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Abstract Optimization of sustainable process plant con-

figurations requires the use of systematic assessment

methods based on the usage of natural resources, release of

pollutants and generation of environmental impact. This

paper presents an integrated life cycle optimization

framework for the synthesis of microalgae cultivation

systems, using a multiple objective linear program for-

mulation; in the model, individual objective functions are

aggregated and weighted using the analytic hierarchy

process. Four different cultivation alternatives were used as

case study to demonstrate the capability of this formulated

integrated model. The model takes into account three main

environmental criteria in assessing different cultivation

alternatives, namely energy, water (direct and indirect

water) and carbon footprints. It is determined in the case

study that the open pond cultivation system is preferred

compared to other alternatives.

Keywords Microalgae � Life cycle assessment � Life cycle
optimization � Multiple objective linear programming �
Analytic hierarchy process

List of symbols

A Technology matrix

B Environment intervention matrix

f(x) Objective function

g Total value of the environmental footprint

P Worst alternative matrix

wi Weight of each criterion i (i = 1, 2, …, n)

w
*

fp
AHP weight vector

x Gross output or scaling vector

y Net output vector

z Pairwise comparison matrix

Introduction

Many alternative energy sources have been studied for the

production of biofuels due to recent energy security con-

cerns and environmental issues. It is predicted that the

world energy demand will increase by as much as 53%

from recent levels by year 2030 (Talebian-Kiakalaieh et al.

2013). The current course of fossil fuel consumption is

unsustainable particularly due to the release of greenhouse

gases (GHGs), such as carbon dioxide (CO2), into the

atmosphere (Amaro et al. 2011). Thus, biofuels have

gained worldwide interest as low-carbon alternatives for

use in motor vehicles. Feedstocks for biofuel production

include commercial crops like corn, sunflower, soybean,

rapeseed, oil palm, as well as crop residues or biomass

(Balat and Balat 2009). Global production of biofuels grew

from 16 9 109 L in 2000 to more than 100 9 109 L in

2011 (Zhang et al. 2013). Among emerging biofuel feed-

stocks, microalgae are one of the most promising due to its

high yield (i.e., fuel production per hectare) and fast

growth rate (Avagyan 2008). Microalgae are classified as
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third-generation biofuel feedstocks (Chisti 2007). Further-

more, integrated systems involving microalgae production

and wastewater treatment allow pollutants to be used as

nutrients for microalgae (Mata et al. 2010).

Unlike first-generation biofuel feedstocks which often

require high-quality agricultural land, the production of

biodiesel from microalgae will not compromise food pro-

duction (Demirbas 2009). It is estimated that microalgae

can produce 20–760 times more oil per unit of land area

than other conventional crops (Chisti 2007). Favorable

properties of microalgae result from their high photosyn-

thetic efficiency and have benefits for large-scale cultiva-

tion systems (Aslan and Kapdan 2006). In addition, some

varieties of microalgae can use wastewater, brackish water

or seawater, thus reducing competition for fresh water

resources (Rawat et al. 2013). Microalgae can also be

grown under heterotrophic conditions to achieve higher

yields by using carbon sources dissolved or suspended in

water (Liang 2013).

Nevertheless, there are still questions that remain about

the best pathway for the production of microalgae biomass

for fuel production (Handler et al. 2014). Some works on

microalgae derived biofuels have focused on the

improvement or selection of the various processing steps

starting from the production of feedstock up to fuel con-

version (Quinn and Davis 2015). A holistic evaluation of

the environmental impacts of microalgae derived biofuels

can be accomplished using life cycle assessment (LCA).

LCA is a tool used to analyze the overall environmental

impact of the product from the initial stage of raw material

acquisition until the end of life of the product. It is a

quantitative tool for analyzing the impacts related to a

product or service from the initial stage of raw material

acquisition to the end of life or disposal of the product

(Guinée 2002). LCA enables the comparison of environ-

mental performance between products and processes which

perform the same function (Guinée 2002). Several studies

of LCA for the different process paths for biodiesel/biogas

production from microalgae have been conducted in the

past years. Table 1 shows a summary of LCA studies of

different microalgae production systems.

Despite improvements in the cultivation and process-

ing of microalgae, the overall sustainability of algal

biofuels remains controversial (Azadi et al. 2014).

