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Abstract
This paper reports the biopolymerization of ε-caprolactone, using lipase Novozyme 435 catalyst at varied impeller speeds 
and reactor temperatures. A multilayer feedforward neural network (FFNN) model with 11 different training algorithms is 
developed for the multivariable nonlinear biopolymerization of polycaprolactone (PCL). In previous works, biopolymeriza-
tion carried out in scaled-up bioreactors is modeled through FFNN. No review discussed the role of different training algo-
rithms in artificial neural network on the estimation of biopolymerization performance. This paper compares mean absolute 
error, mean square error, and mean absolute percentage error (MAPE) in the PCL biopolymerization process for 11 different 
training algorithms that belong to six classes, namely (1) additive momentum, (2) self-adaptive learning rate, (3) resilient 
backpropagation, (4) conjugate gradient backpropagation, (5) quasi-Newton, and (6) Bayesian regulation propagation. This 
paper aims to identify the most effective training method for biopolymerization. Results show that the quasi-Newton-based 
and Levenberg–Marquardt algorithms have the best performance with MAPE values of 4.512, 5.31, and 3.21% for the number 
of average molecular weight, weight average molecular weight, and polydispersity index, respectively.

Keywords  Polycaprolactone (PCL) · Biopolymerization · Ring opening polymerization · Artificial neural network 
modeling · Bioreactor

Introduction

Polycaprolactone (PCL), which is largely produced through 
chemical polymerization, is emerging as a preferred bio-
degradable plastic in the recent years. PCL has remarkable 
resistance to water, oil, solvent, and chlorine; hydrophobic; 
and relatively high biodegradability and biocompatibility, 
making it a highly potential biomaterial and environment-
friendly thermoplastic (Bassi et al. 2011). Although the syn-
thetic production of PCL has been established, it has a major 

drawback of having metallic catalyst residues, which can 
cause adverse effect, especially in biomaterial application 
(Labet and Thielemans 2009). As a result, green methods 
of producing PCL via biopolymerization are investigated 
widely. Biopolymerization using enzyme as catalysts is 
known as enzymatic polymerization. The enzymatic polym-
erization of PCL, as an alternative to the conventional chem-
ical polymerization, addresses the issue of metallic residues 
on the final product. Biopolymers produced using biocatalyst 
show no signs of toxic residues (Varma et al. 2005).

Several enzymatic polymerization techniques, such as 
condensation, anionic, cationic, and ring opening polymeri-
zations (ROP), are available. Among these techniques, ROP 
is the most preferred (Varma et al. 2005). In the past decade, 
PCL production via ROP has been extensively investigated, 
and different enzymes, such as lipase Candida antarctica 
(CA), lipase Candida cylindracea (CC), lipase Pseudomonas 
fluorescens (PF) (), lipase PP (PP porcine pancreas), lipase 
PC (Pseudomonas cepacia), and lipase RJ (Rhizopus japoni-
cus) (Uyama et al. 1996; Varma et al. 2005; Torres et al. 
2010) and non-lipase enzymes, such as Humicola Insolens 
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Cutinase (HIC) (Hunsen et al. 2007), have been used. The 
scope and significance of enzymatic polymerization are 
wide, and its other aspects should be explored. The molecu-
lar weight of a polymer determines its quality and appli-
cation. This paper addresses molecular weight prediction 
accuracy. The accuracy of molecular weight prediction in 
a polymer can be affected by the nonlinear relationship in 
the biopolymerization process parameters, such as reaction 
temperature, reactor impeller speed, polymerization time, 
and catalyst type (Kobayashi and Makino 2009).

The artificial neural network (ANN) is an emerging tech-
nique used for accurately predicting the molecular weight 
of PCL. ANN mimics the biological neural network in the 
human brain. Although ANNs are not smart, they can ana-
lyze and recognize the patterns of the input and target data 
inserted and create rules to solve complex problems (Lee-
Cosio et al. 2012). Most research in this field has been con-
ducted for the production of PCLs with desired molecular 
weights through the optimization of the main polymerization 
parameters. Arumugasamy and Ahmad (2010) modeled a 
feedforward neural network (FFNN) for the large-scale pro-
duction of PCL to investigate the effect of temperature and 
impeller speed on PCL biopolymerization. Arumugasamy 
et al. (2012) conducted a modeling study on PCL production 
in a flask and reactor and used lipase Novozyme 435 as cata-
lyst. Khatti et al. (2017) carried out a study on the analysis of 
ANN and response surface methodology to determine effec-
tive parameters, such as polymer concentration, voltage, and 
nozzle-to-collector distance, on the diameter of electrospun 
PCL (Khatti et al. 2017).

A remarkable drawback in using ANN is the long dura-
tion required for training a network and ensuring the con-
vergence of a local minimum value. Different training algo-
rithms that improve performance in different aspects have 
been proposed for this drawback. Xinxing et al. (2013) com-
pared 12 different ANN training algorithms based on the 
mean absolute percentage error (MAPE) and training time 
for electricity load forecasting. Forouzanfar et al. (2010) 
compared the different training algorithms for oscillomet-
ric blood pressure estimation. Ghaffari et al. (2006) per-
formed four different training algorithms in the modeling of 
bimodal drug delivery on predictive ability. The outcome of 
these studies determines the best training algorithm, which 
provides optimal training duration and accurate prediction 
that are suitable for their processes. The same approach is 
attempted for biopolymerization in this work.

