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Abstract
Green macroalgae Ulva lactuca could be a potential marine biomass feedstock for the production of biofuel and biochemicals. 
However, the high moisture content makes long-term preservation of fresh Ulva biomass a challenge. Ensilage has been sug-
gested as a green approach to preserving and pretreating fresh biomass without intensive energy input. In this study, silage 
additives including cellulase complex and inoculum of Lactobacillus plantarum were tested and applied to circumvent the 
difficulties associated with ensilage of the Ulva species, such as insufficient water-soluble carbohydrate and low lactic acid 
bacteria (LAB) count. The experimental results with statistical analysis indicated that the addition of both cellulase com-
plex at 10 carboxymethyl cellulose unit (CMCU)/g dry biomass and inoculum of Lactobacillus plantarum at 106 cfu/g dry 
biomass was necessary to drop silage pH value to lower than 4 in 15 days. The successful preparation of Ulva silage could 
retain around 92% solid and most of the carbohydrates and the ensiled Ulva biomass could produce more reducing sugar than 
fresh biomass by dilute acid hydrolysis at high solid content and moderate temperature. Moreover, with further enzymatic 
hydrolysis, the Ulva silage proved to be fermentable by LAB for lactic acid production. The results suggested that ensilage 
could be a useful process for simultaneous preservation and pretreatment of Ulva biomass for fermentable sugar production.
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Introduction

During the last decade, global climate change has raised 
public awareness about human beings’ excessive reliance 
on the usage of petroleum for energy and chemical produc-
tion. Biorefinery of plant biomass to bio-based chemical 
and energy, such as lactic acid and bioethanol, has been 
suggested as part of the solutions to achieving sustainable 
developments. (Srirangan et al. 2012; del Castillo-Romo 
et al. 2018). Nevertheless, despite the renewable character-
istics, the increasing demands of the food crops and terres-
trial plant biomass for biorefinery directly compete with the 
arable lands and agricultural resources (Havlík et al. 2011; 
Valentine et al. 2012). These kinds of conflicts will only be 

elevated over the time with the growth of global population. 
In order to avoid this dilemma, aquatic biomass such as algae 
has been defined as the third-generation feedstock for biore-
finery (Hoevers 2011). Among all kinds of aquatic biomass, 
algae are commonly acknowledged for their potential as a 
renewable resource to generate a variety of chemicals and 
fuels (Jones and Mayfield 2012; Bikker et al.2016; Resdi 
et al. 2016).

Sea lettuce belongs to the family of green macroalgae 
Ulvaceae which commonly exist in the littoral zone of the 
coast (Zhu et al. 2016). The Ulva species have been tra-
ditionally used as animal feed, herbal medicine, and food 
ingredient in many human civilizations (Vázquez-Rodríguez 
and Amaya-Guerra 2016). Additionally, the Ulva species 
have been extensively evaluated for different types of appli-
cations related to environmental biotechnology such as 
bioremediation of wastewater, bioabsorption of toxic metal 
ions from water bodies (Henriques et al. 2017; Shaaban 
et al. 2017), and biological indicator of the aqueous envi-
ronment (Farias et al. 2017). Because of their rapid nutrient 
uptake capabilities, promotion of biomass reproduction and 
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wide ranging salinity tolerance, many investigations have 
suggested that Ulva lactuca could also be used as a new 
feedstock for bioenergy production (Bruhn et al. 2011; van 
der Wal et al. 2013; Chen et al. 2015a, b). Yet, research 
related to storage and supply logistics of the Ulva species or 
other macroalgal biomass is relatively limited in comparison 
with studies of biomass conversion technology. Storage of 
macroalgal biomass is a challenge because of its high water 
content, and freshly harvested macroalgal biomass can spoil 
rapidly if the storage is not properly implemented.

