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Abstract
In this study, divalent manganese ions [Mn(II)] were substituted a part of divalent iron ions [Fe(II)] present in Fe oxyhy-
droxides to prepare novel composites (Mn@Feox). The composites were prepared by (1) simultaneous hydrolysis of Fe(II) 
and Mn(II), and (2) rapid oxidation with  H2O2. The resulting Mn@Feox prepared with different molar ratios of Fe and Mn 
was characterized and evaluated for their abilities to adsorb arsenic species [As(III) and As(V)] in aqueous solution. X-ray 
diffraction and field emission transmission electron microscope analyses revealed Mn@Feox has a δ-(Fe1−x,  Mnx)OOH-like 
structure with their mineralogical properties resembling those of feroxyhyte (δ-FeOOH). The increase in Mn substitution in 
Mn@Feox enhanced the oxidative ability to oxidize As(III) to As(V), but it decreased the adsorption capacity for both arse-
nic species. The optimal Mn/Fe molar ratio that could endow oxidation and magnetic capabilities to the composite without 
significantly compromising As adsorption capability was determined to be 0.1 (0.1Mn@Feox). The adsorption of As(III) 
on 0.1Mn@Feox was weakly influenced by pH change while As(V) adsorption showed high dependence on pH, achieving 
nearly complete removal at pH < 5.7 but gradual decrease at pH > 5.7. The adsorption kinetics and isotherms of As(III) and 
As(V) showed good conformity to pseudo-second-order kinetics model and Freundlich model, respectively.
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Introduction

Iron(III) oxides or oxyhydroxides are some of the most com-
mon minerals found in the environment with varying con-
tents of iron, oxygen, hydroxyl and other anions  (CO3

2−, 
 SO4

2− and  Cl−), and occur naturally as four types of iron 
polymorphs (α, β, γ and δ). Among those iron polymorphs, 
FeOOH groups are of a special interest due to their large 

surface area and high adsorption capability toward dissolved 
contaminants (Li et al. 2017; Rosso and Rustad 2001). In 
particular, removal of anionic contaminants such as As(V), 
fluoride and phosphate can be efficiently removed by iron 
oxyhydroxides via an exchange reaction (Kumar et al. 2009). 
For this reason, many researchers have investigated the 
adsorption of anionic contaminants by Fe(III) oxyhydrox-
ides (Jang et al. 2009; Kyzas and Matis 2015; Majzlan 2011; 
Muller et al. 2010). For example, Müller et al. (2010) found 
feroxyhyte (δ-FeOOH) readily binds to arsenic species by 
formation of arsenic–iron oxide complex. Majzlan (2011) 
found that hydrous ferri oxide (HFO, akaganéite, β-FeOOH) 
has a good affinity to As(V), and HFO-loaded granular acti-
vated carbon (GAC) showed better adsorption capacity of 
As(V) (26 mg As g−1) than pristine GAC (Jang et al. 2009).

Recently, attempts to fabricate bi-functional compos-
ites that possess both oxidation and adsorption capabilities 
have been made (Mei et al. 2015; Tang et al. 2016; Zhang 
et al. 2014; Qi et al. 2015). One prominent example of such 
materials is binary oxides composed of manganese (Mn)- 
and iron (Fe) oxides. Mn oxides in the composite serve as 
a mild oxidant for redox active pollutants, while Fe oxides 
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provide adsorbing surface as well as magnetic property to 
the composite (Fang et al. 2017). Mn/Fe oxides showed good 
performance in degradation of tetracycline under microwave 
irradiation (Gu et al. 2017). The nanocomposites consist-
ing of  Fe3O4/MnO2 successfully degraded methylene blue 
dye (Mei et al. 2015). Mn/Fe oxides also showed enhanced 
treatment capability for heavy metals [Cd(II), Cu(II), Pb(II), 
Zn(II) and As(III)] as compared to single-phase Fe oxides 
(Kim et al. 2013; Zhao et al. 2016; Zhang et al. 2007).