The objective of this work is to conduct experimental 
studies in a bioreactor setup in order to optimize the param-
eters, namely time, temperature, and impeller speed. We 
used the experimental data to develop an empirical model 
for the biopolymerization of ε-caprolactone (ε-CL) to PCL. 
FFNN was used. A total of 11 different training algorithms 
that belong to six classes, namely additive momentum, 

self-adaptive learning rate, resilient backpropagation, con-
jugate gradient, quasi-Newton, and Bayesian regulation 
propagation were evaluated. The dataset collected from 84 
samples from the biopolymerization experiments was used 
for the evaluation. Number average molecular weight (Mn), 
weight average molecular weight (Mw), and polydispersity 
index (PDI) estimation from biopolymerization using differ-
ent training algorithms are compared in term of estimation 
errors, which are mean absolute error (MAE), mean square 
error (MSE), and mean absolute percentage error (MAPE) 
with the experimental results.

Materials and methods

Preparation of PCL

Infors-HT Labfors bioreactor with an effective volume of 
2 L was used for the scale-up production of PCL. Param-
eters, such as reactor temperature, reactor impeller speed, 
and polymerization time, were selected. The monomer used 
in this work was ε-CL, which was purchased from Merck 
Private Limited. Toluene was used as solvent. Toluene had 
undergone drying over calcium hydride and distillation 
under nitrogen atmosphere prior to its use as solvent. Can-
dida antarctica lipase B (CALB) used was purchased from 
Science Technics Private Limited, Penang, Malaysia. The 
ratio of solvent to monomer to catalyst was fixed at 2:1:10 
(v/v/wt) (Ajay and Gross 2000).

Biopolymerization process

The monomer, enzyme, and solvent were fed into the bio-
reactor. The desired bioreactor temperature was set, and a 
computer was connected to the bioreactor. When the desired 
temperature was attained, the stirrer was switched on at the 
preset speed. During polymerization, sampling was con-
ducted every hour for 7 h. Polymerization was performed 
at 60, 70, and 80 °C. The temperatures were selected on 
the basis of the conclusion from the conical flask results 
obtained in a previous study (Arumugasamy and Ahmad 
2010). The rotational speed of the impeller was varied (250, 
500, 750, or 1000 rpm) (Chaibakhsh et al. 2012).

PCL analysis

Gel permeation chromatography (GPC) analysis was per-
formed with Waters 2414 Refractive Index Detector, Waters 
1525 Binary HPLC Pump, and three Waters GPC columns, 
two Styragel® HR-4 columns, and one HR-5E column for 
the observation of molecular weights (particle size: 5 μm, Ø 
4.6 mm × 300 mm). The analysis conditions were as follows: 
tetrahydrofuran as eluent, flow rate of 1.0 mL/min, column 
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temperature of 40 °C, and analysis time of 45 min/cycle. 
The calibration curves for GPC analysis were obtained by 
using PCL standards.

We performed GPC analysis on three different PCL 
standards PCL with known molecular weights to plot the 
calibration curve. Table 1 shows the molecular weight of 
PCL standard provided by the supplier and the values of 
molecular weight from the GPC analysis. After calibration, 
the molecular weight of the samples obtained from the bio-
reactor experiments was analyzed (Figs. 1, 2).   

ANNs

ANN can learn a vast range of application and provide solu-
tion by training samples from a particular application. ANN 
can predict and generalize and has been used to solve com-
plex problems in control, optimization, and classification. It 
is a data-driven nonlinear model that is formed through the 
use of artificial neurons and by mapping biological-inspired 
computational model. Similar to biological neurons, a neu-
ral network is composed of three common layers, namely 
input, hidden, and output. The neurons are connected via 

coefficients (weights), which are composed of neural struc-
tures. The connection among the neurons has a remarkable 
impact to the ANN. Generally, connection has two main 
types: feedback (recurrent) and feedforward connections. 
Feedback is a connection where the output of either the pre-
vious or the same layer returns to the input layer. In feedfor-
ward, the output does not return to the input neurons. FFNN 
is a popular and successful neural network architecture that 

Table 1   Commercial standard PCL molecular weight with GPC

Standard PCL is purchased from Sigma-Aldrich

Mn from supplier Mn from GPC

*PCL A ~ 14,000 21,120
*PCL B ~ 65,000 63,686
*PCL C ~ 70,000–90,000 71,841

Fig. 1   Schematic diagram of 
batch bio-reactor
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suits extensive range of applications and is proven to be a 
universal approximator (Hornik et al. 1989).

Three inputs: polymerization time, reactor temperature, 
and impeller stirring speed and three outputs: Mn, Mw, and 
PDI were considered in this work. An FFNN with two-to-
five hidden layers (depending on the training algorithm) is 
used.

Figure 3 presents a feedforward multilayer perception 
network trained with the Levenberg–Marquardt (LM) train-
ing algorithm. The network has an architecture structure of 
3–4–3, which corresponds to the number of nodes in the 
input layer, hidden layer 1, hidden layer 2, and output layer, 
respectively. This indicates that there are three neurons in 
the input layer referring to time, temperature, and impeller 
speed, followed by four neurons in the hidden layer and three 
neurons in the output layer which are the Mn, Mw, and PDI. 
Figure 4 shows the schematic of fundamental building block 
for neural networks. First, the scalar input p represents time, 
impeller speed, or temperature. It is multiplied to a scalar 
connection weight w, which can be positive or negative, for 
the formation of a weighted input wp. The weighted input 
is combined with a scalar bias b, which has a constant input 
of 1, to form a net input. Finally, the net input is passed 
through a transfer function f to produce scalar output a for 
a selected neuron.