Technologies need to be assessed based on environmental

impacts, quantified via metrics such as energy, water and

carbon footprints. De Benedetto and Klemeš (2009) also

proposed that carbon footprint, water footprint, energy

footprint and workplace footprint be evaluated in the

context of streamlined LCA as input for strategic deci-

sion-making. Čuček et al. (2012) conducted a compre-

hensive review of footprint analysis tools for monitoring

impacts on sustainability. Razon (2014) discussed the

importance of the nitrogen cycle and its interplay with

other footprints. These methods enable the comparison of

different technologies, which will then facilitate the

selection of the most promising ones. Numerous papers

dealing with the optimization and environmental assess-

ment of biomass energy supply chains have been

published.

Life cycle optimization (LCO) methodology is based

on the combination of LCA with mathematical pro-

gramming, which was first proposed by Azapagic and

Clift (1998) and applied to industrial boron production

(Azapagic and Clift 1999). The approach based on the

matrix formalism of Heijungs and Suh (2002) was later

extended into a LCA optimization model by Tan et al.

(2008) using fuzzy linear programming. Many other

studies have also been done by incorporating multi-ob-

jective optimization approach to identify the optimal

point with regard to the different objectives, such as total

environmental footprints (Čuček et al. 2014) as well as

actuarial risk estimates of fatalities (Ramadhan et al.

2014). A recent robust formulation for LCO was also

proposed by Wang and Work (2014). However, one of

the challenges in multi-objective optimization is in

identifying the appropriate aggregation method to inte-

grate the objectives into a single performance index,

which is typically done by assigning importance weights

to the different objectives. As shown in Table 1, previous

LCA studies for the microalgae cultivation system were

mainly focused in comparing overall environmental

impacts without taking into consideration the priority of

the environmental concerns.

There have been recent studies on LCO applied to

bioenergy systems. For example, Gong and You (2014)

developed the global optimization of the microalgae

processing for CO2 mitigation and biofuel production.

Murphy et al. (2016) performed optimization to assess

biomass energy conversion technologies which ensure

minimal greenhouse gas emissions. Meanwhile, Khila

et al. (2016) used LCO for identifying the optimal

operating condition for hydrogen production and Miret

et al. (2016) performed multi-objective optimization for

the design and operation of the biomass supply chain

under economic, environmental and social criteria.

Mousavi-Avval et al. (2017) applied multi-objective

genetic algorithm to find the best combination of energy,

economic and environmental indices for oilseed canola

production. Escobar et al. (2017) developed a framework

that combines LCA with economic optimization to

determine the feedstock combination for biodiesel pro-

duction in Spain. On the other hand, there is a

notable gap in the literature on the LCO of microalgae

production systems. For example, searching the Scopus

database using ‘‘life cycle optimization’’ as key word
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yields 161 published documents; however, filtering fur-

ther using ‘‘microalgae cultivation’’ as an additional

search parameter results in only one conference paper.

Thus, a significant research gap can be identified in this

specific application of LCO.

In this work, the analytic hierarchy process (AHP)

(Saaty 1979) is utilized to develop an integrated AHP-LCO

framework for determining the optimum system design for

microalgae production. The methodology integrates the

importance or preference weights of multiple

Table 1 Summary of different life cycle impact assessment studies for cultivation and harvesting process in microalgae production

Author Cultivation method Summary

Lardon et al.

(2009)

Open pond LCA was conducted for two different culture conditions and harvesting methods. Microalgae

show as potential energy sources

Liu and Ma

(2009)

Open pond LCA of microalgae-based fuel methanol was conducted to evaluate its energy efficiency and

environmental emission compared with gasoline fuel

Clarens et al.

(2010)

Open pond Comparative studies of LCA for switchgrass, canola, corn farming and microalgae were

conducted. Conventional crops show lower environmental impacts than algae. However,

algae performed favorably in total land use

Jorquera et al.

(2010)

Tubular PBR, flat-plate PBR

and open pond

LCA of biomass production from Nanochrolopsis sp using three different cultivation

methods was conducted. Flat-plate PBR and open pond cultivation show better net energy

ratio compared with tubular PBR

Sander and

Murthy (2010)

Open pond Energy analysis of microalgae dewatering process was conducted and showed high amount of

energy required

Campbell et al.

(2011)

Open pond LCA study was conducted to compare biodiesel production from algae with canola and ultra-

low sulfur diesel. Algae show favorable results in greenhouse gases emissions compared to

the others

Collet et al.