Arsenic species mainly exist in the forms of As(III) 
 (H3AsO3,  H2AsO3

− and  HAsO3
2−) and As(V)  (H2AsO4

−, 
 HAsO4

2− and  AsO4
3−) in aqueous phase. In general, As(III) 

is more toxic and is less effectively removed by Fe-based 
adsorbents as compared to As(V) under the general condi-
tion except highly alkaline condition (Li et al. 2012). Thus, 
pre-oxidation of As(III) to As(V) could be a feasible option 
for better treatment of As. Xiong et al. (2017) fabricated 
 MnO2/FeOOH/carbon composites and achieved high adsorp-
tion of As(III) (75.8 mg g−1) at pH 3. However, the adsorp-
tion of As(III) and As(V) on Mn/Fe oxides is highly depend-
ent upon pH condition due to charge variation of arsenic 
species and Mn/Fe oxides. When Mn is incorporated into Fe 
oxides phases, it tends to decrease point of zero charge due 
to strong negative charges of Mn oxides (Chon et al. 2018). 
Given that the typical pH range for surface/groundwater is 
6.5–8.5, the surface of Mn/Fe oxides exhibit net negative 
charge, therefore adsorption of negatively charged As(V) 
ions produced by peroxidation of As(III) may not be favored.

Consequently, it is desirable to find the optimal content 
of Mn in the binary composite despite the demonstrated 
advantages of Mn incorporation in treating arsenic. The 
objective of this study was to fabricate a Mn/Fe binary oxide 
(Mn@Feox) with oxidation capability for use as a treatment 
medium for arsenic species, As(III) and As(V). The phys-
icochemical characteristics of Mn@Feox prepared at dif-
ferent molar ratio of Mn/Fe were examined using various 
instrumentation. The adsorption capability of composites 
for As(III) and As(V) was evaluated with final pH effect, 
adsorption kinetic and adsorption isotherm experiments.

Experimental

Materials

Anhydrous sodium arsenite salt  (NaAsO2), sodium arsenate 
salt  (Na2HAsO4), sodium nitrate salts  (NaNO3), manganese 
chloride salt  (MnCl2), ferrous chloride salt  (FeCl2), chro-
mium (III) chloride  (CrCl3), 30% hydrogen peroxide  (H2O2) 
and 1 N NaOH solution were purchased from Sigma-Aldrich, 
USA. Sodium nitrate  (NaNO3) was obtained form OCI co., 
Korea. The reagents were used without further purification. 
Stock solutions (1000 mg L−1) of As(III) and As(V) were 

prepared, respectively, by dissolving corresponding amounts 
of salts of sodium arsenite and sodium arsenate in distilled 
water. Ferrous chloride solution of 12.6 g L−1 (0.1 M) was 
also prepared in a similar manner.

Preparation of Mn/Fe composites

Mn-incorporated iron oxyhydroxides (Mnox@Feox) were 
prepared by modifying the method developed by Schwert-
mann and Cornell (2000).  FeCl2 solutions containing varying 
molar ratios of Mn (0, 10, 30 and 50%) relative to Fe were 
prepared by adding the corresponding amounts of  MnCl2 into 
the 12.6 g L−1  FeCl2 solutions, and pH of the suspensions was 
elevated to 12 by dropwise addition of 1 N NaOH. The solu-
tions started to form black precipitates with the increase in pH 
and were further mixed with 200 mL of 30%  H2O2 for 10 min 
at constant stirring to rapidly oxidize Mn(II) and Fe(II) to 
Mn(IV) and Fe(III) on the precipitated minerals, respectively. 
Upon the oxidation, the color of precipitates turned blackish 
brown and the pH decreased to neutral. The resulting materi-
als were washed several times with distilled deionized water, 
freeze-dried for 24 h and kept in sealed bottles until use. The 
adsorbents having the different Mn/Fe molar ratios (0, 0.1, 0.3 
and 0.5) were named as Feox, 0.1Mnox@Feox, 0.3Mnox@
Feox and 0.5Mnox@Feox, respectively.