Data normalization

Data normalization is generally performed for reducing or 
eliminating the influence of the variations of attributes, such 
as large numeric ranges that dominate small numeric ranges 
and scaling of input variables performed prior to forecast-
ing (Sulaiman and Wahab 2018). Min–max normalization 

is adopted in this research. The data are normalized in the 
range of [− 1,1], as shown in Eq. (1):

where x = original data, xmax = minimum value in the origi-
nal data, xmin = maximum value in the original data, y = nor-
malized data, ymax = maximum value in the normalized data 
(default is 1), ymin = minimum value in the normalized data 
(default is −1).

Hidden layer selection

The hidden layer is an intermediate layer between the input 
and output layers. Neurons in the hidden layer are activated 

(1)y = (ymax − ymin)
x − xmin

xmax − xmin

+ ymin,

Fig. 3   Schematic representa-
tion of a multilayer perceptron 
feedforward network consist-
ing of three inputs, one hidden 
layer with six neurons and three 
outputs

Fig. 4   Schematic representation of fundamental building block for 
neural networks
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by a function. Table 2 summarizes the capabilities of neural 
network architectures with various hidden layers (Heaton 
2008). In general, one hidden layer is selected for most of the 
process. Two hidden layers are generally used for modeling 
data with discontinuities, such as the sawtooth wave pattern. 
The use of two hidden layers rarely improves the model and 
may introduce great risk of convergence in a local minima. 
Therefore, a process that requires two hidden layers is rarely 
encountered. The use of more than two hidden layers has no 
theoretical reason. In this work, an FFNN with one hidden 
layer is used. One hidden layer is sufficient to capture the 
intricacy of ring opening polymerization process, and the 
risk of converging to local minima becomes almost nil.

Hidden neuron selection

Determining the number of neurons in a hidden layer is 
an important characteristic of an FFNN or perceptron net-
work. Neuron collection determines the overall neural net-
work architect and greatly influences the final output. If 
inadequate number of neurons are used, then the network is 
unable to model complex data, resulting in underfitting. If 
excessive unnecessary neurons are present in the network, 
then the training time may become excessively long and 
cause overfitting. When overfitting occurs, the network starts 
to model random noise in the data. The outcome may cause 
a model to fit the training data extremely well but general-
izes poorly to new data. Usually, rule-of-thumb methods are 
used to determine a suitable number of neurons to be used 
in the hidden layers, such as the following (Karsoliya 2012):

1.	 The number of hidden neurons should be between the 
number of neurons in the input and output layers.

2.	 The number of hidden neurons should be 2/3 the number 
of neurons in the input layer. If the number is insuf-
ficient, then add the number of neurons in the output 
layer.

3.	 The number of hidden neurons should be less than twice 
the number of neurons in the input layer.

This work implemented a cross-validation technique where 
the value of hidden nodes for training and testing varied 
based on trial and error. The number of hidden nodes with 

the lowest mean sum squared error and high correlation 
coefficient “r” is selected.

Training algorithms

As mentioned previously, ANN is programmed rather than 
trained because of its capability of learning. ANN can self-
adjust the weighted connection of the links found among 
neurons in the network to produce the desired output through 
algorithm training. Training is the core process that enables 
the network to learn from previous data. After sufficient 
training, the network can process and respond to the new set 
of inputs. Optimal weights are then determined. This process 
is normally performed by identifying the accuracy between 
the desired target and the network output and then minimiz-
ing them according to the weights. In this research, three 
different performance functions were used for the evaluation 
of target and output accuracy. These functions, namely (1) 
MAPE, (2) MAE, and (3) root MSE (RMSE), were used to 
evaluate the measure of accuracy.

where Ft = forecasted value, At = actual value, n = number 
of samples.

Backpropagation is a technique used by calculating the 
gradient and minimizing the error through batch or incre-
mental styles. In this research, the main consideration is 
that the training algorithms for backpropagation can be 
categorized into six different classes, namely (1) additive 
momentum (gradient descent with momentum); (2) self-
adaptive learning rate (LR) (variable LR gradient descent 
and gradient descent with momentum and adaptive LR); 

(2)MAPE =
1

n

n∑
t=1

||||
At − Ft

At

|||| × 100,

(3)MAE =
1

n

n∑
t=1

||Ft − At
||,

(4)RMSE =
1

n

n∑
t=1

(
Ft − At

)0.5
,

Table 2   Determining the number of hidden layers

Number of hidden layers Results

None Only able to represent linear separable functions or decisions
1 Can approximate any function that contains a continuous mapping from one finite space to another
2 Can represent an arbitrary decision boundary to arbitrary accuracy with rational activation functions and 

can approximate any smooth mapping to any accuracy
>2 Additional layers can learn complex representations (sort of automatic feature engineering) for layer layers
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(3) resilient backpropagation; (4) conjugate gradient back-
propagation (scaled conjugate gradient (SCG), conjugate 
gradient with Powell–Beale restarts, Fletcher–Powell con-
jugate gradient, and Polak–Ribiére conjugate gradient); (5) 
quasi-Newton (Levenberg–Marquardt (LM), BFGS quasi-
Newton, and one-step secant); and (6) Bayesian regula-
tion propagation (Bayesian regularization). The ANN pre-
sented was conducted by using MATLAB™ R2014b, and 
the training algorithms used were as follows:

(a)	 Additive momentum (training function: traingdm)

In this algorithm, the variation tendency of the error curve 
that tolerates small changes in the neural network and 
the error of the gradient are considered during the back-
propagation of the network. This algorithm can prevent 
the network from falling into local minimum point in the 
training process. An additive value that is proportional to 
the value of the previous weights is added together with 
the thresholds of change to each change of the weight and 
threshold. Threshold is referring to �E

�X
 . Weight is initiated 

by the system. A new change of the weights and threshold 
is generated based on the backpropagation algorithm. The 
adjust function ∆X is as follows:

where t = training times, mc = momentum factor (nor-
mally 0.95), Ir = LR (a constant number that ranges from 
0 < Ir ≤ 1), E = error function.

