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Abstract
The decision-making in energy sector involves finding a set of energy sources and conversion devices to meet the energy 
demands in an optimal way. Making an energy planning decision involves the balancing of diverse ecological, social, techni-
cal and economic aspects across space and time. Usually, technical and environmental aspects are represented in the form 
of multiple criteria and indicators that are often expressed as conflicting objectives. In order to attain higher efficiency in 
the implementation of renewable energy (RE) systems, the developers and investors have to deploy multi-criteria decision-
making techniques. In this paper, a novel hybrid Decision Making Trial and Evaluation Laboratory and analytic network 
process (DEMATEL-ANP) model is proposed in order to stress the importance of the evaluation criteria when selecting 
alternative REs and the causal relationships between the criteria. Finally, complex proportional assessment and weighted 
aggregated sum product assessment methods are used to assess the performances of the REs with respect to different evalu-
ating criteria. An illustrative example from Costs assessment of sustainable energy systems (CASES) project, financed by 
European Commission Framework 6 programme (EU FM 6) for EU member states is presented in order to demonstrate the 
application feasibility of the proposed model for the comparative assessment and ranking of RE technologies. Sensitivity 
analysis, result validation and critical outcomes are provided as well to offer guidelines for the policy makers in the selection 
of the best alternative RE with the maximum effectiveness.

Keywords  Multi-criteria decision-making · Renewable energy · Decision Making Trial and Evaluation Laboratory · 
Analytical network process

Introduction

 Energy use, which is essential for the civilized activities, 
has economic, political, social and environmental aspects 
associated with it. One of the environmental impacts is the 
greenhouse effect due to the emission of the greenhouse 
gases. The use of renewable energy (RE) sources is one 

of the feasible options for sustainable development of the 
future (Şengül et al. 2015). There are various forms of Res, 
and most of them depend on the solar energy directly or 
indirectly. Solar energy is the direct conversion of sunlight, 
whereas bioenergy has derived from biomass, which is a 
product of photosynthesis. Geothermal energy comes from 
the natural heat of the Earth’s core, and tidal energy is a 
converted form of gravitational energy.

Energy planning efforts involve the identification of a set 
of suitable energy resources and conversion appliances to 
meet the energy demands in the best possible way. Evalu-
ation, justification and selection of the most appropriate 
REs is a multidimensional decision-making process, which 
involves balancing a number of distinguishing attributes at 
economic, technical, social and environmental view across 
space and time (Diakoulaki and Karangelis 2007). Usu-
ally, these four major aspects are represented in the form of 
multiple criteria and indicators that are often expressed by 
mutually conflicting objectives. Thus, the decision-making 
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process can be viewed as a multi-criteria decision-making 
(MCDM) problem with correlating criteria and alternatives 
(Zavadskas et al. 2014; Yazdani and Payam 2015; Mardani 
et al. 2015a, b). Energy planning systems that are using 
multi-criteria analysis have attracted the attention of deci-
sion-makers (DMs) a few decades ago. In order to achieve 
higher efficiency in planning and executing RE systems, 
policy makers and investors have to deploy decision support 
tools to maximize the competent usage of these energies. 
In its most basic form, MCDM assumes that a DM must 
choose the best solution among a set of alternatives whose 
objective function values or attributes are certainly known. 
MCDM techniques are capable of dealing with multifac-
eted problems that are characterized by the mixture of both 
ordinal and cardinal objectives (Yazdani and Graeml 2014). 
This is achieved by recognizing the problem that should be 
analysed and developing alternative solutions to the problem 
based on some decision rules and problem constraints. In 
the next phase, the target problem is fragmented into some 
convenient small parts to allow incorporating data and judg-
ments. This step is known as the development of decision 
matrix, which indicates the influencing alternative options 
and respective attribute values. Finally, the reassembling of 
broken parts by the application of an analytical model is 
performed (Chatterjee et al. 2011).

Hence, MCDM is the most efficient approach to provide 
decision support for the policy makers that are dealing with 
the problems of compromise selection of the best solu-
tion from a set of existing alternatives, according to the set 
objectives (Kaya and Kahraman 2010; Hiremath et al. 2007; 
Şengül et al. 2015; Santoyo-Castelazo and Azapagic 2014). 
Usually, neither of the alternatives satisfies all the objec-
tives; therefore, satisfactory decision is made instead of the 
optimal one. Generally, MCDM problems are recognized 
by the following patterns: (1) choosing problem: choosing 
the best alternative, (2) sorting problem: classifying alterna-
tives in relatively homogenous groups, (3) ranking problem: 
ranking alternatives from best to worst and (4) describing the 
problem: describing alternatives in terms of their peculiari-
ties and features (Roy 1996; Tupėnaitė et al. 2010; Balezen-
tiene et al. 2013).

The precedent researchers have developed and presented a 
number of numerical MCDM approaches and decision sup-
port systems (DSSs) for the assessment and selection of RE 
alternatives in a particular application. Over the last few dec-
ades, a variety of MCDM methods for RE project planning 
and policy assessment as well as computer-based DSS have 
been developed to address this problem and enable prospec-
tive policy makers to make multidimensional assessment of 
the techno-economic feasibility, before any huge investment 
is made. Şengül et al. (2015) proposed a fuzzy technique for 
preference order by similarity to ideal solution (TOPSIS) 
approach in order to rank RE supply systems in Turkey. The 

authors applied interval Shannon entropy method to deter-
mine the weights of decision attributes, and hydropower 
station has been selected as the best RE system among oth-
ers. Santoyo-Castelazo and Azapagic (2014) conducted a 
sustainable appraisal of alternative energy systems using 
17 criteria and three environmental, economic and social 
dimensions using multi-attribute value theory (MAVT) 
and simple multi-attribute rating technique (SMART). This 
study encouraged stakeholders to improve their energy poli-
cies. Streimikiene et al. (2012) employed TOPSIS and Mul-
tiple Objective Optimization based on Ratio Analysis plus 
Full Multiplicative Form (MULTIMOORA) methods for 
selecting the most sustainable electricity and heat generation 
technology under economic, technological, social and politi-
cal scenarios and identified water and solar thermal systems 
as the most suitable options. Another study by Georgiou 
et al. (2015) examined five alternative energy generation 
topologies with respect to economic, environmental, tech-
nological and societal factors, using the analytic hierarchy 
process (AHP) and preference ranking organization method 
for the enrichment evaluation (PROMETHEE) methods to 
arrive at the most effective decision. Troldborg et al. (2014) 
presented a probabilistic ranking of eleven RE technologies 
in Scotland considering nine evaluation criteria, including 
technical, environmental and socio-economic criteria, using 
PROMETHEE and Mont Carlo simulation in an uncertain 
situation. Ertay et al. (2013) evaluated RE alternatives, 
including solar, wind, hydropower and geothermal energies, 
for resolving energy-related challenges of Turkey using the 
measuring attractiveness by a categorical based evaluation 
technique (MACBETH) and fuzzy AHP approaches and 
considered five main attributes and fifteen sub-attributes. 
Streimikienė (2013) employed an interval TOPSIS method 
for the comparative assessment of electricity generation 
technologies and road transport technologies. Low car-
bon and targeting GHG reduction were considered as the 
most predominant criteria for the decision-making process. 
Yazdani-Chamzini et  al. (2013) proposed an integrated 
AHP-complex proportional assessment (COPRAS) model 
to select the best RE project. AHP was used to estimate the 
weight of decision objectives, while COPRAS method was 
applied to rank the alternative energy systems. Ahmad and 
Tahar (2014) developed an AHP-based assessment model for 
prioritizing RE options. Four major RE resources, includ-
ing hydropower, solar, wind, biomass (together with biogas 
and municipal solid waste), were evaluated with respect to 
technical, economic, social and environmental aspects of a 
Malaysian case study. Kabak and Dağdeviren (2014) pre-
sented another case study of selecting the most competent 
RE in Turkey using the analytic network process (ANP) and 
benefits, opportunities, costs and risks (BOCR) framework. 
Four RE sources like hydro, geothermal, solar, wind and bio-
mass were assessed while taking different strategic criteria 
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(technology, economy, security, global effects and human 
wellbeing) into consideration.