Conventional storage of macroalgal biomass is usually 
done by oven dry or sun dry (Foscarini and Prakash 1990; 
Mabeau and Fleurence 1993); in addition, storage at low 
temperature may also work in preserving fresh macroal-
gae biomass (Onodera et al. 2011). However, these storage 
approaches require either high energy consumption or per-
missible weather conditions, which might not suitable in 
terms of low cost and a consistent supply of feedstock for 
bio-based chemicals and fuels (Kadam et al. 2015; Franco 
et al. 2017). Ensilage is a wet storage approach for biomass 
preservation, which had been traditionally employed in the 
industrial animal agriculture. The main objective of ensilage 
is to prevent the loss of carbohydrates by creating a low-
pH environment where the microbial activity is inhibited 
or decreased. Storage of biomass through the ensilage pro-
cess has many advantages over dry storage including low 
risk of fire and less loss of dry matter (Oleskowicz-Popiel 
et al. 2011). Nevertheless, in comparison with the ensiling 
of lignocellulosic biomass, there is only some information 
available on the ensiling of macroalgae. An early study done 
by Black (1955) examined ensiling of brown seaweeds for 
animal feed and chemical processing purposes and con-
cluded that the macroalgae supports lactic acid fermentation; 
however, pH values of the seaweed silages did not decline 
below the desired level. A similar investigation reported by 
Herrmann et al. (2015) also indicated that high buffering 
capacities, insufficient fermentable sugars and low initial 
counts of lactic acid bacteria (LAB) are the main challenges 
for ensiling macroalgae. Many technical reports and research 
studies recommend that LAB counts should be higher than 
105 CFU/g biomass for silage preparation (Weinberg and 
Muck 1996; Muck 2008; Basso et al. 2012; Abdul Rahman 
et al. 2017). There is no strict required value of initial fer-
mentable sugar content for silage preparation, because the 
sugar profile varies with different sources of biomass. For 
ensilage, the amount of fermentable sugar is usually meas-
ured as water-soluble carbohydrates (WSC). A report sug-
gests that at least 7% WSC is sufficient for preparing wheat 
straw silage (Yang et al. 2006). Another report suggests that 
at least 2.5% WSC is required to obtain an acceptable silage 
quality of fresh material, while 2% WSC is adequate for 
inoculated silage (Pettersson and Lindgren 1990). In order 
to accelerate anaerobic fermentation and drop the pH level, 

LAB inoculum, cell degrading enzymes, and chemical addi-
tives are often added at the beginning of ensilage (Kung and 
Shaver 2001). A successful preparation of macroalgae silage 
as fish hatchery feeds was done by adding LAB and yeasts at 
the beginning of ensilage (Uchida et al. 2004). Ensilage can 
also be employed as a biological approach to pretreat bio-
mass for further processing. For example, enzymatic digest-
ibility of grape pomace and sugar beet pulp was improved 
by ensilage (Zheng et al. 2011a, b; 2012). Thus, the aim 
of this study was to apply ensilage as a green approach for 
simultaneous preservation and pretreatment of Ulva lactuca 
and to test the fermentability of Ulva silage for biorefinery 
purposes by lactic acid fermentation. In order to overcome 
the problems associated with low initial LAB and low solu-
ble carbohydrates in the Ulva biomass, the effects of fac-
tors including addition of cell wall degrading enzyme and 
inoculation of LAB at the beginning of ensilage on the car-
bohydrate preservation and subsequent dilute acid hydroly-
sis were investigated and reported. Additionally, lactic acid 
fermentation was performed to evaluate the fermentability 
of Ulva silage.

Materials and methods

Biomass preparation

Biomass of U. lactuca was purchased from local residents 
who collected the fresh biomass from the coast near the 
Hoping Island (Keelung, Taiwan). The fresh biomass was 
used directly or stored in Ziploc® bags at − 20 °C until use.

Chemicals and enzymes

All chemicals used in the present study are analytical 
grade purchased from Tokyo Chemical Industry Co., Ltd. 
(Tokyo, Japan) except the sulfuric acid used to prepare the 
mobile phase for high-performance liquid chromatography 
(HPLC) analysis is HPLC grade. Cellulase enzyme complex 
ACCELLERASE®1500 was given by DuPont™ Genencor® 
Science (Rochester, NY, USA) as a gift.