The downsides of this training algorithm are that it is 
time consuming and its parameters can only be determined 
through experiments.

(b)	 Self-adaptive LR (training function: traingda, traingdx)

Slow speed for convergence during training is mainly 
caused by the improper selection of LR. An adaptive LR 
attempts to keep the learning step size as large as pos-
sible and ensures that the learning is stable. The function 
expression is the same as the additive momentum, but the 
LR, Ir, is not a constant variable:

(c)	 Resilient backpropagation (training function: trainrp)

(5)ΔX(t + 1) = mc × ΔX(t) + Ir ×mc ×
�E

�X

(6)Ir(t + 1) =

⎧
⎪⎨⎪⎩

1.05Ir(t)

0.7Ir(t)

Ir(t)

⎫
⎪⎬⎪⎭
,

MSE(t + 1) < MSE(t)

MSE(t + 1) > 1.04MSE(t)

A sigmoid transfer function is usually used in the hidden 
layers of a multilayer network. Therefore, the slope of the 
transfer function must approach zero as the input increases. 
Sigmoid function may have a small magnitude of gradient. 
Therefore, when the weights and biases are far from its 
optimal values, only small changes in the weights and 
biases occur. Thus, this process becomes time consuming. 
Resilient backpropagation training algorithm is usually 
used for eliminating the harmful effects of partial derivate 
magnitudes, and only the plus or minus symbol of the 
derivative, Δ(t)

ij
 , is considered for the direction of updating 

the correct values. This approach is a clear and simple 
learning rule with rapid speed and reaches the best con-
vergence without selecting parameters.

where �E
�X

 = Sum of gradient information for all the patterns, 
t = at the time (t).

(d)	 Conjugate gradient backpropagation (training function: 
traincgb, traincgp, trainscg)

Conjugate gradient backpropagation is an algorithm that 
combines conjugate gradient and line search strategies to 
converge faster and minimize the performance function. 
Most conjugate gradient backpropagations have processes 
for updating weight and threshold. The cost of calculation 
is low because second-order function method eliminates 
the calculation and storage of second-order derivatives. It 
starts by searching Po in the steepest descent direction -go 
(negative of the gradient) on the first iteration.

Next, the weight and threshold value (X) are determined 
by using the line search method

where P = search direction, � = parameter used to decrease 
the gradient.

(e)	 Quasi-Newton (training function: trainbfg, trainlm, 
trainoss)

Newton’s method provides optimization. Newton’s method 
often converges faster than conjugate gradient method. 
However, the computation of Hessian matrix (second 
derivative) is complex and expensive for FFNN. An algo-
rithm that does not compute the second derivative, known 

(7)ΔX
(t)

ij
=

⎧
⎪⎨⎪⎩

−Δ
(t)

ij
, if

𝜕E

𝜕X
> 0

+Δ
(t)

ij
, if

𝜕E

𝜕X
< 0

0, else

,

(8)P0 = −g0.

(9)Xt+1 = Xt + �tPt,



1977Performance comparison of feedforward neural network training algorithms in modeling for…

1 3

as quasi-Newton method, is proposed to overcome this 
issue. The basic step of Newton’s method is

where At = Hessian matrix.

(f)	 Bayesian regulation backpropagation (training function: 
trainbr)

In the Bayesian regulation framework, weights and biases 
are assumed to be random variables with specified dis-
tributions on the basis of LM optimization. The combi-
nation of squared errors and weights are minimized for 
the generalization of a remarkable network. The Bayesian 
regulation occurs within the LM algorithm. Jacobian per-
formance, jX, is determined on the basis of the weight and 
bias of variable X through backpropagation. The variables 
are adjusted according to the LM algorithm.

where E = all errors, I = identity matrix.

Results and discussion

Effect of reactor impeller speed on PCL molecular 
weight

Figures 5, 6 and 7 explain the relationship between biopo-
lymerization time and molecular weight at 60, 70, and 
80  °C with a ε-CL-to-toluene ratio of 1:2 (v/v). Each 
plot exhibits the molecular weights of polymers obtained 

(10)Xt+1 = Xt + A−1
t
gt,

(11)

jj = jX ∗ jX,

je = jX ∗ E,

dX = −(jj + I ∗ mu)∕je,

at varied impeller speeds, namely 250, 500, 750, and 
1000 rpm. The trend of the plot is uniform at all impeller 
speeds.