It has been observed from the literature survey presented 
above that the past researchers have mainly adopted AHP, 
TOPSIS and PROMETHEE methods for the evaluation 
of REs. Very few applications are related to MACBETH, 
COPRAS and MULTIMOORA methods. AHP is an estab-
lished method of arranging an unstructured system or vari-
ables according to the hierarchy and assigning numerical 
values to subjective judgments depending on the relative 
importance of each variable and synthesizing the judgments 
to determine the highest priority variables. Conversely, the 
computational requirement of AHP is terrific, even for a 
small problem. The main drawback of this method is that 
it ignores the interrelationships among decision elements. 
The outcomes of this method may suffer due to the involve-
ment of inconsistencies between judgment and ranking cri-
teria. TOPSIS method is based on the concept that the best 
alternative has the shortest distance from the ideal solution 
and the farthest distance from the negative-ideal solution 
by introducing two reference points using vector normali-
zation. However, this method does not consider the relative 
significance of the distances from these reference points. It 
means that the best alternative of the TOPSIS method may 
not always be closest to the ideal solution. PROMETHEE 
method is a preference ranking method, which does not 
structure a decision-making problem. In the case of numer-
ous criteria and alternatives, it may turn to complexities to 
obtain a clear view of the problem and assess the results 
due to the attachment of different preferential parameters 
like preference functions, which may be extremely tricky 
to define in the real time scenarios (Chatterjee et al. 2017). 
Moreover, the majority of these MCDM methods assume 
inter-criteria independence, which is not a pragmatic 
assumption in many real-world problems. Several forms of 
interactions among criteria might occur in the real life situ-
ations. Thus, more sophisticated and intelligent techniques 
are required to deal with such complexities. Unfortunately, 
the criteria interaction concept is scarcely discussed in the 
literature.

In order to overcome these difficulties, the present paper 
proposes a novel integrated hybrid model for multi-criteria 
assessment of RE systems, which combines the decision-
making trial and evaluation laboratory (DEMATEL), ANP, 
COPRAS and weighted aggregated sum product assessment 
(WASPAS) methods. One of the benefits of ANP over AHP 
is that it permits feedback and interdependence among the 
criteria. In fact, ANP compensates the limitations of the 
AHP method by introducing interdependent relationships 
among the decision elements (Saaty 1996). This paper 
aims to form the influence relationship among RE selec-
tion dimensions/criteria with DEMATEL-ANP (D-ANP) 
to estimate criteria weight. D-ANP model successfully 

demonstrates the key influencing factors for RE planning 
by specifying the structure without dealing with complex, 
huge and time-consuming comparison matrix of ANP, and 
ultimately, COPRAS and WASPAS methods with D-ANP 
weightings are applied to determine the ranking preorders 
of the alternative REs. This model can help managers and 
decision-makers to devise appropriate strategies for the 
selection of the best RE system.

Proposed methodology

D-ANP is a new methodology, which was developed by 
applying a conjunctive form of the DEMATEL and ANP 
methods. DEMATEL is a method for constructing a struc-
tural model of a problem involving causal relationships 
among complex attributes. It works mainly through the 
collection of experts’ opinions by observing the degree of 
influence between criteria, the use of matrix operations in 
order to obtain a causal relationship between the criteria 
and the establishment of structural network diagrams (Gabus 
and Fontela 1972; Yazdani et al. 2017). ANP, which is used 
to deal with different type of interdependency, was devel-
oped by Saaty (1996). This method is a general form of 
AHP, which enables decision-makers to define a complex 
relationship between the decision levels and the attributes 
(Tavana et al. 2017; Ignatius et al. 2016). ANP overcomes 
the drawbacks of AHP in handling interrelationship between 
decision levels as higher or lower and direct or indirect by 
using a super-matrix, which detects the composite weights 
(Shyur 2006). This super-matrix is a partitioned matrix when 
each matrix partition addresses a relationship between the 
levels or clusters in a system and has derived from the limit-
ing powers of the priorities to calculate the overall priori-
ties, and the cumulative influence of each element on every 
other element, with which it interacts, is obtained (Saaty 
1996; Saaty and Vargas 1998). Moreover, in ANP, the matrix 
operations can be applied easily to the super-matrix, and 
undoubtedly, this super-matrix is a suitable option when the 
number of elements increases. Its distinguished benefits can 
be sorted as follows: (1) ANP transforms qualitative values 
into numerical values for a comparative analysis, (2) simple 
and intuitive structure and (3) participation of all stakehold-
ers and experts in the decision process (Aras et al. 2004; 
Kabak and Dağdeviren 2014).

First, the combined D-ANP approach operates through 
constructing the impact-relations-map (IRM) among cri-
teria by the DEMATEL technique and then by calculat-
ing the weights of each criterion by combined ANP based 
on the developed IRM. Researchers believe that although 
ANP determines identical weights in the cluster from the 
normalized super matrix, it neglects the influence in vari-
ous degrees. Thus, D-ANP approach normalizes the total 
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influence matrix of DEMETEL with dimensions and trans-
poses it onto an un-weighted super-matrix of ANP there-
after normalizing it into a weighted super-matrix with the 
normalized influence matrix. The influential weights of the 
D-ANP can be obtained through self-multiplication multi-
ple times (Hu et al. 2014; Hsu et al. 2012; Liu et al. 2012). 
Firstly, D-ANP method was developed by Tzeng et al. (2007) 
as a hybrid formula, which has been successfully applied 
to solve different problems, including the improvement of 
smart phone competitive advantage (Hu et al. 2014), choos-
ing knowledge management strategies (Wu 2008), select-
ing vendor for conducting the recycled material (Hsu et al. 
2012), supporting decisions in Taiwanese higher education 
(Chen and Chen 2010) and brand marketing (Wang and 
Tzeng 2012). In fact, the D-ANP approach decreases the 
large amount of ANP pairwise computations and indicates 
effective interrelationship among decision objectives.

The procedure of D-ANP model for estimating crite-
ria weights is introduced in “Appendix 1”. The results of 
D-ANP are used as input to WASPAS (“Appendix 2”)- and 
COPRAS (“Appendix 3”)-based calculations. COPRAS 
method was mainly developed by Zavadskas et al. (1994). 
It selects from alternatives in order to determine a solution 
with direct and proportional ratio to the best solution to the 
ratio with the ideal-worst solution.

