
began an unsustainable decline in abundance; as of 2017, 
only one inbred pair of wolves lived on the island, and the 
moose population was increasing rapidly in the absence of 
sufficient predation (Mlot 2017).

We calculated the Fisher information using the one-tenth 
of the length of the 60 years (1957–2017) we have data for, 
i.e., a 6-year-long moving time window for this dataset that 
is plotted in Fig. 9. The wolf and moose population values 
(normalized so that both fit on the second y-axis) are also 
plotted in Fig. 9. All population values are dimensionless in 
Fig. 9; values are divided by the first value (in 1959) for each 
species to improve the readability of the graph.

A brief delay is perceptible in the Fisher information 
trend compared to the population trends, but as expected, 

Fig. 3   The fluctuation of the 
model populations of prey ( y

1
 ) 

and predator ( y
2
 ) in time with 

default parameter values at its 
upper limit of k = 1325 , m

2
= 1
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Fig. 4   Fisher information for a prey–predator model system where 
the prey density parameter (k) is varied, while the predator mortal-
ity (m) is held constant at m = 0.9996. Note that the systems where 
518 ≤ k ≤ 1158 are functioning systems with two species and systems 
where k < 518 and k > 1158 are dysfunctional systems where at least 
one species has gone extinct. Note that the vertical scale has been 
truncated so that the more important details around 500 ≤ k ≤ 1300 
become easier to visualize
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Fisher information is high when population fluctuations are 
low and drops when the fluctuations intensify. The Fisher 
information calculated here indicates that there is, perhaps, 
a functional state with relatively high dynamic order that 
persisted in the 1970s, where wolf populations were around 
40 individuals and moose around 1000. However, this region 
may not be entirely resilient, as since that time this system 
has spent the bulk of its time in a low Fisher information 
region of less than 20 wolves and well over 1000 moose. 
The sharp decline of wolves in 1981 (echoed in a decline in 

Fisher information) was due to the accidental introduction 
of canine parvovirus to the island (Wilmers et al. 2006). 
It is notable that Fisher information indicated (via a slight 
increase) a brief period between 2000 and 2007 when the 
wolf and moose populations appeared to be more stable (but 
were not, according to Fisher Information). In this period, 
the populations roughly echoed the numbers seen in the sta-
ble era of the 1970s.

However, this resilience degraded as the wolf popula-
tion entered a sharp decline after 2009. Fisher information’s 

Fig. 5   The prey dies out after a 
half of a period; therefore, the 
predator also dies out afterward 
( k = 860 , m

2
= 0.38)

Fig. 6   The value of the Fisher 
information as a function of 
prey density (k) and predator 
mortality rate (m2) from a side 
view. Note that a functioning 
ecosystem with two species 
present exists only for combined 
values of k and m2 within the 
confines of the bottom of the 
“canyon.”

43
8

63
8

83
8

99
8

11
98

0

0,002

0,004

0,006

0,008

0,01

0,
38

1
0,

38
2

0,
4

0,
5

0,
6

0,
7

0,
73

97
0,

73
98

0,
73

99

0,
740,
8

0,
9

0,
99

96

0,
99

971

1,
02

1,
03

1,
03

2

1,
03

3

1,
03

4

1,
04

1,
04

3

FI

Predator Mortality (m)



1480	 E. Konig et al.

1 3

behavior for this real-world system is consistent with the 
behavior observed for the model system, although the impact 
of the noise in a real-world system on the clarity of Fisher 
information behavior is easy to see. This is to be expected 
with real data from real systems. However, broadly speak-
ing, Fisher information indicates that some event (internal or 
external) occurred in the early 1980s, despite the appearance 
of some stability in population numbers in the early 2000s, 

which set this system on a less resilient pathway from which 
it has not yet recovered.

Discussion

The previous work related to system regimes and Fisher 
information focused mostly on regime changes when a 
system shifts from one regime into another. The goal of 
this research was to develop a method to calculate where 
a resilient system has its borders and to identify the ranges 
of the interacting parameters where the system persists in 
one regime independently of the perturbations. By the cri-
terion formulated as Eq. 7, it is possible to decide whether a 
dynamic system is in a healthy, dynamically changing state, 
in a dysfunctional and therefore static state, or in transition 
from a healthy state into a dysfunctional one. The criterion, 
defined by Eqs. 8, 9, and 10, tells where a system is resilient 
when there is only one, two, or more varying system param-
eters, respectively.