LAB cultivation and ensilage inoculum preparation

Lactobacillus plantarum purchased from Bioresource Col-
lection and Research Center (BCRC# 10069, Hsinchu, Tai-
wan) was used to ensile the biomass of U. lactuca and to 
ferment acid hydrolysate of ensiled biomass. L. plantarum 
was maintained and precultured in MRS broth (HiMedia 
M369-500G, Midland Scientific, Inc. Omaha, NE, USA).
The preparation of ensilage inoculum was done according to 
the reference published by Zheng et al. (2011a, b).
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Ensilage of U. lactuca

A 22 experimental design plus a central point was per-
formed to test the effects of ensilage additives, cellulase 
(10 CMCU/g dry biomass) and LAB (1 × 106 cfu/g dry bio-
mass), on the carbohydrate recovery after ensilage and the 
yield of reducing sugar after dilute acid hydrolysis. Tripli-
cates of five base experimental combinations (Table 1) were 
generated by using a statistical software Design Expert v8 
(Stat-Ease, Inc. MN, USA) and carried out in random order. 
Ensilage of sea lettuce was conducted in 500-ml airtight 
screw-capped PP jars at 25 °C in an isothermal incubator. 
Before ensilage, the water content of Ulva lactuca was first 
determined, and then 59 g equivalent dry weight biomass 
was packed into the jars. The final moisture content was 
adjusted to 80% by adding distilled water which contains the 
designed amount of LAB and cellulase. The content in the 
jar was manually mixed by using a stir rod and then tightly 
screw caped. The ensilage period was 30 days and the pH 
of each silage fermentation was monitored using a potable 
pH meter (CLEAN PH30 Tester, Clean Instrument Co., Ltd, 
New Taipei City, Taiwan) by opening jar at storage periods 
of 0, 7, 15, 22 and 30 days in an anaerobic glove box. After 
ensilage, total solid, WSC, total carbohydrates, and the bio-
mass composition were determined. The organic acids in 
silage effluent and cold water extracts of silage samples were 
analyzed by HPLC.

Dilute acid hydrolysis of Ulva biomass

Dilute acid hydrolysis was carried out in 250-ml screw-
capped laboratory bottles (DURAN®, GL 45, Wertheim/
Main, Germany) with 100 ml total reaction volume. Ensiled 
and raw biomass of sea lettuce was hydrolyzed in the pres-
ence of a designated concentration of sulfuric acid at 15% 
(w/w) solid loading and 80 °C for designated period. Two 
milliliters of the well-mixed hydrolysate was neutralized 
with CaCO3, and then the liquid and solid in the hydrolysate 
were separated by centrifugation at 6000 ×g for 20 min. The 
amount of reducing sugar in the supernatant was determined 
by dinitrosalicylic acid (DNS) method. The content of mon-
osaccharides, organic acids, and fermentation inhibitors in 
the hydrolysate was identified and quantified using HPLC.

Lactic acid fermentation of acid hydrolysate

The acid hydrolysate (4% H2SO4, 120 min) of silage with 
both additives was neutralized to pH 5 by slow addition of 
6 N NaOH. The neutralized acid hydrolysate was further 
hydrolyzed with ACCELLERASE®1500 (0.2 ml/g silage, 
dry basis). The reducing sugar concentration was also deter-
mined by DNS method. Then, the enzymatic hydrolysate was 
used as solution to prepare MRS medium without addition 
of glucose and the final concentration was also adjusted to 
2% (w/w) by addition of sterilized DI water. Overnight cul-
ture of LAB (BCRC 10069) was inoculated to 25 ml silage 
hydrolysate MRS medium in a 125-ml screw-capped Erlen-
meyer flask at initial optical cell density at 600 nm (OD600) 
equal to 0.2. Two milliliters of samples was withdrawn at 0, 
8, 16, 24, 48, and 72 h of fermentation in an anaerobic glove 
box. The optical cell density and the concentration of lactic 
acid, acetic acid, and monosaccharides were determined.