A case study on the selection of renewable 
electricity generation technologies in EU

Over the last decade, the impact of “sustainability” on 
the development of national and international policy has 
increased. Efforts towards a sustainable energy system 
are progressively becoming an issue of paramount impor-
tance for DMs. Efficient production, distribution and use of 

energy resources and the provision of equitable and afford-
able access to energy while ensuring security of energy sup-
ply and environmental sustainability are the main energy 
policy objectives towards a sustainable energy system. The 
implementation of new energy technologies is a key strat-
egy towards a sustainable energy system. Therefore, DMs 
have to choose the best option from an increasingly diverse 
mix of new energy technologies, which warrant support, 
including funding (e.g. R&D support) and other incentives 
for different sectors. However, the identification of these 
technologies that can comply with the emerging needs and 
opportunities in the three sustainable development dimen-
sions, namely economic, environmental and social, is a very 
complex process. Thus, methods and tools are required to 
assist policy design in terms of establishing technological 
priorities towards a sustainable energy system. The multi-
criteria methods can be an important supportive tool in deci-
sion-making, providing flexibility and capacity to assess the 
economic implications of the alternative technologies along 
with the environment and social inference.

A literature survey aiming at a review of published cri-
teria and sub-criteria for the assessment of RE technologies 
was conducted. It enabled to identify the most important 
criteria for the comparison of RE generation technologies 
in electricity and heat sector. There are conducted several 
important EU projects1,2,3,4,5,6,7 all of which are aiming at 

Table 1   Indicator set for long-term sustainability assessment of electricity generation technologies (see footnotes 1, 2, 3, 4, 5, 6, 7)

Dimension Criteria Definition Measurement unit References

Environmental indicators (D1) C1 (HEALTH) Human health impact EURcnt/kWh CASES (2008a, b)
C2 (CO2eq) GHG emissions kg/kWh CASES (2008a, b)
C3 (ENV) Environmental external costs EURcnt/kWh CASES (2008a, b)
C4 (RADIO) Radionuclide external costs EURcnt/kWh CASES (2008a, b)

Social indicators (D2) C5 (ACC past) Fatal accidents from the past experience Fatalities/kWh PSI (2003)
C6 (ACC fut) Severe accidents perceived in the future Point PSI (2003)
C7 (food) Food safety risk Point CASES (2008a, b)
C8 (EMPL) Technology-specific job opportunities Person-year/kWh PSI (2003)

Economic indicators (D3) C9 (grid cost) Costs of grid connection Point CASES (2008a, b)
C10 (available) Average availability (load) factor % EUSUSTEL (2007)
C11 (secure) Security of supply Point NEEDS (2005, 2006, 2007)
C12 (peak load) Peak load response Point NEEDS (2005, 2006, 2007)
C13 (PR cost) Private costs (investments and operation 

costs)
EURcnt/kWh CASES (2008a, b)

1  CASES (2008a).
2  CASES (2008b).
3  EUSUSTEL (2007).
4  NEEDS (2005).
5  NEEDS (2006).
6  NEEDS (2007).
7  PSI (2003).
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a comparative assessment of energy technologies. Table 1 
was developed based on the analysis of those studies, which 
present the full set of sub-criteria covering economic, envi-
ronmental and social aspects of a long-term sustainability 
assessment of energy technologies. The proposed indica-
tor framework addresses the EU energy and environmental 
policy priorities and the three dimensions of sustainable 
development: economic, social and environmental.

The economic dimension in sustainability assessment of 
RE technologies is very important, as energy supply cost 
is the main driver of energy technology penetration in the 
markets. There are five sub-criteria selected to address the 
economic dimension of sustainability assessment in electric-
ity and heat sector: private costs, average availability factor, 
costs of grid connection, peak load response, security of 
supply. The most important economic sub-criteria are pri-
vate costs, availability factor and costs of grid connection. 
Security of supply is an important issue in terms of energy 
quality, regarding frequency, transient effects and voltage 
bands related to the specific RE generation sources.

The main environmental sub-criteria for RE technology 
assessment are human health impact, GHG emissions, envi-
ronmental external costs and radionuclides external costs, 
whereas the main social sub-criteria selected for renewable 
electricity and heat technology assessment in this paper are 
fatal accidents from the past experience, severe accidents per-
ceived in the future and technology-specific job opportunities. 
The major economic indicators that were considered are the 
costs of grid connection, the average availability (load) fac-
tor, security of supply, peak load response and private costs, 

including investments and operation costs. Table 2 summarizes 
renewable electricity and heat generation technologies, which 
are assessed based on the economic, social and environmental 
criteria, as summarized in Table 1. More details on methodolo-
gies and methods of calculation of sub-criteria presented in 
Table 1 can be found in the paper (Streimikiene et al. 2012).

The selected renewable electricity generation technolo-
gies (Table 2) and relevant data for the assessment were 
collected from EU Framework six project CASES databases 
developed for EU member states. The EU average data were 
applied to the case study developed in this paper (CASES 
2008a, b). Thus, the decision matrix of the presented case 
study consists of twelve alternative RE technologies and thir-
teen criteria founded on multiple quantitative and qualitative 
economic, environmental and social aspects. Therefore, the 
appraising of RE technologies in terms of their sustainabil-
ity and competitiveness is a complex task, considering the 
series of uncertainties and implications that are encountered 
to obtain realistic and transparent results. Advanced MCDM 
methods can help in addressing such difficult tasks.

In order to execute the proposed MCDM model for the 
considered case study and identify the most efficient alterna-
tive energy system based on defined dimension and criteria, 
the following steps have to be followed. Figure 1 shows the 
process in a comprehensive way.

Step 1 Introduction and historical review of the energy 
system planning, the evaluation of systems, main cor-
responded index, factors and aspects through previous 
studies.
Step 2 Finding research objectives based on the applied 
methodologies and different approaches.
Step 3 Clarifying essential dimensions, criteria, sub-cri-
teria and candidate energy alternatives associated with a 
real case study in the EU as well as getting information 
and performance rate of each sub-criterion in front of 
energy source.
Step 4 Determining initial decision matrix and perform-
ing DEMATEL-ANP model to obtain criteria weights.
Step 5 Forming network relationship map and causal dia-
gram by results of DEMATEL.
Step 6 Applying WASPAS and COPRAS methods in 
order to achieve the ranking of the candidate energy sys-
tems.
Step 7 Comparing results for the analytical validation.

Results and analysis

Solving REs selection problem

At the beginning, the initial relation matrix (A) of Table 3 is 
developed based on the presented extensive literature review, 

Table 2   Electricity and heat generation technologies selected for the 
multi-criteria sustainability assessment

Technologies and types of power plants Acronyms

Hydropower
Run of river
 < 10 MW HYD S (A1)
 < 100 MW HYD M (A2)
 > 100 MW HYD L (A3)

Dam HYD DAM (A4)
Pump storage HYD PMP (A5)
Wind
On shore WIND ON (A6)
Off shore WIND OFF (A7)
Solar PV
Roof PV ROOF (A8)
Open space PV OPEN (A9)
Solar thermal SOL TH (A10)
Biomass CHP with an extraction condensing turbine
Straw CHP STRAW (A11)
Wood chips CHP WOOD (A12)
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Analyzing literature review on 
energy planning

Defining objectives & decision approach

Clarifying decision criteria, sub-criteria & 
alternatives 

Composing performance matrix to start 
ranking process

Proposing a framework for renewable energy technology

DEMATEL process

Forming initial influence matrix (A)

Forming Normalized direct influence matrix 
(N)

Obtain total relation (T)

Computing relationship of decision 
dimensions (Degree of influence)

Drawing INRM figure

D-ANP process

Forming un-weighted supermatrix

Obtaining weighted super-matrix

Identyfing the global weight by limiting 
power of weighted matrix

Normalaizing matrix

Computing weighted normalized matrix

Calculate the sums of weighted normalized values for
Cost and Benefit criteria

Determine the relative significances or priorities of 
each alternative 

Normalaizing matrix

Evaluating relative significance of alternatives using 
weighted aggregation of additive and multiplicative 

process

Ranking of alternatives based on decsending order 

Fig. 1   Proposed hybrid framework
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energy expert opinions and knowledge. Normalized direct 
influence matrix (N) (Table 4) is derived by normalizing the 
values of matrix A using Eqs. (2, 3). This table shows the 
interrelation of all criteria. Then, the total influence matrix 
(T) and the degrees of influence are computed using Eq. (4), 
as shown in Table 5. Then, the values of Table 6 are com-
puted using Eqs. (6) and (7). Table 7 shows the relation-
ship of the three dimensions based on the expert cognition 
and also shows that the dimension environmental indicators 
(D1) have the highest impact among the dimensions and are 
the most influential. Clearly, the degree of influence of eco-
nomic indicators (D3) is lowest among all the indicators.   