Adsorption experiments

Adsorption experiments to investigate the effect of Fe and 
Mn contents in Mnox@Feox on As(III) and As(V) adsorp-
tion were carried out in 25 mL vials. The experiments were 
conducted in duplicate, and the average values of raw data 
were used as experimental results. The vials received 0.02 g 
Mn@Feox, followed by addition of 20 mL of either 59.4 mg 
 L−1 As(III) or 58.2 mg L−1 As(V) solution. The pH was 
adjusted to 6 by adding 0.1 N HCl or NaOH, and the ionic 
strength was set at 10 mM by dissolving  NaNO3 salts. The 
vials were mixed at 150 rpm and 25 ± 2 °C in a water bath 
shaker. At given time intervals, samples were collected and 
filtered with 0.45 μm syringe filter (Pall Co., USA), followed 
by measurement of the concentrations of arsenic species in 
the solutions. The effect of pH on the arsenic adsorption 
was investigated by adding 0.02 g adsorbent into the vials 
containing 20 mg L−1 As(III) or As(V) solutions in the 
final pH range of 2–9. For adsorption kinetic experiments 
with different concentrations of As(III) and As(V), 0.02 g 
Mn@Feox was added to each of 20 mL of arsenic solutions 
[As(III): 19.5, 52.7 and 96.7 mg L−1, As(V): 19.4, 48.1 and 
98.0 mg L−1]. Adsorption isotherm experiments were carried 
out with solutions of As(III) and As(V) concentrations in the 
ranges of 47.7–228.4 and 30.3–241.1 mg L−1, respectively, 
using 1 g L−1 Mn@Feox. The total concentrations of arsenic 
[As(III) + As(V)] in aqueous solution were determined by an 



2203Effect of Mn substitution on the oxidation/adsorption abilities of iron(III) oxyhydroxides  

1 3

inductively coupled plasma (ICP-OES, Ultima 2C, Horiba, 
Japan). A SAX cartridge (Alltech, USA), an anion exchange 
resin, was used to remove As(V) from the solution (Amir-
bahman et al. 2006). As(III) concentration in the eluent was 
measured with the ICP, and the As(V) concentration was 
calculated by subtracting As(III) concentration from the total 
As concentration. The pH of solution was measured by a pH 
meter (Horiba, Japan).

Characterization of Mn@Feox

The particle size distribution and the morphology of Mn@
Feox samples were measured using a field emission trans-
mission electron microscope (FE-TEM, JEM-2200FS, 
JEOL). X-ray diffractometer (D8 Advance, Bruker-AXS) 
analyses were performed to characterize the mineralogical 
phases of Mn@Feox using Cu Kα radiation and a LynxEye 
position sensitive detector. The diffraction pattern was col-
lected from 10° to 95° 2θ, with a nominal step size of 0.01° 
and a time per step of 1 s, using a 0.3° divergence slit and 
2.5° secondary Soller slit.

The Rietveld structural refinement (Rietveld 1969) was 
performed with TOPAS 4.2 (Bruker, Germany) program to 
evaluate the crystal structural changes with the incorpora-
tion of Mn. Standard chromium net oxidation test (SCNOT) 
proposed by Bartlett and James (1979) was conducted to 
measure the oxidative capacity of Mn@Feox samples as fol-
lows: The vial containing 2.5 g of Mn@Feox and 25 mL of 
1 mM  CrCl3 was shaken for 2 h. Then, 0.25 mL of 1 M phos-
phate buffer solution (pH 7.2) was added to remove sorbed 
Cr(VI), and the vial was shaken for 15 s. Supernatant was 
collected after centrifugation and filtrated with a 0.45 μm 
syringe filter. The concentration of chromate [Cr(VI)] in the 
supernatant was measured by s-diphenyl carbazide direct 
colorimetric method (USEPA 1995). The measured concen-
tration of produced Cr(VI) corresponds to oxidative capac-
ity of Mn@Feox. The zeta potential values were measured 
using a Zetasizer Nano ZS instrument (Malvern, UK) in the 
range of equilibrium pH values of 2.78–8.72, to determine 
the pH at the point of zero charge  (pHpzc) of Mn@Feox. 
Magnetic susceptibility of Mn@Feox was measured using a 
Bartington MS2 magnetic susceptibility meter (UK).

Results and discussion

Characterization of Mn@Feox

FE-TEM images of Mn@Feox showed hexagonal thin-plate 
morphology with a [001] preferential orientation, and the 
size of each plate particles ranged in 20–60 nm (Fig. 1). No 
obvious structural changes were observed when Mn ratio 
of the precursor solution was increased (Fig. 1b–d), which 

implies that the incorporation of Mn did not lead to forma-
tion of identifiable Mn oxide phases.