Figure 5 shows the behavior of the impeller at 60 °C. 
An Mn value of 2902 g/mol is obtained at the third hour at 
rotation speed of 250 rpm. An Mn value of 1677 g/mol is 
obtained at the first hour and at rotational speed of 500 rpm. 
Figure 6 shows the variation of molecular weight with reac-
tion time at a temperature of 70 °C. Figure 6 indicates the 
trend for 70 °C at rotational speeds of 250, 500, 750, and 
1000 rpm. An Mn value of 3095 g/mol is obtained at the 
second hour at rotational speed of 250 rpm. An Mn value of 
1444 g/mol is obtained at the first hour at rotational speed of 
500 rpm. Figure 7 shows the effect of 80 °C on the rotational 
speed of the impeller. An Mn values of 3091 and 2194 g/
mol are obtained at rotational speed of 500 and 1000 rpm, 
respectively, in the third hour. This non-uniform behavior 
can be due to the mixing effect, which may have affected 
enzyme behavior, which in turn may have affected the poly-
mer molecular weight. Possible explanations may lie in the 
differences among the heat transfer rates.

Fig. 5   Effect of reactor impeller speed on molecular weight with 
reaction time at 60 °C

Fig. 6   Effect of reactor impeller speed on molecular weight with 
reaction time at 70 °C
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The overall conclusion based on Figs. 5, 6 and 7 is that 
the maximum molecular weight of PCL obtained is 3095 g/
mol at 70 °C when 250 rpm for 2 h. Furthermore, at high 
impeller speed, the molecular weight produced by PCL 
is consistently varying. This instability can be due to the 
formation of vortices and dead zones in the reactor, lead-
ing to poor mixing effect. This phenomenon contributes 
to the collisions of radicals and the termination of polym-
erization. The increase in reaction temperature, from 70 to 
80 °C, causes a slight reduction in the molecular weight 
of the sample (Fig. 7). At high temperatures, the propaga-
tion rate is enhanced. However, the increased movement of 
chains inside the reactor causes a thermal effect that resulted 
in the depletion of the monomer. The results obtained at low 
impeller speeds are better than those obtained at high values. 
The molecular weight obtained from this analysis clearly 
indicates that the molecular weight lies within the range of 
1500–3000 g/mol. Therefore, uniformity in the molecular 
weight values is maintained.

Comparison of neural network algorithm results

The objective of this research is to compare different types 
of backpropagation training algorithms used in building 
FFNN models for predicting the Mn, Mw, and PDI at the 
end of PCL biopolymerization in a batch mode. The best 
training algorithm is selected on the basis of the fitting of 
the graphs with least MAPE, MAE, and RMSE values for 
the training of the model for PCL molecular weight predic-
tion. The datasets used in the research are data collected in 

a scaled-up PCL production study. The data contain 84 sam-
ples that exhibit six features, namely polymerization time, 
reaction temperature, impeller speed, Mn, Mw, and PDI. A 
total of 58 samples are randomly selected as training data-
set (70%). Another 13 samples are randomly selected as 
validation dataset (15%) used for the construction of neural 
network models using different training algorithms, and the 
last 13 samples are used as testing dataset (15%) to access 
the models. For this purpose, three different performance 
functions: MAE, MAPE and MSE, are adopted.

The parameters of the network are as follows: LR, 0.05; 
maximum amount of epoch, 1000; and level of error, 0.001. 
During the data processing, the number of neurons in the 
hidden layer is adjusted in numerous iterations, ranging from 
1 to 20, and different weightages for training, testing, and 
validation are performed. The best performance for each 
algorithm is tabulated as follows:

Figures 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18 show 
the comparison between the actual and predicted data, that 
is, Mn, Mw, and PDI for various training algorithms. The gra-
dient decent with momentum backpropagation training algo-
rithm has one hidden neuron as the optimal value because 
it provides the lowest MSE value (1.326; Table 3). Gradient 
descent with adaptive LR backpropagation training algo-
rithm has five hidden neuron as optimum because the lowest 
MSE value is 0.395. Gradient descent with momentum and 
adaptive LR backpropagation training algorithm has 10 hid-
den neurons because the lowest MSE value is 0.333. Resil-
ient backpropagation training algorithm has three hidden 
neuron because the lowest MSE value is 0.318. Conjugate 

Fig. 8   Graph of actual data versus predicted data in series under gradient descent with momentum backpropagation training algorithm for com-
bined data of training, testing and validation



1979Performance comparison of feedforward neural network training algorithms in modeling for…

1 3

gradient backpropagation with Powell–Beale restart train-
ing algorithm shows two hidden neuron because the low-
est MSE value is 0.335. Conjugate gradient backpropa-
gation with Polak–Ribiére updates 12 hidden neuron as 
optimum because the lowest MSE value is 0.315. SCG 

backpropagation training algorithm has 10 hidden neurons 
because the lowest MSE value is 0.206.            

LM backpropagation has 10 hidden neurons as opti-
mum because the lowest MSE value is 0.095. One-step 
secant backpropagation has seven hidden neurons as 
optimum because the lowest MSE value is 0.315. BFGS 

Fig. 9   Graph of actual data versus predicted data in series under gradient descent with adaptive learning rate backpropagation training algorithm 
for combined data of training, testing and validation

Fig. 10   Graph of actual data versus predicted data in series under gradient descent with momentum and adaptive learning rate backpropagation 
training algorithm for combined data of training, testing and validation
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quasi-Newton backpropagation has eight hidden neurons 
as optimum because the lowest MSE value is 0.309. Bayes-
ian regulation backpropagation has 11 hidden neurons as 
optimum because the lowest MSE value is 0.100.