DEMATEL technique is applied in order to determine the 
interactions among the criteria. This study forms a critical 
model for the RE systems, and the degree of influence of 
each criterion is obtained, as shown in Table 7.

Tables 6 and 7 provide helpful and beneficial information 
derived from DEMATEL method. Table 7 reveals that D3 
(economic indicators) have the largest positive value (net 

influence, indicating that it is the most important dimen-
sion). This signifies that D3 will influence other dimensions 
more than the others influence it. On the other side, D1 (envi-
ronmental indicators) have the largest ri + yi value, denot-
ing that it has the largest total influence degree within all 
dimensions. In Table 6, C11 (security of supply) is the most 
important criterion due to the highest total degree ( ri + yi ) 
of influence based on the expert attitude. Moreover, the peak 
load response (C12) has the least importance in comparison 
with the other criteria because of the lowest ( ri + yi ). Table 6 
reveals that criterion with the maximum reason degree 
( ri − yi ) is a peak load response (C12), implying it is the most 
influential criterion. The criterion with the minimum reason 
degree ( ri − yi ) is human health impact (C1), signifying that 
it is most influenced by the others. The network-influence 
relationship can be visualized by drawing an INRM of the 
criteria, as illustrated in Fig. 2. This figure pictured that C2 
(GHG emissions), C5 (fatal accidents from the past experi-
ence) and C12 (peak load response) have the largest degrees 

Table 3   Initial influence matrix 
(A)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C1 0 0 3 1 2 3 3 3 0 1 4 0 1
C2 4 0 4 1 4 4 4 2 2 0 3 1 3
C3 2 4 0 4 3 3 4 3 3 2 4 1 4
C4 3 2 4 0 3 3 2 2 1 1 4 1 3
C5 4 2 2 1 0 4 4 2 1 1 3 1 4
C6 4 1 2 3 4 0 4 4 1 2 4 1 4
C7 4 1 2 3 0 4 0 4 1 2 4 1 4
C8 4 4 3 1 1 1 3 0 1 1 3 1 4
C9 0 1 1 1 1 1 1 4 0 2 4 2 3
C10 2 4 4 3 2 2 3 4 2 0 4 4 4
C11 3 3 4 4 4 4 3 4 2 2 0 2 4
C12 1 3 3 3 3 3 3 3 4 4 4 0 4
C13 3 3 2 2 3 3 4 4 2 2 4 2 0

Table 4   Normalized direct 
influence matrix (N)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C1 0.000 0.000 0.067 0.022 0.044 0.067 0.067 0.067 0.000 0.022 0.089 0.000 0.022
C2 0.089 0.000 0.089 0.022 0.089 0.089 0.089 0.044 0.044 0.000 0.067 0.022 0.067
C3 0.044 0.089 0.000 0.089 0.067 0.067 0.089 0.067 0.067 0.044 0.089 0.022 0.089
C4 0.067 0.044 0.089 0.000 0.067 0.067 0.044 0.044 0.022 0.022 0.089 0.022 0.067
C5 0.089 0.044 0.044 0.022 0.000 0.089 0.089 0.044 0.022 0.022 0.067 0.022 0.089
C6 0.089 0.022 0.044 0.067 0.089 0.000 0.089 0.089 0.022 0.044 0.089 0.022 0.089
C7 0.089 0.022 0.044 0.067 0.000 0.089 0.000 0.089 0.022 0.044 0.089 0.022 0.089
C8 0.089 0.089 0.067 0.022 0.022 0.022 0.067 0.000 0.022 0.022 0.067 0.022 0.089
C9 0.000 0.022 0.022 0.022 0.022 0.022 0.022 0.089 0.000 0.044 0.089 0.044 0.067
C10 0.044 0.089 0.089 0.067 0.044 0.044 0.067 0.089 0.044 0.000 0.089 0.089 0.089
C11 0.067 0.067 0.089 0.089 0.089 0.089 0.067 0.089 0.044 0.044 0.000 0.044 0.089
C12 0.022 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.089 0.089 0.089 0.000 0.089
C13 0.067 0.067 0.044 0.044 0.067 0.067 0.089 0.089 0.044 0.044 0.089 0.044 0.000
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of the net influence under the three main dimensions of envi-
ronmental, social and economic indicators.  

The D-ANP integrated tool provides the influential 
weights of criteria. After that, the un-weighted super-
matrix (W) is obtained by transposing the normalized influ-
ence matrix T�

C
 using Eq. (12), as shown in Table 8. The 

weighted super-matrix W� , calculated using Eq. (16), is 
shown in Table 9. The influential weights (global weight) 
of the D-ANP can be achieved by limiting the power of 
the weighted super-matrix (a concept based on the Markov 
chain), as shown in Table 10.   

As it is shown in Table 10, the global weights are com-
puted to affect the decision-making process and play their 
role in the two MCDM techniques, i.e. WASPAS and 
COPRAS, that are used for determining the ranking preor-
der of the considered RE systems. The most important cri-
terion among others is the peak load response (C12) having 
the maximum weight of 0.1258. In this study, an attempt is 
made to validate the applicability and effectiveness of WAS-
PAS and COPRAS methods as effective optimization tools 
to solve the considered RE system assessment and selection 
problem. WASPAS and COPRAS methods are adopted to 
aggregate the performance measures under different criteria 
into an overall performance score of renewable technologies. 
Optimization direction of criteria C1–C9 is non-beneficial; 
thus, lower values are expected, while that of C10–C13 is 
beneficial in nature, and higher values are preferred. In case 
of WASPAS method, it has been noticed that due to the 
aggregated structure based on the concepts of WSM and 
WPM approaches its solution accuracy is expected to be 
better than that of any single method. The ranking order of 
the RE alternatives that was obtained by applying WASPAS 
method is as follows:

Thus, “HYD M” (A2) is considered the best RE technol-
ogy among others. Moreover, the next two alternatives after 
“HYD M” are “HYD L” (A3) and “HYD S” (A1), while “PV 
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Table 5   Total-relation matrix of 
criteria (T)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C1 0.106 0.080 0.156 0.103 0.128 0.165 0.174 0.173 0.050 0.072 0.206 0.042 0.139
C2 0.234 0.108 0.214 0.134 0.206 0.233 0.244 0.201 0.113 0.074 0.243 0.079 0.224
C3 0.217 0.212 0.157 0.211 0.206 0.234 0.266 0.245 0.146 0.125 0.291 0.093 0.270
C4 0.203 0.148 0.209 0.106 0.181 0.202 0.194 0.190 0.090 0.089 0.250 0.077 0.213
C5 0.223 0.143 0.165 0.125 0.113 0.220 0.231 0.190 0.086 0.089 0.229 0.076 0.227
C6 0.244 0.142 0.187 0.181 0.212 0.158 0.253 0.251 0.096 0.119 0.274 0.086 0.253
C7 0.226 0.131 0.174 0.171 0.122 0.222 0.152 0.236 0.089 0.112 0.255 0.080 0.234
C8 0.212 0.180 0.180 0.117 0.130 0.152 0.202 0.136 0.084 0.083 0.217 0.073 0.216
C9 0.105 0.107 0.118 0.101 0.109 0.123 0.133 0.195 0.053 0.095 0.208 0.089 0.177
C10 0.222 0.225 0.250 0.200 0.196 0.223 0.257 0.275 0.136 0.091 0.302 0.159 0.281
C11 0.245 0.200 0.247 0.218 0.234 0.262 0.258 0.274 0.131 0.131 0.220 0.116 0.280
C12 0.199 0.202 0.226 0.198 0.212 0.238 0.253 0.255 0.173 0.172 0.300 0.078 0.280
C13 0.224 0.183 0.188 0.162 0.194 0.221 0.253 0.252 0.119 0.120 0.275 0.107 0.182

Table 6   The sum of influences given/received on criteria

r y r + y r − y Weight

C1 1.456 1.595 4.255 − 1.065 0.071
C2 2.082 2.306 4.366 0.246 0.073
C3 2.403 2.673 5.143 0.202 0.086
C4 1.939 2.152 4.178 0.126 0.070
C5 1.890 2.117 4.361 − 0.126 0.073
C6 2.202 2.454 5.107 − 0.199 0.085
C7 1.970 2.203 5.074 − 0.668 0.085
C8 1.766 1.982 4.856 − 0.891 0.081
C9 1.437 1.614 2.980 0.248 0.050
C10 2.534 2.816 4.189 1.443 0.070
C11 2.536 2.816 6.086 − 0.454 0.101
C12 2.508 2.788 3.942 1.633 0.066
C13 2.298 2.480 5.455 − 0.496 0.091

Table 7   The total influence 
matrix of dimensions and sum 
of influences given/received on 
dimensions

D1 D2 D3 r y r + y r − y w

D1 0 4 3 1.883 2.429 4.313 0.546 0.351
D2 2 0 1 2.715 1.286 4.001 − 1.429 0.326
D3 3 4 0 1.546 2.429 3.975 0.883 0.323



411A novel integrated decision-making approach for the evaluation and selection of renewable…

1 3

ROOF” (A8) and “PV OPEN” (A9) are seen as the least pre-
ferred candidate for REs.

COPRAS method derives the following rank priorities of 
the alternative REs:

COPRAS method suggests that “HYD L” (A3) is the most 
preferred energy technology option, while “HYD M” (A2) 
and “HYD S” (A1) are the next two selected alternatives. 
Moreover, the lowest ranks are assigned to (A8) and (A9) as 
indicated by WASPAS method as well.

The validation of results

In this section, three tests have been performed to validate 
the results obtained by WASPAS and COPRAS methods. 
In order to accomplish this objective, the correlation coef-
ficient between the two methods, consistency verification of 
WASPAS ranking index and sensitivity analysis of COPRAS 
method are performed. Both methods indicate that “HYDL, 
HYD M and HYD S” are the first three alternative energy 
technologies. Spearman correlation coefficient between 
these two methods is estimated at 0.82, which implies a 
strong agreement between the rankings provided by the 
two methods. Although the priority order of some inter-
mediate alternatives has changed slightly, high correlation 
between these two methods establishes their effectiveness 
and applicability.

WASPAS method has a benefit in the optimization of 
problems. In WASPAS algorithm, λ index helps DMs to be 
flexible in their decision to get optimized solution. Table 11 
presents the ranking of alternative REs for varying values 
of λ. It can be observed that WAPAS rankings for different 
λ values are consistent and quite similar with a Kendall tau 
rank correlation coefficient of 0.9391. The most significant 
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Fig. 2   Influential network relationship map (INRM) for RE criteria 
systems

Table 8   The un-weighted super 
matrix of criteria

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C1 0.040 0.088 0.082 0.076 0.084 0.092 0.085 0.080 0.039 0.084 0.092 0.075 0.084
C2 0.039 0.052 0.103 0.072 0.075 0.069 0.064 0.085 0.053 0.109 0.096 0.097 0.089
C3 0.063 0.087 0.063 0.085 0.067 0.076 0.070 0.073 0.048 0.101 0.100 0.091 0.076
C4 0.051 0.066 0.104 0.052 0.062 0.089 0.084 0.058 0.050 0.099 0.107 0.098 0.800
C5 0.057 0.092 0.092 0.081 0.051 0.095 0.054 0.058 0.049 0.087 0.105 0.095 0.086
C6 0.062 0.088 0.088 0.076 0.083 0.060 0.084 0.057 0.046 0.084 0.099 0.090 0.083
C7 0.060 0.084 0.093 0.067 0.080 0.088 0.053 0.070 0.046 0.090 0.090 0.088 0.088
C8 0.060 0.070 0.085 0.066 0.066 0.088 0.082 0.047 0.068 0.096 0.095 0.090 0.088
C9 0.036 0.083 0.107 0.066 0.063 0.070 0.065 0.062 0.039 0.099 0.096 0.127 0.087
C10 0.052 0.054 0.090 0.065 0.065 0.087 0.082 0.061 0.069 0.066 0.095 0.126 0.088
C11 0.063 0.074 0.088 0.077 0.070 0.084 0.078 0.066 0.063 0.092 0.067 0.092 0.084
C12 0.036 0.069 0.080 0.067 0.066 0.074 0.069 0.063 0.077 0.137 0.100 0.670 0.093
C13 0.047 0.075 0.091 0.072 0.076 0.085 0.078 0.073 0.059 0.095 0.094 0.094 0.061
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point of this table is that when these results are compared 
with COPRAS method-based ranking, it is clear that the 
correlation coefficient between the COPRAS method-based 
ranking and WASPAS (λ = 0.1) is 0.76; for λ = 0.5, it is 
0.80, and for λ = 0.9, it is 0.90. This correlation pattern 
signifies that the ranking accuracy of WASPAS method 
increases with the increase in λ value.

Sensitivity analysis is performed to check the consistency 
and robustness of COPRAS for the presented case study. Six 
different weight sets are used to obtain the ranking of the RE 
alternatives, as it is shown in Table 12.

The sensitivity analysis results of COPRAS method are 
given in Table 13. As observed from this table, the ranking 
preorders of the RE alternatives are very close to the origi-
nal COPRAS method-based ranking (Table 10). Kendall tau 
rank correlation coefficient is computed between the rank-
ing of Table 12 and original COPRAS method-based rank-
ing of 0.9560, which indicates an extremely high agreement 
between the estimated ranking orders, and the higher one is 
observed in test 6 (0.9895). Although test 2 gives a slightly 
different ranking, all the other five tests are revealing almost 
similar priority of alternatives especially concerning best and 
worst options. The random sensitivity analysis tests, as they 
were adopted in this study, express the robust performance of 
COPRAS in the context of the RE selection problem.

Discussion

The results of ranking REs by applying the novel hybrid 
MCDM model provide precise outcomes for a comparative 
assessment. The D-ANP technique allows determining the 
interactions among the criteria and provides the degree of 
influence of each of three dimensions and thirteen criteria 
applied for REs technology ranking. The initial relation 

matrix was formed according to the energy expert opinions 
and knowledge. It showed that the environmental indicators 
have the highest impact among the three dimensions and are 
the most influential factor in REs technologies ranking, and 
the degree of influence of economic indicators is the lowest 
among all the indicators.