Analytical methods

The pH values were averaged from three measurements of 
each sample by using a pH meter. The solid content was 
determined according to the NREL Laboratory Analytical 
Protocol (LAP) “Determination of Total Solids in Biomass 
and Total Dissolved Solids in Liquid Process Samples” (Slu-
iter et al. 2008). For compositional carbohydrate analysis, 
silage and raw biomass were dried at 45 °C and powdered by 
bead beating (Mini-BeadBeater-1, Bio Spec Products Inc., 
Bartlesville, OK, USA) with 3 stainless beads (diameter 
3.2 mm) in 2-ml capped stainless steel microvials (catalog 
# 2007, Bio Spec). The powdered biomass was hydrolyzed 
by two-stage sulfuric acid hydrolysis according to a pub-
lished report (Chen et al. 2015a, b) modified from the NREL 
Laboratory Analytical Protocol (LAP) “Determination of 
Structural Carbohydrates and Lignin in Biomass” (Sluiter 
et al. 2012). The acid hydrolysate was first neutralized using 
CaCO3 followed by static precipitation at 4 °C overnight 
and centrifugation at a relative centrifugal force of 6000 ×g 
for 20 min. The content of monosaccharides, organic acids 
and fermentation inhibitors resulted from ensilage and acid 
hydrolysis was analyzed by HPLC equipped with a Rezex 
ROA-organic acid column and guard cartridge (Phenom-
enex Inc., Torrance, CA, USA), RID and UV detectors 
(λ = 210 nm).

Data analysis

All presented values are the average of three replicates, 
unless specified otherwise. Design Expert V8 was used to 
perform statistical analyses (Version 8.0; SAS Institute, 

Table 1   Coded and actual value of experimental design factors

a CMCU Carboxymethyl cellulose unit, cfu colony-forming unit

Factor Coded Actual valuea

Addition of cellulase com-
plex

− 1 + 1 0 10 CMCU/g dry biomass

Inoculation of LAB 0 106 cfu/g dry biomass
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Raleigh, NC). The statistical significance of treatment effects 
and mean comparisons were determined by analysis of vari-
ance (ANOVA) with significance level α = 0.05.

Results and discussion

Effect of additives on the pH variation 
over the ensiling period

A quick and effective front-end fermentation during early 
ensiling is essential to drop the pH to lower than 4. The 
low-pH environment can prevent microbial growth and 
reduces the loss of dry matter and nutrients (Zheng et al. 
2011a, b). In order to circumvent the problems associated 
with ensiling macroalgae, including insufficient ferment-
able sugars and low initial LAB count (Herrmann et al. 
2015), commercial cellulase complex and LAB inoculum 
were applied in this study as silage additives. Because the 
biomass of Ulva sp. contains cellulose as part of its carbo-
hydrate structure (Trivedi et al. 2011), the aim of adding 
cellulase complex was to release some fermentable sugars 

from the Ulva biomass at the beginning of ensilage and the 
LAB inoculum could successively promote the lactic acid 
fermentation. The result (Fig. 1) showed that only the silage 
treated with both additives could reach the target pH (< 4) in 
15 days from the beginning of ensilage. There are a limited 
number of successful cases that can be found on the ensilage 
of Ulva species (pH < 4); one report demonstrated that addi-
tions of certain types of cellulase and co-inoculation of LAB 
and yeast could be beneficial for preparation of fermented 
marine silage feed from Ulva reticulate (Felix and Pradeepa 
2011). Here, both the addition of cellulase complex (p 
value < 0.0001) and LAB inoculum (p value < 0.0001) were 
required to drop the pH value of the silage based on the 
statistical analysis (Table 2). Among all experimental sets, 
only the silage received both the cellulase complex (10 
CMCU/g dry biomass) and LAB inoculum (106 cfu/g dry 
biomass), and it reached a pH value lower than 4 at the end 
of ensilage period. The addition of cellulase (coded coef-
ficient = −0.66) seems to be slightly more important than 
the inoculum of LAB on silage (coded coefficient = −0.27). 
For silages without the addition of the cellulase complex, the 
pH remained above 5.5 and high concentrations of volatile 
fatty acids (VFA) were observed (Table 3), with the sign of 
spoilage and growth of molds appearing after 30 days of 
ensiling. These results are similar to reports that examined 
the ensilage of macroalgae without supplement of silage 
additives (Herrmann et al. 2015) or with inoculum of LAB 
only (Cabrita et al. 2017). The formation of VFA could be 
attributed to the activity of clostridia and other unwanted 
microbes. Clostridia and mold growth is not favored for 
ensilage because they can consume lactic acid and produce 
VFA resulting in a pH rise that opposes the preservation 
mechanism of ensilage. The growth of unwanted clostridia, 
mold, and yeast can also degrade carbohydrates and protein 
into VFA, ammonia, and biogas, leading to substantial loss 
of nutrients and dry matter (Kung Jr 2001). Based on the 
pH value (Table 3) and solid recovery (Table 4), a good 
quality silage of Ulva lactuca could be prepared by addition 
of cellulase complex and LAB inoculum at the beginning 
of ensilage.   