(2011)

Open pond LCA of biogas production from the microalgae is performed and compared to algal biodiesel

and to first-generation biodiesels

Murphy and

Allen (2011)

Open pond A preliminary study of energy and water consumption was studied and provided input to the

energy and water management of the overall processes in microalgae production

Razon and Tan

(2011)

Integrated PBR and open

raceway pond

Energy deficiency was observed during post-harvest dewatering and oil recovery operation of

microalgae production

Yang et al.

(2011)

Open pond Life cycle water and nutrients usage of microalgae-based biodiesel production for the 11

algae strains were conducted

Beach et al.

(2012)

Not specify LCA of three different flocculants used in harvesting process was conducted

Chowdhury et al.

(2012)

Integrated PBR and open

raceway pond

Energy consumption and global warming potential were analyzed for the microalgae

production

Frank et al.

(2013)

Open pond LCA for the biogas production from microalgae using hydrothermal liquefaction and lipid

extraction was evaluated

Liao et al. (2012) Open pond LCA of microalgae cultivation, harvesting, drying, oil extraction, anaerobic digestion, oil

transportation, esterification, biodiesel transportation and biodiesel combustion was done

Sevigne Itoiz

et al. (2012)

Bubble column PBR LCA to compare the indoor and outdoor growth of algae in bubble column PBR. Outdoor

production system shows better energy consumption and life cycle impact to the

environment

Vasudevan et al.

(2012)

Open pond LCA for various technology options affected GHG and freshwater consumption for

microalgae biofuel production

Adesanya et al.

(2014)

Hybrid tubular PBR and

open pond

LCA from the hybrid system of microalgae cultivation to biodiesel production.

Environmental impacts were compared to fossil-derived diesel

Handler et al.

(2014)

Open pond LCA for cultivation techniques (raceway vs. effluent cultivation) and fuel conversion

pathways (pyrolysis vs. oil extraction and hydrotreatment) was conducted

Quinn et al.

(2014)

Open pond, bioreactor LCA for four microalgae-to-biofuel production scenarios using process modeling on:

baseline scenario, improved microalgae productivity, supercritical CO2 extraction and no

nutrient recycle

Soh et al. (2014) Open pond LCA to evaluate varying species/growth conditions (freshwater and marine)

Study of microalgae cultivation systems based on integrated analytic hierarchy process–life… 2077

123



environmental footprints (i.e., energy, water and carbon

footprint) to come up with a single environmental perfor-

mance index. Through AHP, the subjective preferences of

an expert can be captured in a quantitative form for use

within a larger modeling framework (Ho 2008). These

preferences are then utilized to generate the weights of the

environmental footprints, which are then utilized to opti-

mize the system. Different cultivation alternatives and

carbon sources of microalgae production are evaluated

with this proposed model to provide valuable insights in

designing the microalgae production system. The rest of

the paper is organized as follows. The next section dis-

cusses the formulation of the integrated AHP-LCO

framework. Then, a case study based on literature values is

utilized to illustrate the modeling approach. Finally, con-

clusion and prospects for future work are presented at the

end of the paper.

Methodology

In general, the approach for LCO model development is

comprised of four main steps, which are: acquiring the data

for major processes in the life cycle, implementing AHP to

determine the preference weights, formulating the multi-

objective optimization problem within the LCA context

and finally solving the model.

The methodological framework is shown in Fig. 1. The

framework enables the determination of best cultivation

option along with the optimum target value of preference

environmental footprints. Identification of the system

design goal (the environmental preferences in this case) is

essential as it is required in the building of AHP hierarchy.

LCA is integrated into AHP to assess different alternative

technologies. Then, a multiple objective linear program

(MOLP) model for the system is developed to minimize the

overall environmental impact. Finally, the best technology

option can be determined. A graphical representation of the

sequential methodology is shown in Fig. 2. Using the LCA

framework, the boundaries of the system are defined by

identifying the functional unit, the processes and technol-

ogy alternatives, material and energy streams to be inclu-

ded in the analysis, and the environmental footprints to be

considered (Step 1). The relative importance of the envi-

ronmental footprints is then derived using AHP (Step 2).

The preference weights are needed to aggregate the foot-

prints into a single environmental score. LCO is then

implemented to identify the optimal process design for the

system based on the objective function (Step 4), by taking

into consideration of the environmental footprint limits or

the worst environmental performance in each environ-

mental footprint (Step 3). The integrated AHP-LCO model

is formulated as a MOLP, which is used to determine the

optimal solution. The weighted sum form of the composite

objective function ensures that the solution is Pareto opti-

mal (Clark and Westerberg 1983).