The D-ANP technique provided that economic indicators 
(D3) have the largest positive value or net influence on REs 
ranking indicating that it is the most important dimension 
among three dimensions. This means that D3 will influence 
other dimensions more than the others influence it. On the 
other side, environmental indicators (D1) have the largest 
value meaning that they have the largest total influence 
degree within all the dimensions. The D-ANP technique 
indicated that the security of supply (C11) is the most sig-
nificant criterion due to its highest total degree of influence. 
Moreover, the peak load response (C12) is of the least impor-
tance in comparison with the other criteria.

The criterion with the maximum reason degree is C12, 
which easily influences other criteria. The criterion with 
the minimum reason degree is human health impact (C1), 
which is mostly influenced by other criteria. GHG emissions 
(C2), fatal accidents (C5) from the past experience and C12 
have the largest degrees of the net influence under the three 
main dimensions of environmental, social and economic 
indicators.

The ranking of REs alternatives by WASPAS and COPRAS 
models provided very similar results and concluded that the 
most attractive RE technology is hydro, and the least attrac-
tive is solar. According to WASPAS method-based analysis, 
“HYD M” is considered the best RE technology among others. 
The ranking of RE alternatives as given by COPRAS method 
indicates that “HYD L” is the most preferred energy alterna-
tive. “HYD M” and “HYD L” were selected as the best RE 
technologies, according to several criteria by WASPAS and 

Table 9   The weighted super matrix for D-ANP process

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C1 0.0028 0.0064 0.0070 0.0053 0.0061 0.0078 0.0072 0.0065 0.0019 0.0059 0.0093 0.0049 0.0076
C2 0.0028 0.0038 0.0088 0.0050 0.0055 0.0059 0.0054 0.0069 0.0026 0.0076 0.0097 0.0064 0.0081
C3 0.0045 0.0063 0.0054 0.0059 0.0049 0.0065 0.0059 0.0059 0.0024 0.0071 0.0101 0.0060 0.0069
C4 0.0036 0.0048 0.0089 0.0036 0.0045 0.0076 0.0071 0.0047 0.0025 0.0069 0.0109 0.0064 0.0727
C5 0.0040 0.0067 0.0079 0.0056 0.0037 0.0081 0.0046 0.0047 0.0024 0.0061 0.0107 0.0062 0.0078
C6 0.0044 0.0064 0.0075 0.0053 0.0060 0.0051 0.0071 0.0046 0.0023 0.0059 0.0100 0.0059 0.0075
C7 0.0043 0.0061 0.0080 0.0047 0.0058 0.0075 0.0045 0.0057 0.0023 0.0063 0.0091 0.0058 0.0080
C8 0.0043 0.0051 0.0073 0.0046 0.0048 0.0075 0.0069 0.0038 0.0034 0.0067 0.0096 0.0059 0.0080
C9 0.0026 0.0060 0.0092 0.0046 0.0046 0.0060 0.0055 0.0050 0.0019 0.0069 0.0097 0.0083 0.0079
C10 0.0037 0.0039 0.0077 0.0045 0.0047 0.0074 0.0069 0.0049 0.0034 0.0046 0.0096 0.0083 0.0080
C11 0.0045 0.0054 0.0075 0.0054 0.0051 0.0072 0.0066 0.0053 0.0031 0.0064 0.0068 0.0060 0.0076
C12 0.0026 0.0050 0.0069 0.0047 0.0048 0.0063 0.0058 0.0051 0.0038 0.0096 0.0101 0.0440 0.0085
C13 0.0033 0.0055 0.0078 0.0050 0.0055 0.0072 0.0066 0.0059 0.0029 0.0066 0.0095 0.0062 0.0055
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COPRAS methods, as these two technologies have very simi-
lar economic, social and environmental indicator values. How-
ever, MULTIMOORA and TOPSIS methods provided quite 
different results for the ranking of the same RE technologies 
in the other studies conducted by Streimikiene et al. (2012). 
In this study, MULTIMOORA suggested that “HYD M” (A2) 

and “HYD L” (A3) are the first two RE technologies, whereas 
TOPSIS method recommended CHP WOOD (A12) and SOL 
TH (A10) as the predominant alternatives. This difference in 
ranking may be attributed to the assumption of equal weights 
of criteria in the previous study.

Table 11   WASPAS ranking 
outcomes divided by � values

Bold values indicate ranking provided by WASPAS method with the most general λ value of 0.5

Alternative RE 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A1 3 3 3 3 3 3 3 3 3
A2 1 1 1 1 1 1 1 1 1
A3 2 2 2 2 2 2 2 2 2
A4 4 4 4 4 4 4 4 4 5
A5 5 5 5 5 5 5 5 6 8
A6 10 10 10 10 10 9 8 8 7
A7 9 9 9 9 9 8 7 7 6
A8 12 12 12 12 12 12 12 12 12
A9 11 11 11 11 11 11 11 11 11
A10 8 8 8 8 7 6 6 5 4
A11 7 7 7 7 8 10 10 10 10
A12 6 6 6 6 6 7 9 9 9

Table 12   Six tests for the sensitivity analysis of COPRAS method

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13

Test 1 0.0831 0.0931 0.0894 0.0853 0.0828 0.0753 0.0849 0.0523 0.0826 0.0518 0.0471 0.0465 0.1258
Test 2 0.0831 0.0853 0.0894 0.0753 0.0523 0.0931 0.0826 0.0849 0.0828 0.0519 0.0465 0.1258 0.0471
Test 3 0.0518 0.0465 0.1258 0.0471 0.0894 0.0831 0.0931 0.0853 0.0753 0.0828 0.0849 0.0826 0.0523
Test 4 0.0471 0.0894 0.0831 0.0931 0.0853 0.0518 0.0465 0.1258 0.0753 0.0828 0.0849 0.0826 0.0523
Test 5 0.0465 0.0894 0.0831 0.0931 0.0853 0.0518 0.0471 0.0753 0.0828 0.0849 0.1258 0.0826 0.0523
Test 6 0.0518 0.0471 0.0753 0.0931 0.0853 0.0465 0.0894 0.0831 0.0828 0.0849 0.1258 0.0826 0.0523

Table 13   Results of sensitivity 
analysis for the COPRAS RE 
selection

RE alternatives Rank

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

A1 4 5 3 3 3 3
A2 1 2 1 1 1 1
A3 2 1 2 2 2 2
A4 6 7 4 5 5 5
A5 7 8 7 6 6 7
A6 5 4 6 7 7 6
A7 8 6 9 9 9 9
A8 10 10 12 11 11 12
A9 11 12 11 12 12 11
A10 3 3 5 4 4 4
A11 12 11 10 10 10 10
A12 9 9 8 8 8 8
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Conclusions

1.	 This paper proposes a novel hybrid D-ANP model for 
the comparative assessment and ranking of RE tech-
nologies. The model combines ANP, WASPAS and 
COPRAS based on the DEMATEL technique. The 
D-ANP is applied to define the key influential factors in 
the RE technologies ranking.

2.	 WASPAS and COPRAS methods are adopted to aggre-
gate the performance measures under different criteria 
into an overall performance score of RE technologies to 
provide a total ranking preorder and validate the results. 
Both these two methods assured that three first alterna-
tive energy technologies are hydro: “HYD L, “HYD M” 
and “HYD S”.

3.	 In order to provide a better analysis, a comparative study 
consisting of several tests of the ranking performances 
of WASPAS and COPRAS methods was performed, 
which signify a strong acceptable agreement between 
the two methods.