The XRD of Feox showed peaks at 35.8°, 40.2°, 54.2° and 
62.8° (Fig. 2a), which correspond to (100), (101), (102) and 
(110) planes of δ-FeOOH, respectively (JCPDS No. 13-0087) 
(Chukhrov et al. 1977). These peaks were also observed for 
0.5Mn@Feox, with no other peaks attributable to Mn oxide 
phases being found (Fig. 2b). This observation suggests that 
the addition of Mn did not form separate Mn oxide phases, 
but it was substituted into Fe oxides framework, which is con-
sistent with the result of FE-TEM. One interesting observa-
tion in the XRD spectra was the significant change in the unit 
cell parameters of Mn@Feox (Fig. 2c). Rietveld refinement 
analysis of XRD data revealed that the unit cell volume (v) 
and a-axis lattice (a) proportionally decreased with increasing 
Mn content, which has a good agreement with the changes in 
the crystal structure parameters by Mn substitution as reported 
previously (Sileo et al. 2001). This means that Mn effectively 
substituted Fe in δ-FeOOH in proportion to the added Mn 
without formation of other single phases of Mn.

The results of SCNOT test to evaluate the effect of Mn 
content on the oxidative capacity of Mn@Feox are presented 
in Table 1. The oxidation capabilities of Mn@Feox signifi-
cantly increased with increasing Mn content, giving the high-
est Cr(III) oxidation capability of 18.44 mmol Cr(VI)  kg−1 for 
0.5Mn@Feox. On the other hand, the magnetic susceptibility 
of Mn@Feox was substantially reduced by about 200 times (3.
65E−05 m3 kg−1 → 1.71E−07 m3 kg−1) when the Mn/Fe ratio 
increased to 0.5, which can lead to the failure of magnetic sep-
aration after the use. Given the opposite relationship between 

Fig. 1  FE-TEM images of a Feox, b 0.1Mn@Feox, c 0.3Mn@Feox 
and d 0.5Mn@Feox
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two properties, the excessive use of Mn in the fabrication of 
Mn@Feox is not desirable from a practical standpoint.

Figure 3 presents the results of zeta potential measure-
ments of Mn@Feox. Feox showed positive potential values 
at pH < 8, and charge reversal to a negative value occurred 
at around 8. The increase in Mn content resulted in a shift of 
 pHpzc to lower values down to 6.2 for 0.5Mn@Feox. This is 
likely due to the contribution from Mn that possesses high 
concentration of surface hydroxyl groups (Tamura et al. 
1989). For this reason, Mn oxides typically exhibit the rela-
tively lower  pHpzc values (0.96–3.3) compared to Fe oxides 
(Hou et al. 2016; Lopano et al. 2007).

Fig. 2  XRD patterns of a Feox and b 0.5Mn@Feox; and c Rietveld refinement results and crystal structural changes of different Mn@Feoxs. *v: 
cell volume, a: a-axis lattice, c: c-axis lattice

Table 1  Oxidative capacities and magnetic susceptibilities of Mn@
Feox composites

Sample Generated Cr(VI) conc. 
(mmol kg−1)

Magnetic suscep-
tibility  (m3 kg−1)

Feoxs 0.018 3.65E−05
0.1Mn@Feoxs 2.804 9.00E−06
0.3Mn@Feoxs 7.786 1.27E−06
0.5Mn@Feoxs 18.44 1.71E−07

Fig. 3  Zeta potential values (mV) of different Mn@Feoxs (Feox, 
0.1Mn@Feox, 0.3Mn@Feox, and 0.5Mn@Feox) with varying pH 
values (final pH range 2.7–9.0)
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Effect of Mn substitution on arsenic adsorption