The process data can be used to generate the technology

matrix A, which is an n 9 m matrix to represent n material

or energy flows and m technology matrix processes. It

consists of process inputs and outputs of material andFig. 1 Methodology framework of the integrated AHP-LCO model

Fig. 2 Decision modeling

framework for identifying the

minimum footprints of

cultivation options
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energy. The convention used denotes output streams with

positive values and input streams with negative values

(Heijungs and Suh 2002). The intervention matrix B is a

k 9 m matrix representing k environmental flows associ-

ated with the m processes. The flows represent the inter-

action of the processes with the environment (i.e., primary

energy and water resource consumption and CO2 emis-

sions). The m technology matrix is arranged from its left to

the right, starting of resources by the facility to the main

process of the system. The balance equations are as

follows:

Ax ¼ y ð1Þ
Bx ¼ g ð2Þ

where the net output vector y indicates the amount of

material or energy flow that is needed or that exits the

system as product; in the context of LCA, this is typically

the functional unit. Meanwhile, x is the gross output or

scaling vector. Equation (1) indicates the overall material

and energy balance of the system. The processes can be

scaled up or down by the scaling vector, x, to meet the

desired net output vector. When A has more columns than

rows, Eq. (1) has excess degrees of freedom, which allows

for optimization via selection from alternative technologies

or processes. Meanwhile, Eq. (2) exhibits the interaction of

the processes with the environment, where B is the inter-

vention matrix and g is the environmental footprint matrix.

Within this framework, a single process can be represented

as vectors A(j) and B(j). Figure 3 shows an example for the

microalgae cultivation process using open pond. Note that

zeroes indicate nonexistent streams in the respective pro-

cess. Vector B(7) contains only four rows to represent the

four process environment flows, i.e., (1) energy, (2) carbon,

(3) direct water footprint and (4) indirect water footprint. In

this case, the zero values in vector B(7) indicate that there

are no energy and carbon flows associated with the process

and that an input of 80 tons of direct water is needed.

Negative and positive values in each process column vector

denote inputs and outputs, respectively; further details of

this convention are described by Heijungs and Suh (2002).

The second step involves weighting of priorities for the

environmental footprint. Multiple objective optimization

models can be integrated with AHP to determine priorities

(Olson 1988). Some hybrid approaches are described in a

review by Ho (2008). In such approaches, criterion weights

of the environment footprint, w
*

fp, are measured using the

AHP technique. AHP is the versatile multi-criterion deci-

sion-making methodology which decomposes the problem

structure into a hierarchical model and derives priorities

from pairwise comparisons. These priorities are ratio scales

derived from value judgments in a pairwise comparison

matrix, z, as described in Eq. (3) (Saaty 1990).

z ¼

w1

w1

w1

w2

� � � w1

wn

..

. ..
. ..

. ..
.

wi

w1

wi

w2

. . .
wi

wn

..

. ..
. ..

. ..
.

wn

w1

wn

w2

. . .
wn

wn

2
6666666664

3
7777777775

ð3Þ

where wi is the weight of each criterion i (i = 1, 2, …, n).

A ratio scale is given based on the intensity of importance

of one criterion over another. The subscript i refers to the

row. Table 2 indicates the fundamental nine-point scale

used when carrying out the pairwise comparison. Based on

the hierarchical model shown in Fig. 2, a set of questions is

prepared to elicit value judgment of an expert to generate

the pairwise comparison matrix. Then, the weight vector

w
*

fp can be computed via eigenvector method (Saaty 2003).

The third step is to normalize the environmental footprints

from the different technology options relative to the per-

formance of the worst alternative matrix, P. This step

ensures that all the values are properly scaled and lie in the

interval [0, 1].