Fig. 1   Changes of silage pH value during the ensiling period. (+, +) 
with cellulase and LAB inoculum, (+, −) with cellulase only, (−, +) 
with LAB inoculum only, and (− ,−) without silage additives

Table 2   Summary of analysis of 
variance (ANOVA)

Final equation in terms of coded factors: pH = 4.52-0.66A-0.27B-0.21AB
*Statistical significance

Source Sum of squares df Mean square F value p value

Block 2.2388 1 2.238802
Model 6.571825 3 2.190608 296.5625 < 0.0001*
A-Cellulase complex 5.1614 1 5.161408 698.7466 < 0.0001*
B-LAB inoculum 0.9020 1 0.902008 122.113 < 0.0001*
AB 0.5084 1 0.508408 68.82784 < 0.0001*
Pure error 0.0739 10 0.007387
Corrected total 8.8845 14
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Effect of ensilage conditions on the biomass 
composition

Table 4 shows that all preparations of silage without addi-
tion of the cellulase complex lost more than thirty percent 
of solid after 30 days of ensiling. The loss of dry matter is 
clearly caused by the degradation associated with unwanted 
microbial activity because the pH value did not drop enough 
to fulfill the preservation mechanism of ensilage. Since the 
solid lost during the ensiling period is influenced by many 
factors including biomass type, moisture content, and envi-
ronmental conditions (Muck 1988), the data derived from 
one feedstock might not be totally appropriate for predicting 
other feedstocks. Nevertheless, the solid recovery could still 
be an indicator of silage quality (Kung Jr 2001). An early 
report published by FAO has suggested that ensilage could 
preserve more than 90% of the energy content from the har-
vested plant biomass (McCullough 1978). For some types of 
plant biomass such as sugar beet pulp, the loss of dry matter 
could be negligible if ensilage is effective (Kreuger et al. 
2011; Zheng et al. 2011a, b; Liu et al. 2016). On the con-
trary, some studies have suggested that dry matter loss could 
be substantially higher (> 10%). In this study, a good quality 
of Ulva silage with around 92% solid recovery was obtained 
from the silage preparation with both cellulase complex (10 
CMCU/g dry biomass) and LAB inoculum (106 cfu/g dry 
biomass).

All the silage preparations contained relatively less per-
centage of sugar composition than the raw biomass, except 
the fraction of rhamnose and arabinose (Table 4). Since the 
pH values of silages without both additives did not drop 
below pH 4, the decrease in sugar content might be attrib-
uted to the consumption and degradation caused by micro-
bial activity. The degradation of carbohydrates commonly 
happens in land plants and might be also applicable to mac-
roalgae, for example, the loss of starch content during the 
postharvest processing (Finger et al. 1999). The data also 

Table 3   Final pH, organic acids, and VFA concentration after a 
30-day ensilage

Numbers are present as average ± standard deviations of triplicate 
analyses
a VFA is the sum of acetic acid, propionic acid, butyric acid, iso-
butyric acid, and valeric acid

Silage preparation Final pH Organic compounds (mg/g 
dry matter)

Cellulase LAB Lactic acid VFAa

− 1 − 1 5.73 ± 0.04 33.5 ± 3.2 29.2 ± 0.9
− 1 + 1 5.59 ± 0.16 52.8 ± 3.1 22.8 ± 1.9
+ 1 − 1 4.82 ± 0.05 73.7 ± 7.0 18.4 ± 1.6
+ 1 + 1 3.84 ± 0.03 96.0 ± 8.8 10.4 ± 1.1
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show that the content of WSC is relatively low in the fresh 
biomass. The increased content of WSC in all silage prepara-
tions might have resulted from the partial breakdown of the 
carbohydrate structure during the ensilage period, especially 
the silage prepared with addition of the cellulase complex. 
The partial breakdown of cell components could also sup-
port better ensilage by increasing the accessibility of the cell 
walls and cytoplasmic carbohydrates for LAB which has 
cell-surface enzyme complexes that can degrade and utilize 
oligo- or poly-saccharides (Siezen et al. 2006).