Figure 4a shows the adsorption capacities of Feox and Mn@
Feox for As(III) and As(V). The increase in Mn content 
decreased the adsorption of As, resulting in 33.5 and 53.4% 
decrease of As(III) and As(V) when Fe/Mn molar ratio 
increased from 0 to 0.5, respectively (Fig. 4a). This decrease 
in As adsorption is likely related to reduced availability of 
iron oxide phases in Mn@Feox with increasing Mn content. 
The lower values of pHpzc of Mn@Feox as compared to 
unsubstituted Feox also contributed to the decrease in As 
adsorption since the surface would develop negative charges. 
In As(III) adsorption by Mn@Feox, it is assumed that As(III) 
is either directly adsorbed or oxidized into As(V) followed 
by adsorption onto the surface. After completion of adsorp-
tion experiments, As(III) was not detected in all the reacted 
As(III) solutions, but the concentration of residual As(V) 
increased with the increasing Mn content in Mn@Feox 
(Fig. 4b). This observation indicates that the increase in Mn 
led to more oxidation ability of composite due to the increase 
in number of reactive species (i.e., reduced Mn ions).

A similar route of As(III) to As(V) oxidation and subse-
quent As(V) adsorption has been documented in previous 
work that utilized iron minerals containing MnOOH or Mn 
species (Gupta et al. 2010; Lakshmipathiraj et al. 2006). 
This work was aimed to fabricate Mn-substituted Fe com-
posites without significantly compromising adsorption capa-
bility of Fe oxide phase. Therefore, 0.1Mn@Feox with good 
magnetic property was chosen among the Mn@Feoxs for 
further experiments.

Effect of final pH on As adsorption

The results of As(III) and As(V) adsorption by 0.1Mn@Feox 
at varying pH conditions are presented in Fig. 5. The reac-
tions were allowed to occur for 24 h with a Mn@Feox dose 

of 1 g L−1, and As(III) and As(V) concentrations of 19.4 and 
19.5 mg L−1. Note that the pH values reported in the figure are 
the final pH values at the end of reactions. The results indi-
cated As(III) adsorption showed a weak parabolic behavior 
with the pH change, showing maximum adsorption at mid pH 
range (5.5–7.2). However, there was only a small difference 
between the maximum and minimum values of As(III) adsorp-
tion (88–96%) over the entire pH range. This suggests As(III) 
adsorption was weakly influenced by the pH-dependent surface 
charge of Mn@Feox. A similar pattern of As(III) adsorption 
on iron oxides under varying pH condition has been reported 
by other researchers (Dixit and Hering 2003; Jang et al. 2006).

On the contrary, As(V) adsorption showed an apparent 
dependence on pH such that nearly complete removal was 
obtained in low pH conditions (pH < 5.7), while it declined 
continuously from pH 5.7 to 9.0. The high adsorption of As(V) 
under low pH conditions could be attributed to electrostatic 

Fig. 4  a Adsorbed amount 
(mg g−1) of As(III) and As(V) 
by different Mn@Feoxs (Feox, 
0.1Mn@Feox, 0.3Mn@Feox 
and 0.5Mn@Feox) and b As(V) 
concentration in the reacted 
As(III) solutions of Mn@Feoxs 
[Adsorbent dose = 1 g L−1, ini-
tial pH 6, final pH 8.0–8.2 ini-
tial As(III) and As(V) concen-
trations = 59.4 and 58.2 mg L−1, 
contact time = 24 h]

Fig. 5  Effect of final pH on the adsorption of As(III) and As(V) by 
0.1Mn@Feox [Adsorbent dose = 1  g  L−1; initial As(III) and As(V) 
concentrations = 19.4 and 19.5 mg L−1]



2206 D.-W. Cho et al.

1 3

interaction between positively charged surface and negatively 
charged As(V). As shown in Fig. 3, zeta potential values of 
0.1Mn@Feox were in the positive range at pH < 6, and this led 
to attraction of As(V) that mainly present as negatively charged 
ion  (H2AsO4

−) at corresponding pH range. In a similar context, 
further increase in pH significantly reduced positive charge den-
sity on Mn@Feox and resulted in limited access of As(V) to 
the adsorption sites. Dixit and Hering (2003) obtained a similar 
pH dependence of As(V) adsorption by ferrihydrite [Fe(OH)3].

Adsorption kinetics and isotherms

Figure 6 presents the adsorption kinetics of arsenic spe-
cies on 0.1Mn@Feox with initial As(III) (19.5, 52.7 and 
96.7 mg L−1) and As(V) (19.4, 48.1 and 98.0 mg L−1) 
concentrations during 1440 min reactions, respectively. 
Typically, over 70% of the total adsorption occurred in 
the first 70 min reaction, and subsequently, saturation of 
adsorption was reached in 600 min.