The fourth step is performing the LCO by integrating the

priority weights with the optimization model, via the

Fig. 3 Example of column

vector representation of a

process

Table 2 AHP fundamental nine-point scale (Saaty 1990)

Value of zjk Definition

1 j and k are equally important

3 j is slightly more important than k

5 j is more important than k

7 j is strongly more important than k

9 j is absolutely more important than k
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objective function, f(x). Equation (4) represents the overall

result upon performing steps outlined above.

minimize fðxÞ ¼ w
*

fpðPÞ�1g ð4Þ

In order to satisfy this optimization model, the limita-

tions of the linearity assumption are the following: (1) the

input and output data are constant, (2) the relationship

between objective function and constraints is linear, and (3)

the value of variables must be nonnegative. Note that the

resulting model is a linear program, for which a global

optimum can be readily determined without significant

computational issues. In this work, the model template is

built using Microsoft Excel spreadsheet file and solved

using the standard Solver add-in in an Intel� iCoreTM i5-

3317U CPU 1.7 Ghz, with 4 GB memory. For the case

study described in the next section, the computational time

was negligible.

Case study: integrated AHP-LCO

Goal and scope

Life cycle assessment is typically conducted either to

compare technology alternatives and identify the best

option or to identify hot spots within the product’s life

cycle. In this work, the goal is to determine the optimal

technology alternative that minimizes the overall environ-

mental impact. A functional unit of one ton of dry

microalgae biomass produced is used as the basis for the

calculations. The integrated AHP-LCO framework is used

to select which is the best among the four microalgae

cultivation systems. The life cycle system includes inputs

of material and energy from microalgae cultivation to

microalgae dry biomass production. The environmental

footprints being considered are energy, water and carbon

footprint. Energy footprint takes into account energy

inputs, such as process energy and electricity, which are

obtained from nonrenewable resources (Schindler 2015).

Carbon footprint calculates the amount of net greenhouse

gases released from a system directly or indirectly. In this

work, total CO2 emissions are used as an approximation of

the total carbon footprint; it does not include other green-

house gases. Although the energy footprint is correlated

with the carbon footprint, the correlation is imperfect and

dependent on the carbon intensity of the energy mix of a

given location. For example, if electricity comes from

renewable sources, then the correlation is much weaker.

Water footprint, which is an indicator of water usage,

measures the water used directly and indirectly at different

stages of the supply chain (Hoekstra and Chapagain 2007).

Functional unit

Functional unit is defined as the physical quantity of output

that is used as a basis to normalize all other computations

throughout the LCA. It also enables different systems to be

treated as functionally equivalent (Guinée 2002). To

compare microalgae cultivation alternatives in this study,

all the data are normalized to a functional unit of one ton of

dry biomass. It is the net output vector y indicated in

Eq. (1). One ton of dry microalgae biomass is used as the

functional unit in this work.

Data sources/assumptions

This step involves setting the system boundaries, designing

the flow diagram with unit processes and collecting the

data for each of these processes in order to complete the

final LCA calculations. The process data are often orga-

nized around the unit processes, providing information on

the material and energy input and output flows, as well as

environmental inputs and outputs. The process data are

typically quantified in relation to a reference flow (e.g., one

ton of material or 1 kWh of electricity). Data sources used

here include previously published data from the literature

and from EIOLCA.net (Carnegie Mellon University Green

Design Institute 2013). The technology matrix (A) and the

environment intervention matrix (B) are obtained. The

inventory of the data is divided into two stages. Stage one

is data collection for the technology matrix (A) and the

environment intervention matrix (B) of the resources inputs

(i.e., urea, salt, diammonium phosphate (DAP) and elec-

tricity) into the main systems. These upstream systems can

Fig. 4 Partial LCA of key upstream inputs
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then be represented as a single consolidated process within

the LCO model. The system boundary is illustrated in

Fig. 4. The second stage is to consider the input and output

data of the main systems (each single process involves in

the operation). The assumptions and limitations of the

processes are:

1. CO2 was sequestered from the atmosphere via photosyn-

thesis during microalgae cultivation. This CO2 is even-

tually released to the atmospherewhen the final product is

used. Hence, the contribution of biomass carbon to

system carbon footprint is virtually zero (Handler et al.

2014). The carbon footprint resultsmainly from the use of

fossil fuel within the life cycle system.

2. The amount of nutrients added is determined based on

the nitrogen and phosphorous contents of the algae cell

(around 5.5% N of the algae dry weight and around

1.1% P of the algae dry weight) (Borowitzka 1992).

3. Significant mixing is required during microalgae

cultivation. Aeration is used to accomplish appropriate

mixing (Zhang et al. 2013).

4. The amount of water lost due to evaporation depends

on the climatic conditions. It is estimated to be 0.88 m3

for each m2 of cultivation open pond area per year

(Murphy and Allen 2011).