Fisher information theory is well known and applied in 
several scientific fields, but it has not been utilized for meas-
uring system resilience directly. The method described in 
this paper provides a technique to measure the resilience of a 
dynamic system by checking the criteria defined in Eqs. 7, 8, 
9, and 10. As with previous iterations of Fisher information, 
it remains highly sensitive to the quality of the data (Mayer 
et al. 2006); accordingly, users must assure that the variables 
selected are relevant to characterizing changes in the sys-
tem’s condition; otherwise, the Fisher information results are 
uninformative. In the wolf–moose example, other variables 
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Fig. 7   The value of the Fisher information as a function of prey den-
sity (k) and predator mortality rate (m2,) from a top down view. Again 
note that a functioning ecosystem with two species present exists only 
for combined values of k and m2 within the confines of the bottom of 
the “canyon”

Fig. 8   The prey dies out after a 
half of a period; therefore, the 
predator also dies out afterward 
( k = 598 , m

2
= 0.381)
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such as winter ice cover of Lake Superior and seasonal tem-
perature and precipitation may be important to include in 
future iterations of calculating the Fisher information of 
the system. However, even with only the two species data, 
Fisher information may provide valuable information to the 
management of the resilience of the wolf–moose system on 
Isle Royale National Park. For example, in 2016–2017 the 
National Park Service debated which of several management 
options it should pursue to stabilize the wolf and moose 
populations, such as doing nothing (waiting to see if wolves 
return via an ice bridge over Lake Superior), or reintroduc-
ing several wolf packs from Canada over a period of 3 years 
(81 Federal Register 91192 2016; Mech et al. 2017). In 
2018, the National Park Service decided to go ahead with 
a slow introduction of very small numbers of wolves each 
year, releasing the first four in October 2018 (Mlot 2018). 
With better refinement, Fisher information could help park 
managers and wildlife biologists determine whether this 
management option is having the desired effect (increas-
ing the resilience of the wolf and moose populations). For 
example, Fisher information suggests that the island system 
with parvo present may not allow for a resilient wolf–moose 
regime, and a policy prescription of parvo vaccinations for 
all wolves may be warranted.

While the theory has been illustrated via the prey–preda-
tor model system and the wolf–moose population data, it 
can be applied in its present form to larger, more compli-
cated systems. It should also be noted that the theory in its 
present form is applicable to any dynamic system as long as 
model differential equations or time-series data are avail-
able for the system variables. The system can be biologi-
cal, social, economic, or technological. This means that it 
is possible to generally assess the resilience of a system by 
assessing the impact of changes in system parameters on 
the value of Fisher information. It is easy to represent the 

line or the surface of Fisher information as a function of two 
varying parameters (as shown in Fig. 4 or Figs. 6, 7). By 
three or more varying parameters, the plot becomes four or 
higher dimensional, which is more difficult to visualize but 
the method is still valid. Further work will need to develop 
methods to interpret Fisher information accurately in these 
higher dimensions, particularly when recommending spe-
cific policy interventions.

Conclusions

The Fisher information of any system is a fundamental 
and computable property that is a measure of order. When 
applied to ecological systems, we find that living functioning 
systems have relatively low but steady Fisher information, 
while dysfunctional ecosystems can have either very high 
or very low Fisher information, depending upon the vari-
ability in the system parameters. Fisher information is very 
sensitive to the dynamic behavior of complex systems which 
makes it a good indicator of regime shift. Here, we use it to 
measure the range of system parameter values over which a 
system remains within the same regime; larger range indi-
cates higher resilience. Resilience defined and measured in 
this manner can be accomplished irrespective of the specific 
perturbation affecting the ecosystem; we measure change 
without having information on the perturbation causing it. 
While it would be optimal to know which disturbance is 
responsible for observed resilience loss, this information is 
not always available. This form of resilience is, therefore, 
a measure of robustness or ruggedness in the face of often 
unpredictable perturbations. While much work remains to 
understand its strengths and limitations, the index shows 
promise as a way to characterize an important aspect of 

Fig. 9   The trend of Fisher infor-
mation in a 6-year-long moving 
time window together with 
the normalized population of 
wolf and moose in Isle Royale 
National Park
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resilience in ecological systems and other dynamic systems 
generally.
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