4.	 The results of ranking RE technologies can be explained 
by analysing the most influential criteria and indicators 
obtained by D-ANP. As GHG emissions, fatal accidents 
from the past experience and peak load response have 
the largest degree of the net influence in scoring RE 
technologies under the three main dimensions of envi-
ronmental, social and economic indicators, hydropower 
technologies received the highest scores because of the 
associated low life-cycle GHG emissions, low indicators 
of fatal accidents in the past and quite high peak load 
response.

5.	 The solar technologies were ranked as the worst among 
the analysed RE technologies because they are distin-
guished by higher lifetime GHG emissions and very low 
peak load response. In addition, solar energy technolo-
gies were the most expensive among the analysed tech-
nologies, though the solar energy technology is rapidly 
advancing with significant cost reduction in PV technol-
ogies and the associated balance of system components.

6.	 The medium run-of-r iver hydropower plants 
(< 100 MW) or HYD M and large run-of-river hydro-
power plants (> 100 MW) or HYD L were selected as 
the best RES technologies, according to several impor-
tant criteria, as these technologies have exceptionally 
analogous economic, social and environmental indica-
tors. These technologies have the same indicators of 
peak load response and the same indicators of fatal acci-
dents in the past. The lifetime GHG emissions for these 
technologies are very similar as well (0.009 kgCO2/kWh 
for HYD M and 0.008 kgCO2/kWh for HYD L).

7.	 The proposed novel MCDM approach allows to sys-
tematically overcome all types of dependences among 

the decision elements and provides the maximum pre-
cise outcomes and explanations of impacts of various 
criteria and indicators in the RE technologies ranking. 
It is expected that the proposed model will effectively 
solve the dependency of criteria and provide quantified 
decision-making models to help policy makers in the 
selection of the best alternative with maximum effective-
ness.

Appendix 1: D‑ANP method

Step 1 Construct the measure scales of the direct relation 
matrix.

Decision-makers evaluate the relationship between the 
sets of paired criteria to indicate the direct influence that 
each ith criterion exerts on each jth criterion. The initial 
decision table is developed taking into consideration the 
expert opinion and literature survey and can be called direct 
relation matrix where an integer scale (score) ranging from 0 
to 4 for pairwise comparison of dimensions/criteria is used: 
representing no influence (0), low influence (1), middle 
influence (2), high influence (3) and extreme influence (4).

Step 2 Generation of the initial influence matrix 
A =

[
aij
]
n×n

.
The matrix A is obtained from the convergence of expert 

opinion with a direct relation matrix that was developed 
in Step 1. Then, as a result of these evaluations, the initial 
data are obtained in the form of n × n matrix, in which the 
individual element (aij) denotes the degree to which ith cri-
terion affects jth criterion, and n denotes the total number 
of criteria.

Step 3 Determine the normalized direct influence matrix 
(N). This matrix has derived from the normalizing matrix A 
using Eqs. (2, 3):

(1)A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 … a1j … a1n
.

.

.

.

.

.

.

.

.

ai1 … aij … ain
.

.

.

.

.

.

.

.

.

an1 … anj … ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)N = A∕s
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Step 4 Build the total influence matrix T. T is pro-
duced using Eq. (4), where I is the identity matrix, and 
limh→∞ Nh = [0]n×n

Then,

Step 5 Construct the influential network relation map 
(INRM). According to Eqs. (6, 7), the sum of each row and 
column for T  can be obtained, where vector r (any crite-
rion i influences all other criteria) denotes the sum of all 
vector rows r = (r1, r2,… , rn) , and vector y (any criterion 
j is influenced by all other criteria) denotes the sum of all 
vector columns y = (y1, y2,… , yn) . Further on, the sums of 
rows and columns of matrix T  are calculated. At the total-
relation matrix T, the sum of rows and sum of columns are 
represented by vectors r and y , which are derived using 
Eqs. (6) and (7). When i equals j , i, j ∈ {1, 2,… , n} , then 
(ri + yi) represents the total degree of influence among cri-
teria, and the higher is its value, the closer is the criterion to 
the object’s central point, and (ri − yi) interprets the degree 
of causality among the criteria. The degrees of influence 
and causality can provide important reference information 
to inform decision-making by plotting the INRM:

Now, the total inf luence matrix of criteria as 
T =

[
tij
]
n×n

, i, j = 1, 2,… , n is considered, and the total 
influence matrix of dimensions (or clusters) as T =

[
tD
ij

]
m×m

 

(3)s = max

[
max
1≤i≤n

n∑
j=1

aij, max
1≤i≤n

n∑
i=1

aij

]
.

T = N + N
2 + N

3 +⋯ + N
h

= N(I + N + N
2 +⋯ + N

h−1)[(I − N)((I − N)−1]

= N(I − N
h)(I − N)−1.

(4)T = N(I − N)−1, when lim
h→∞

Nh = [0]n×n

(5)T =
[
tij
]
n×n

, i, j = 1, 2,… , n.

(6)r =

[
n∑
j=1

tij

]

n×1

=
[
ti
]
n×1

, i = 1, 2,… , n

(7)y =

[
n∑
i=1

tij

]

1×n

=
[
tj
]
n×1

, j = 1, 2,… , n.

is regarded. Therefore, in order to obtain the dynamic 
degree of influence of weights, the weights and their influ-
ences in the super-matrix of the ANP need to be deter-
mined by normalizing Tc by dimension/cluster.

Step 6 Obtain the un-weighted super-matrix W  by trans-
posing the normalized total influence matrix T�

c
 with the 

DEMATEL technique. This step uses the basic concepts of 
the ANP to build the un-weighted super-matrix W as follows:

In order to normalize the total influence matrix Tc using 
dimensions, the following relations must be done; thus, 
the normalized matrix T�

c
 by dimensions can be obtained 

as shown in Eq. (9). For example, T�11
c

 can be normalized 
similarly to obtain T�nn

c
 as shown in Eqs. (10, 11). Next, 

using Eq. (12), the normalized influence matrix T�
c
 is trans-

posed to obtain the un-weighted super-matrix W.

(8)Tc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T11
c

… T
1j
c … T1n

c

.

.

.

.

.

.

.

.

.

Ti1
c

… T
ij
c … Tin

c

.

.

.

.

.

.

.

.

.

Tn1
c

… T
nj
c … Tnn

c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)Tc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T�11
c

… T
�1j
c … T�1n

c

.

.

.

.

.

.

.

.

.

T�i1
c

… T
�ij
c … T�in

c

.

.

.

.

.

.

.

.

.

T�n1
c

… T
�nj
c … T�nn

c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)d11
i

=

m1∑
j=1

t11
cij
i = 1, 2,… ,m1
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In this approach, Dn shows the n th dimension.
Step 7 Compute the weighted super-matrix W� . In this 

case, TD =
[
tD
ij

]
m×m

 is shown in Eq. (13) and should be nor-

malized by Eq. (14):

(11)Tc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t11
c11
∕d11

1
… t11

c1j
∕d11

1
… t11

c1m1
∕d11

1

.

.

.

.

.

.

.

.

.

t11
ci1
∕d11

i
… t11

cij
∕d11

i
… t11

cim1
∕d11

i

.

.

.

.

.

.

.

.

.

t11
cm11

∕d11
m1

… t11
cm1 j

∕d11
m1

… t11
cm1m1

∕d11
m1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t
�11

c1
1

… t
�11

c1j
… t

�11

c1m1

.

.

.

.

.

.

.

.