5. Microalgae biomass concentration of 0.5 kg/m3 is

assumed at the harvesting stage (Borowitzka 1999).

6. The water obtained from the dewatering step is sent

back to the microalgae cultivation pond for reuse.

Thus, the water discharged to the environment during

the dewatering process is negligible.

7. Steam drying system is used for drying wet biomass.

This step consumes 134 kWh to produce one ton of dry

microalgae biomass (Zhang et al. 2013).

8. During the dewatering process by centrifugation, dry

biomass with solid content of 15% w/w is obtained

(Zhang et al. 2013).

The use of AHP-LCO model is illustrated by a simpli-

fied case study involving microalgae cultivation system.

The case study is intended solely as an illustrative example

for the purposes of explaining the general methodology

proposed in ‘‘Methodology’’ section. Hence, the life cycle

system is a small one, with just four different cultivation

systems, six material or energy flows and four environ-

mental flows. There are four cultivation systems consid-

ered: (1) open pond, (2) PBR, (3) cultivation by starch and

(4) cultivation by cellulose. The alternative systems are

generated based on the literature review. The material and

energy inputs per ton of dry biomass produced by different

cultivation options are presented in Table 3. These data are

normalized to the production of one ton of dry biomass in

order to fit into the matrix calculation. Note that the

material and energy requirements in harvesting process (as

shown in Table 3) are similar for all the four alternatives.

Meanwhile, the data sources for the background processes

such as electricity generation and chemicals production are

presented in Table 4. The chemicals production data are

obtained through the EIOLCA.net (Carnegie Mellon

University Green Design Institute 2013). Table 5 shows

the technology and intervention matrices (A and B) of

these background processes.

Figure 5 shows the process block diagram for the

microalgae cultivation open pond. Mixing with paddle

wheel is performed during the entire cultivation period,

which required electricity. Additional nutrients, particu-

larly urea, salt and DAP, are added into the pond for the

growing of microalgae. When the algae concentration of

the open pond reaches 0.5 kg/m3, the algae solution will

pass through the harvesting screen and the process of

centrifugation to get a cake with solid content of 15% w/

w. The water obtained from the dewatering (centrifuge)

step is sent back to the algae cultivation pond to be reused.

In alternative 2, microalgae cultivation is performed in

PBR system. The process of biomass production from

microalgae obtained from PBR is schematically shown in

Fig. 6. Apart from the cultivation step, other steps of

biomass production, i.e., microalgae harvesting and

dewatering, are similar to that of open pond system;

therefore, only the cultivation in the photobioreactor is

discussed in detail in this section. In a PBR cultivation

system, sunlight is important as energy source for the

photosynthesis process.

In alternative 3, microalgae cultivation is carried out in

a fermenter system with starch as carbon source as illus-

trated in Fig. 7. Carbon source has to be provided in the

cultivation medium. In this case, starch, which is consid-

ered as a cheaper carbon source, is the main carbon source

during the cultivation process. When starch is used as

carbon source, the dissolved starch and nutrients are well

mixed before being fed into the cultivation fermenter.

Meanwhile, other steps of biomass production are similar

to the open pond system. Finally, in alternative 4, cellu-

lose is employed as the carbon source. Hydrolysis of

cellulose will be performed prior to feeding in the fer-

menter, and then, the hydrolyzed cellulose and dissolved

nutrients will be fed to the fermenter. The schematic

process is shown in Fig. 8.

The system considers four environment flows, energy,

CO2, indirect water and direct water. Based on the input

data to the systems, the matrices in model (Eqs. 1, 2) are

determined. Matrices A (Eq. 5) and B (Eq. 6) contain

coefficients derived from Tables 3 and 5.
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The eight rows of A correspond to flows of electricity

(in kWh), salt (in ton), urea (in ton), DAP (in ton), starch

(in ton), cellulose (in ton), wet microalgae (in ton) and the

dry biomass of microalgae (in ton). The columns one to six

are corresponded to the background processes input and

output as shown in Table 5. Meanwhile, the columns seven

to ten represent the data for the four cultivation technolo-

gies: (1) open pond, (2) PBR, (3) cultivation by starch and

(4) cultivation by cellulose. The four rows in B correspond

to the flows for energy (in kWh), CO2, indirect water and

direct water (in ton). The net output or functional unit

vector, y, specifies a net output of 1 ton of dry biomass in

the eighth row (Eq. 7):