The estimation errors in terms of MAPE, MAE and 
RMSE for the FFNN using different training algorithms are 

represented in Tables 4, 5 and 6 for training, testing, and 
validation data, respectively. The models with low MAPE, 
MAE, and MAPE values are considered remarkable fit mod-
els. Two differences are observed in each training algorithm, 
namely calculation method and convergence quality, which 

Fig. 11   Graph of actual data versus predicted data in series under resilient backpropagation training algorithm for combined data of training, 
testing and validation

Fig. 12   Graph of actual data versus predicted data in series under conjugate gradient backpropagation with Powell–Beale restarts training algo-
rithm for combined data of training, testing and validation
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can also be known as the mathematical equation behind each 
training algorithm and prediction ability.

Figures  8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18 show 
the comparison of the accuracy of all the different types of 
training algorithms using the predicted and real data. The 

X axis shows the biopolymer samples, whereas the Y axis 
shows the value for Mn, Mw, and PDI. Three subplots are 
provided for each training algorithm, one subplot for each 
modeled variable. Furthermore, training, testing, and vali-
dation data are distinguished in the plot. The plots show 

Fig. 13   Graph of actual data versus predicted data in series under conjugate gradient backpropagation with Polak–Ribiére updates training algo-
rithm for combined data of training, testing and validation

Fig. 14   Graph of actual data versus predicted data in series under scaled conjugate gradient backpropagation training algorithm for combined 
data of training, testing and validation
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that the closer the value of the predicted value is to the real 
data, the more suitable the training algorithm is for the 
process, indicating higher accuracy of the model.

The results in Tables 4, 5 and 6 show that LM algorithm 
has the best training algorithm with minimum error in most 
of the cases. LM algorithm is an effective training algorithm 

with the fastest convergence. Additive momentum algorithm 
has the worst prediction for biopolymerization process 
because the errors are greatly higher than those of other 
training algorithms. Additive momentum algorithm can 
smoothen the training by considering previously executed 
weight changes. However, the momentum coefficient is held 

Fig. 15   Graph of actual data versus predicted data in series under Levenberg–Marquardt backpropagation training algorithm for combined data 
of training, testing and validation

Fig. 16   Graph of actual data versus predicted data in series under one-step secant backpropagation training algorithm for combined data of train-
ing, testing and validation
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constant, and no concrete reason assumes that such a strat-
egy is optimum. Thus, the wrong coefficient for additive 
momentum algorithm might have led to the worst perfor-
mance among all training algorithms.

Among the self-adaptive LR training algorithms, the 
GDA has a large estimation error with the worst training 
performance. The GDX has slightly considerable training 
performance and estimation error. In GDA, the training 
algorithm adapts the LR that corresponds to the current 

Fig. 17   Graph of actual data versus predicted data in series under BFGS quasi-Newton backpropagation training algorithm for combined data of 
training, testing and validation

Fig. 18   Graph of actual data versus predicted data in series under Bayesian regulation backpropagation training algorithm for combined data of 
training, testing and validation
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error surface encountered during the training. However, 
the LR is not subject to specific process during training but 
it is increased or decreased by a constant factor, β∆+, and 
β∆ (Patricia et al. 2010). GDX, which combines momen-
tum and adaptive LR and presents the advantages of GDA 
and GDX, is the latest training algorithm proposed.

As discussed earlier, resilient training algorithm is a 
remarkable training algorithm with relatively high accuracy, 
convergence speed, and robustness. Therefore, the perfor-
mance of resilient algorithm is relatively better than that of 
other training algorithms. Among the conjugate gradient train-
ing algorithms, conjugate gradient with Powell–Beale restarts 

Table 3   Mean-squared error in 
test data for different number 
of hidden neuron in different 
training algorithms

Training algorithm Mean squared error for different number of hidden neuron

1 2 3 4 5 6 7 8 9 10

trainlm 0.423 0.289 0.317 0.144 0.144 0.154 0.148 0.137 0.198 0.095
trainbfg 0.426 0.395 0.419 0.864 0.391 0.355 0.405 0.309 0.491 0.375
trainbr 0.397 0.237 0.138 0.141 0.137 0.131 0.109 0.125 0.081 0.119
traincgb 0.436 0.335 0.391 0.402 0.399 0.397 0.354 0.413 0.390 0.394
traincgp 0.433 0.468 0.405 0.362 0.399 0.434 0.393 0.401 0.373 0.396
traingda 0.442 0.420 0.442 0.437 0.395 0.396 0.481 0.437 0.397 0.456
traingdm 1.326 1.467 9.347 7.572 7.134 4.114 23.084 7.367 11.071 7.138
traingdx 0.425 0.404 0.851 0.698 0.381 0.505 0.440 0.604 0.856 0.333
trainoss 0.405 0.403 0.396 0.340 0.395 0.421 0.315 0.384 0.407 0.387
trainrp 0.436 0.411 0.318 0.332 0.325 0.369 0.403 0.387 0.348 0.325
trainscg 0.424 0.446 0.418 0.400 0.442 0.416 0.381 0.410 0.372 0.206