.

t
�11

ci1
… T

�11

cij
… T

�11

cim1

.

.

.

.

.

.

.

.

.

t
�11

cm11
… t

�11

cm11
… t

�11

cm1m1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)W = (T�

c
)� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W11 … Wi1 … Wn1

.

.

.

.

.

.

.

.

.

W1j … Wi1 … Wnj

.

.

.

.

.

.

.

.

.

W1n … Win … Wnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(13)TD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t
D11

11
… t

D1j

1j
… t

D1m

1m

.

.

.

.

.

.

.

.

.

t
Di1

i1
… t

Dij

ij
… t

Dim

im

.

.

.

.

.

.

.

.

.

t
Dm1

m1
… t

Dmj

m … t
Dmm

mm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)di =

m∑
j=1

t
Dij

ij
i = 1, 2,… ,m.

Therefore, T�

D
 can be determined after normalizing TD as 

shown in Eq. (15):

T
�

D
 and W attempts to arrive at weights with different degrees 

of influence in order to obtain the weighted super-matrix W� , 
as shown in Eq. (16):

Step 8 Clear the influential weights of the D-ANP with 
the limit super-matrix limg→∞(W

�)g . The super-matrix W� is 
multiplied by itself several times to obtain the limit weighted 
super-matrix (a concept based on the Markov chain) to a fixed 
convergence value. Then, the influential weights of the D-ANP 
can be obtained with limg→∞(W

�)g , where g represents a 

(15)

T
�

D
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t
D11

11
∕d1 … t

D1j

1j
∕d1 … t

D1m

1m
∕d1

.

.

.

.

.

.

.

.

.

t
Di1

i1
∕di … t

Dij

ij
∕di … t

Dim

im
∕di

.

.

.

.

.

.

.

.

.

t
Dm1

m1
∕dm … t

Dmj

m ∕dm … t
Dmm

mm ∕dm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t
�11
11

… t
�1j

1j
… t

�1m
1m

.

.

.

.

.

.

.

.

.

t
�i1
i1

… t
�ij

ij
… t

�im
im

.

.

.

.

.

.

.

.

.

t
�m1
m1

… t
�mj
m … t

�mm
mm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

W� = T
�

D
W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t
�11
11

×W11 … t
�1j

1j
×Wi1 … t

�1m
1m

×Wn1

.

.

.

.

.

.

.

.

.

t
�i1
i1

×W1j … t
�ij

ij
×Wij … t

�im
im

×Wnj

.

.

.

.

.

.

.

.

.

t
�m1
m1

×W1n … t
�mj
m ×Win … t

�mm
mm ×Wnn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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positive integer number. This process is recognized as a 
D-ANP, which stands for DEMATEL-based ANP.

Appendix 2: WASPAS method

Among new MCDM tools, WASPAS is called a unique mix-
ture of two well-known MCDM approaches, i.e. weighted sum 
model (WSM) and weighted product model (WPM) that starts 
with the following matrix:

where m is the number of alternative solutions, and n is the 
number of evaluation criteria, and in this sense, xmn is the 
performance rating of each alternative for the decision cri-
teria. Thus, the first step is to normalize the decision matrix 
using the following equations, where the normalized value 
is denoted by x̄ij.

Algorithm of WASPAS is seeking a joint criterion of opti-
mality based on two criteria of optimality. The first criterion 
of optimality, i.e. the criterion of a mean weighted success, 
is similar to WSM method. It is a popular and well-accepted 
MCDM approach applied for evaluating a number of alterna-
tives in terms of a number of decision criteria. Based on WSM 
method, the total relative importance of ith alternative is cal-
culated as follows (Triantaphyllou and Mann 1989):

The model is based as well on the WPM method; the total 
relative importance of ith alternative is computed using the 
following expression:

A joint generalized criterion of weighted aggregation of 
additive and multiplicative methods is proposed as follows:

(17)X =

⎡⎢⎢⎢⎣

x11 x12 … x1n
x21 x22 … x2n
… … … …

xm1 xm2 … xmn

⎤⎥⎥⎥⎦

(18)For benefit attributes: x̄ij =
xij

maxi xij

(19)For non - benefit attributes: x̄ij =
mini xij

xij
.

(20)Q
(1)

i
=

n∑
j=1

x̄ijwj

(21)Q
(2)

i
=

n∏
j=1

(x̄ij)
wj .

(22)Qi = 0.5Q
(1)

i
+ 0.5Q

(2)

i
= 0.5

n∑
j=1

x̄ijwj + 0.5

n∏
j=1

(x̄ij)
wj .

In order to have an increased ranking accuracy and effec-
tiveness of the decision-making process of WASPAS method, 
a more generalized equation for determining the total relative 
importance of ith alternative is developed and provided below 
(Zavadskas et al. 2012, 2013; Hashemkhani Zolfani et al. 2013):

Now, the candidate alternatives are ranked based on the Q 
values, i.e. the best alternative would be the one having the 
highest Q value. When the value of � is 0, WASPAS method 
is transformed to WPM, and when � is 1, it becomes WSM 
method.

Appendix 3: COPRAS method

The computational steps that are involved in COPRAS 
method-based analysis are now presented below (Chatterjee 
et al. 2011; Mulliner et al. 2013; Zavadskas et al. 2009; Bago-
cius et al. 2014):

Step 1 D is a decision matrix, containing the performance 
rating of m number of alternatives with respect to n number of 
criteria, as shown below.

where xij is the rating of ith decision criteria on jth alterna-
tive, whereas m is the number of alternatives, and n is the 
number of criteria.

Step 2 Normalize the decision matrix using Eq. (24).

Step 3 Calculate the weighted normalized decision matrix 
as follows, where wi includes the weights of criteria and is 
given by 

∑n

i=1
wi = 1,

The sum of dimensionless weighted normalized values of 
each criterion is always equal to the weight of that criterion.

(23)

Qi = 𝜆Q
(1)

i
+ (1 − 𝜆)Q

(2)

i
= 𝜆

n∑
j=1

x̄ijwj + (1 − 𝜆)

n∏
j=1

(x̄ij)
wj

(24)D =

⎡⎢⎢⎢⎣

x11 x12 … x1n
x21 x22 … x2n
… … … …

xm1 xm2 … xmn

⎤⎥⎥⎥⎦

(25)rij =
xij∑m

j=1
xij
, j = 1, 2,… ,m, i = 1, 2,… , n

(26)vij = wi × rij, j = 1, 2,… ,m, i = 1, 2,… , n.

(27)
m∑
j=1

vij = wi
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Thus, it can be said that the weight, wi of ith criterion, is 
proportionally distributed among all the alternatives accord-
ing to their weighted normalized value vij.

Step 4 Calculate the sums of weighted normalized val-
ues for both beneficial (Pj) and non-beneficial attributes (Rj) 
using the following equations:

where k is the number of criteria to be maximized.

where (n − k) is the number of criteria to be minimized.
Step 5 Determine the relative significances or priorities 

of the alternatives as follows:

Step 6 Calculate the quantitative utility (Nj) for jth alter-
native. The degree of an alternative utility, which leads to a 
complete ranking of the candidate alternatives, is determined 
by comparing the priorities of all the alternatives with the 
most efficient one and can be denoted as it is shown below:

where Qmax is the maximum relative significance value. 
These utility values of the alternatives range from 0 to 100%. 
Thus, this approach allows evaluating the direct and propor-
tional dependence of the significance and utility degree of 
the considered alternatives in a decision-making problem 
having multiple criteria, their weights and performance val-
ues of the alternatives with respect to all the criteria.
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