The lignin and ash content in the recovered solid 
increased for all prepared silage in comparison with fresh 
biomass (Table 4). Since the content of each composition is 
a relative value to the dry matter, the increase in lignin and 
ash might have resulted from the loss of other dry matters 
such as carbohydrates and protein.

Effect of ensilage on dilute acid hydrolysis of Ulva 
silage

Normally, pretreatment is employed to improve the effi-
ciency of chemical or enzymatic hydrolysis. Several pretreat-
ment methods, including chemical, physical, and biological 
approaches, have been developed to increase fermentable 
sugar yields from lignocellulosic biomass. Ensilage could 
also be employed as an approach for biological pretreatment 
of biomass (Richard et al. 1998). For example, reports pub-
lished by Ambye-Jensen, Morten et al. suggest that ensilage 
could be used as a biological pretreatment for grass (Ambye-
Jensen et al. 2013a, b) and decrease the required temperature 
in the hydrothermal pretreatment of wheat straw (Ambye-
Jensen et al. 2013). Another benefit is that the application 
of ensilage can improve the enzymatic digestibility of sugar 
beet pulp (Zheng et al. 2011a, b). Although Ulva species 
do not contain a significant amount of lignin which might 
hinder the efficiency of hydrolysis, high temperature is usu-
ally required to release the fermentable sugars from Ulva 
biomass (Choi et al. 2012; Hamouda et al. 2016). There-
fore, diluted acid hydrolysis at high solid loading (15% w/w) 
and low temperature (80 °C) was performed to examine the 
pretreatment effect of ensilage on Ulva lactuca biomass. 
Figure 2 shows that under all tested conditions the silage 
could produce more reducing sugar than fresh biomass after 
dilute acid hydrolysis. The best reducing sugar yield was 
around 155 mg/g dry biomass. Because the yield of reduc-
ing sugar was comparable to the data published in other 
reports (Table 5), the result suggests that ensilage could be 
employed as an integrated green approach to simultaneously 
preserve and pretreat Ulva biomass. The higher reducing 
sugar yield means that the ensilage did reflect the pretreat-
ment effect and decreased the required temperature and acid 
concentration of diluted acid hydrolysis. 

Fermentability of Ulva silage hydrolysate

In order to test the fermentability of Ulva silage, lactic acid 
fermentation was performed after enzymatic hydrolysis of 
the neutralized acid hydrolysate. The result indicated that the 
additional enzymatic hydrolysis could increase the reducing 
sugar yield from 155 to 198 mg/g dry biomass. The yield 
of reducing sugar was comparable to previous reports pub-
lished by Trivedi et al. (2013) and Kim et al. (2011). The 
results also suggested that the hydrolysate could be used 
as a substitute of glucose in MRS medium and supported 
lactic acid fermentation (Fig. 3). During the fermentation 
period, glucose was completely consumed in 24 h and other 
sugars were only partially consumed. The yield of lactic 
acid was around 0.58 g per g of consumed reducing sugars. 
The results derived from this study suggest that the ensilage 
could be a useful approach to preserve and pretreat Ulva 
biomass for fermentable sugar production. Additionally, 
the fermentation by-product including unfermented sugars, 
lignin, and microbial biomass could also be a good substrate 
for anaerobic digestion. The integration of fermentation and 
anaerobic digestion allows for complete utilization of Ulva 
silage with a better energy balance (Alrefai et al. 2017).

Conclusion

In this study, ensilage was successfully employed as a 
green method to simultaneously preserve and pretreat 
macroalgae Ulva lactuca by adding cellulase complex and 
LAB inoculum. The silage of Ulva lactuca retained more 
than ninety percent of solid and most of the carbohydrates 

Fig. 2   Reducing sugar yield from dilute acid hydrolysis of Ulva bio-
mass at different conditions
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at the end of ensiling period. The ensiled Ulva lactuca 
showed higher digestibility than fresh biomass by diluted 
acid hydrolysis at moderate temperature and high solid 
loading. Additionally, the hydrolysate of Ulva silage was 
also proven to be fermentable by LAB for lactic acid pro-
duction. Since the successful preparation of Ulva silage 
is relatively limited, the results derived from this study 
could be useful for the future development of utilizing 
Ulva biomass as feedstock for bioproductions.
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