11 12 13 14 15 16 17 18 19 20
trainlm 0.138 0.125 0.135 0.135 0.361 0.102 0.130 0.133 0.123 0.180
trainbfg 0.335 0.370 0.327 0.315 0.343 0.333 0.383 0.357 0.330 0.392
trainbr 0.100 0.385 0.125 0.172 0.394 0.101 0.395 0.394 0.395 0.174
traincgb 0.416 0.381 0.426 0.411 0.374 0.576 0.371 0.378 0.386 0.354
traincgp 0.463 0.315 0.400 0.424 0.437 0.340 0.323 0.359 0.422 0.387
traingda 0.466 0.459 0.523 0.484 0.523 0.458 0.401 0.473 0.467 0.522
traingdm 7.013 9.967 4.693 13.469 24.657 13.769 20.388 19.132 12.498 13.520
traingdx 0.428 0.353 0.583 1.331 0.385 0.802 0.336 0.348 0.353 0.745
trainoss 0.370 0.377 0.435 0.394 0.357 0.381 0.394 0.338 0.383 0.402
trainrp 0.372 0.393 0.342 0.414 0.368 0.319 0.449 0.418 0.421 0.453
trainscg 0.401 0.398 0.393 0.360 0.390 0.368 0.350 0.378 0.404 0.362

Table 4   Comparison of NN-based approach using different training algorithms in terms of estimation error in training data (MAE, MAPE and 
MSE)

Additive 
momentum

Self-adaptive 
learning rate

Resilient Conjugate gradient Quasi-Newton Bayesian 
regulation

GDM GDA GDX RP CGB CGP SCG LM BFG OSS BR

Mn MAPE(%) 12.410 9.782 8.431 6.314 7.582 7.891 8.126 4.512 6.210 5.982 7.891
MAE 62.050 48.910 42.155 31.570 37.910 39.455 40.630 20.760 31.050 29.210 39.455
RMSE 27.063 19.630 16.341 16.213 16.079 16.520 17.610 15.844 15.044 17.745 15.978

Mw MAPE(%) 14.231 8.782 9.412 7.643 8.563 7.562 7.983 5.310 6.431 6.331 8.278
MAE 71.155 43.910 47.060 38.215 42.815 37.810 39.915 26.55 32.155 31.655 41.390
RMSE 70.279 32.507 31.229 31.232 34.667 33.632 31.662 33.952 31.711 34.978 33.519

PDI MAPE(%) 10.782 7.391 7.783 5.213 7.323 8.012 9.123 3.210 8.289 4.241 7.829
MAE 1.775 0.884 1.6163 0.471 2.467 0.655 3.574 0.450 2.303 2.169 1.089
RMSE 1.923 0.839 1.913 1.783 1.877 1.758 1.887 1.485 1.561 1.487 1.683
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and Polak–Ribiére conjugate gradient provide similar results 
in error estimation and training performance, whereas SCG 
provides relatively poor results. The conjugate-based training 
algorithms have the same estimation errors as other training 
algorithms. Among the quasi-Newton training algorithms, LM 
has the least estimation errors and the best training perfor-
mance. Bayesian regulation training algorithm can perform 
early stopping during training. However, this property is 
unsuitable for this application because biopolymerization is 
an extremely sensitive process and often results in large esti-
mation errors.

Conclusion

Biopolymerization was investigated in a bioreactor setup. 
Polymerization temperature and impeller speed were opti-
mized. An Mn of 3095 Da was obtained at 70 °C at impeller 
speed of 250 rpm and time of 2 h. A total of 11 different 
training algorithms in the neural network, including (1) 
additive momentum (gradient descent with momentum), 
(2) self-adaptive LR (variable LR gradient descent and gra-
dient descent with momentum and adaptive LR), (3) resil-
ient backpropagation, (4) conjugate gradient backpropaga-
tion (SCG, conjugate gradient with Powell–Beale restarts, 
Fletcher–Powell conjugate gradient and Polak–Ribiére con-
jugate gradient), and (5) quasi-Newton (LM, BFGS quasi-
Newton, and one-step secant); and (6) Bayesian regulation 
propagation (Bayesian regularization) are tested. The net-
work parameters include maximum epoch of 1000, LR of 
0.05, and target error of 0.001. LM is the most suitable train-
ing algorithm for biopolymerization. The MAPE values for 
Mn, Mw, and PDI are 4.512, 5.31, and 3.21%, respectively.

Acknowledgements  This work was supported by RU Geran-Faculti 
Program Grant RF008A-2018 by University of Malaya.

References

Ajay K, Gross RA (2000) Candida antartica lipase B catalyzed poly-
caprolactone synthesis: effects of organic media and temperature. 
Biomacromology 1:133–138. https​://doi.org/10.1021/cr990​121l

Arumugasamy SK, Ahmad Z (2010) Candida antarctica as catalyst for 
polycaprolactone synthesis: effect of temperature and solvents. 
Asia-Pac J Chem Eng 6:398–405. https​://doi.org/10.1002/apj.583

Arumugasamy SK, Uzir MH, Ahmad Z (2012) Modeling of polycap-
rolactone production from ε-caprolactone using neural network. 
In: Neural information processing: 19th international confer-
ence, ICONIP 2012, Doha, Qatar, November 12–15, 2012, pro-
ceedings, part II. Huang T, Zeng Z, Li C, Leung CS. Springer, 
Berlin, Heidelberg, pp 444–451. https​://doi.org/10.1007/978-
3-642-34481​-7_54

Bassi AK, Gough JE, Zakikhani M, Downes S (2011) The chemical 
and physical properties of poly(ε-caprolactone) Scaffolds func-
tionalised with poly(vinyl phosphonic acid-co-acrylic acid). J 
Tissue Eng 2011:615328. https​://doi.org/10.4061/2011/61532​8

Chaibakhsh N, Abdul Rahman MB, Basri M, Salleh AB, Abdul Rah-
man RNZ (2012) Response surface modeling and optimization 
of immobilized Candida antarctica lipase-catalyzed production 
of dicarboxylic acid ester. Chem Prod Process Model 7:1–13. 
https​://doi.org/10.1515/1934-2659.1483