To elucidate the adsorption mechanism, pseudo-first-
order kinetics and pseudo-second-order kinetic models 
were used to fit the experimental data. The used kinetics 
model equations and relevant information were provided 
in Supplementary Information. The related kinetics param-
eters for As(III) and As(V) adsorption are summarized 
in Table 2. The best fits over the entire time range were 
found with the pseudo-second-order model, indicating the 
importance of chemical adsorption of As(III) and As(V) 
onto the active sites of 0.1Mn@Feox.

The maximum adsorbed amounts of As(III) and As(V) by 
0.1Mn@Feox as determined by adsorption isotherm experi-
ments were 58.3 and 28.4 mg g−1 at initial concentration of 
228.4 As(III) and 241.1 As(V) mg  L−1, respectively (Fig. 7). 
The maximum adsorption capacities obtained from the 
Langmuir model were 57.8 and 27.93 mg g−1 for As(III) and 
As(V), respectively (Table 3). The correlation coefficients of 
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Fig. 6  Adsorption kinetics of a As(III) and b As(V) by 0.1Mn@Feox 
at different initial concentrations [Adsorbent dose = 1  g  L−1; initial 
pH 6; final pH 8, Initial As(III) and As(V) concentrations = 19.5, 52.7 
and 96.7 mg L−1 and 19.4, 48.1 and 98.0 mg L−1]

Table 2  Kinetics parameters for the adsorption of As(III) and As(V) at three initial concentrations [calculated value = qe (cal), experimental 
value = qe (exp)]

Pseudo-first order kinetics model Pseudo-second-order kinetics model

Initial concentra-
tions (mg L−1)

qe (exp) 
(mg g−1)

k1 (L min−1) qe (cal) (mg g−1) R2 k2 (g (mg min)−1) qe (cal) (mg g−1) R2

As(III)
19.5 18.3 0.0069 5.0 0.9223 0.0047 18.5 0.9999
52.7 42.9 0.0078 14.1 0.9577 0.0017 43.7 0.9998
96.7 54.8 0.0081 12.8 0.9622 0.0022 55.2 0.9999
As(V)
19.4 14.2 0.0037 5.8 0.9197 0.0033 13.2 0.9986
48.1 23.8 0.0032 10.8 0.9157 0.0017 22.6 0.9978
98.0 31.1 0.0035 10.2 0.8650 0.0021 30.1 0.9996
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Fig. 7  Adsorption isotherm of As(III) and As(V) by 0.1Mn@Feox 
[Adsorbent dose = 1 g L−1; initial pH 6; final pH 8; initial As(III) and 
As(V) concentration ranges = 47.7–228.4 and 30.3–241.1 mg L−1]
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Langmuir model for As(III) and As(V) adsorption (0.9858 
and 0.9511) were higher than those of the Freundlich model 
(0.9840 and 0.9363). The observed n values of 5.47 and 4.19 
indicate that sorption is favorable over the entire range of 
concentrations examined.

Conclusions

Manganese-substituted Fe oxyhydroxides were prepared 
using co-precipitation procedure by varying the molar ratio 
of Fe and Mn (Mn ratio: 0, 10, 30, 50%) in the precursor 
solutions. XRD analysis of Mn@Feox indicated the main 
hexagonal framework is feroxyhyte (δ-FeOOH) with Mn 
substitution in the lattice. The Mn substitution decreased 
 pHpzc of Mn@Feox, and it negatively influenced adsorption 
of As(V). Although Mn substitution decreased the magnetic 
susceptibility, 0.1Mn@Feox exhibited sufficient magnetism 
to be separable by magnetic separation. Mn@Feox showed 
good oxidation capability to oxidize As(III) to As(V). The 
adsorption kinetics of As(III) and As(V) by 0.1Mn@Feox 
was better described by pseudo-second-order kinetics model, 
and the adsorption isotherm showed a good conformity to 
the Freundlich model. As a result, the incorporation of Mn 
at appropriate ratio can impart oxidation ability without 
a substantial loss of adsorption ability of Fe oxides while 
maintaining good magnetic property.
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