Forouzanfar M, Dajani HR, Groza VZ, Bolic M, Rajan S (2010) 
Comparison of Feed-Forward Neural Network training algo-
rithms for oscillometric blood pressure estimation. 4th Inter-
national workshop on soft computing applications. https​://doi.
org/10.1109/sofa.2010.55656​14

Ghaffari A, Abdollahi H, Khoshayand MR, Bozchalooi IS, Dadgar 
A, Rafiee-Tehrani M (2006) Performance comparison of neu-
ral network training algorithms in modeling of bimodal drug 
delivery. Int J Pharm 327:126–138. https​://doi.org/10.1016/j.
ijpha​rm.2006.07.056

Heaton J (2008). Introduction to neural networks with Java, Heaton 
Research

Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward 
networks are universal approximators. Neural Netw 2(5):359–366

Hunsen M, Azim A, Mang H, Wallner SR, Ronkvist A, Xie W, Gross 
RA (2007) A cutinase with polyester synthesis activity. Mac-
romolecules 40:148–150. https​://doi.org/10.1021/ma062​095g

Karsoliya S (2012) Approximating number of hidden layer neurons 
in multiple hidden layer BPNN architecture. Int J Eng Trends 
Technol 3(6):4

Khatti T, Naderi H, Kalantar SM (2017) Application of ANN and 
RSM techniques for modeling electrospinning process of poly-
caprolactone. Neural Comput Appl. https​://doi.org/10.1007/
s0052​1-017-2996-6

Kobayashi S, Makino A (2009) Enzymatic polymer synthesis: an 
opportunity for green polymer chemistry. Chem Rev 109:5288–
5353. https​://doi.org/10.1021/cr900​165z

Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a 
review. Chem Soc Rev 38:3484–3504. https​://doi.org/10.1039/
b8201​62p

Lee-Cosio BM, Delgado-Mata C, Ibanez J (2012) ANN for gesture 
recognition using accelerometer data. Procedia Technol 3:109–
120. https​://doi.org/10.1016/j.protc​y.2012.03.012

Patricia M, Janusz K, Witold P (2010) Soft computing for recognition 
based biometrics. Springer, Berlin

Sulaiman J, Wahab SH (2018) Heavy rainfall forecasting model using 
artificial neural network for flood prone area. In: Kim K, Kim H, 
Baek N (eds) IT convergence and security 2017. Lecture notes in 
electrical engineering, vol 449. Springer, Singapore

Torres DPM, Gonçalves MDPF, Teixeira JA, Rodrigues LR (2010) 
Galacto-oligosaccharides: production, properties, applications, 
and significance as prebiotics. Comp Rev Food Sci Food Saf 
9(5):438–454. https​://doi.org/10.1111/j.1541-4337.2010.00119​.x

Uyama H, Kikuchi H, Takeya K, Kobayashi S (1996) Lipase-catalyzed 
ring-opening polymerization and copolymerization of 15-penta-
decanolide. Acta Polym 47(8):357–360. https​://doi.org/10.1002/
actp.1996.01047​0807

Varma IK, Albertsson AC, Rajkhowa R, Srivastava RK (2005) Enzyme 
catalyzed synthesis of polyesters. Prog Polym Sci 30(10):949–
981. https​://doi.org/10.1016/j.progp​olyms​ci.2005.06.010

Xinxing P, Lee B, Chunrong Z (2013) A comparison of neural net-
work backpropagation algorithms for electricity load forecasting. 
2013 IEEE international workshop on intelligent energy systems 
(IWIES). https​://doi.org/10.1109/iwies​.2013.66985​56

https://doi.org/10.1021/cr990121l
https://doi.org/10.1002/apj.583
https://doi.org/10.1007/978-3-642-34481-7_54
https://doi.org/10.1007/978-3-642-34481-7_54
https://doi.org/10.4061/2011/615328
https://doi.org/10.1515/1934-2659.1483
https://doi.org/10.1109/sofa.2010.5565614
https://doi.org/10.1109/sofa.2010.5565614
https://doi.org/10.1016/j.ijpharm.2006.07.056
https://doi.org/10.1016/j.ijpharm.2006.07.056
https://doi.org/10.1021/ma062095g
https://doi.org/10.1007/s00521-017-2996-6
https://doi.org/10.1007/s00521-017-2996-6
https://doi.org/10.1021/cr900165z
https://doi.org/10.1039/b820162p
https://doi.org/10.1039/b820162p
https://doi.org/10.1016/j.protcy.2012.03.012
https://doi.org/10.1111/j.1541-4337.2010.00119.x
https://doi.org/10.1002/actp.1996.010470807
https://doi.org/10.1002/actp.1996.010470807
https://doi.org/10.1016/j.progpolymsci.2005.06.010
https://doi.org/10.1109/iwies.2013.6698556

	Performance comparison of feedforward neural network training algorithms in modeling for synthesis of polycaprolactone via biopolymerization
	Abstract
	Introduction
	Materials and methods
	Preparation of PCL
	Biopolymerization process
	PCL analysis
	ANNs
	Data normalization
	Hidden layer selection
	Hidden neuron selection
	Training algorithms


	Results and discussion
	Effect of reactor impeller speed on PCL molecular weight
	Comparison of neural network algorithm results

	Conclusion
	Acknowledgements 
	References