y¼

0

0

0
0

0

1

0
BBBBB@

1
CCCCCA

ð7Þ

By utilizing matrices A and B, and Eqs. (1) and (2), it is

possible to solve for the environmental footprint, g, of each

A ¼

1

0

0
0

0

0

0

0

�3055:6
1

0
0

0

0

0

0

�6388:9
0

1
0

0

0

0

0

�8333:3
0

0
1

0

0

0

0

�5000

0

0
0

1

0

0

0

�1388:9
0

0
0

0

1

0

0

�101:4
�0:1
�0:1
�0:05

0

0

6:67
0

�555:7
�0:1
�0:1
�0:05

0

0

6:67
0

�301

�0:1
�0:1
�0:05
�1

0

6:67
0

�301

�0:1
�0:1
�0:05

0

�1

6:67
0

�134

0

0
0

0

0

�6:67
1

0
BBBBBBBBB@

1
CCCCCCCCCA

ð5Þ

B ¼
�2:2
0:0007
�1:5
0

0

0:6
�41:3

0

0

0:004
�62:8

0

0

0:005
�81:5

0

0

1

�646
0

0

0:3
�23
0

0

0

0
�80

0

0

0
�3:4

0

0

0
�0:6

0

0

0
�0:6

0

0

0
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1
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Table 3 Technology and intervention matrices for one ton of dry biomass production (Zhang et al. 2013)

Cultivation (open pond) Cultivation (PBR) Cultivation (starch) Cultivation (cellulose) Harvesting

Process input (technology matrix A)

Electricity (kWh) -101.35 -555.72 -301.26 -301.26 -134.0

Salt (ton) -0.13 -0.13 -0.13 -0.13 0

Urea (ton) -0.097 -0.096 -0.095 -0.095 0

DAP (ton) -0.048 -0.047 -0.048 -0.048 0

Starch (ton) 0 0 -1.024 0 0

Cellulose (ton) 0 0 0 -1.076 0

Wet microalgae 6.67 6.67 6.67 6.67 -6.67

Dry biomass 0 0 0 0 1

Environmental footprint (intervention matrix B)

Energy (kWh) 0.0 0.0 0.0 0.0 0.0

CO2 (ton) 0.0 0.0 0.0 0.0 0.0

Indirect water (ton) 0.0 0.0 0.0 0.0 0.0

Direct water (ton) -79.98 -3.36 -0.57 -0.57 0.0
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cultivation technology alternative by setting the scaling

factor (xj) of unselected technologies to zero. This then

limits the model to scaling only the selected cultivation

technology and generating the corresponding environ-

mental footprint. To determine the preference AHP weights

of the environmental footprint criteria, pairwise compar-

ison was done using the nine-point scale (as defined in

Table 2). The criteria are evaluated in a pairwise manner to

determine their relative significance based on expert

judgment. The matrix of pairwise comparisons (z) of the

environmental footprint for the microalgae cultivation is

shown in Table 6 as expressed in Eq. (3). The expert

considered is someone who is experienced in the field of

microalgae biofuel production. Then, w
*

fp is calculated via

eigenvector method from z. Equation (8) shows the vector

of w
*

fp for the environmental footprint (energy, CO2, indi-

rect water and direct water):

Table 4 Data source for the

environmental footprint for

background processes

Environmental footprint Source

Generates 1 kWh electricity

Energy consumption Tan et al. (2010), Mahlia (2003) and Shekarchiana et al. (2011)

Indirect water consumption Fthenakis and Kim (2009)

CO2 emission Mahlia (2003) and Shekarchiana et al. (2011)

Produces 1 ton of chemical (salt, urea, DAP, starch and cellulose)

Energy consumption Carnegie Mellon University Green Design Institute (2013)

Indirect water consumption

CO2 emission

Table 5 Technology and

intervention matrices for

electricity and chemicals

production

Electricity Salt Urea DAP Starch Cellulose

Process input (technology matrix A)

Electricity (kWh) 1.0 -3055.6 -6388.9 -8333.3 -5000.0 -1388.9

Salt (ton) 0.0 1.0 0.0 0.0 0.0 0.0

Urea (ton) 0.0 0.0 1.0 0.0 0.0 0.0

DAP (ton) 0.0 0.0 0.0 1.0 0.0 0.0

Starch (ton) 0.0 0.0 0.0 0.0 1.0 0.0

Cellulose (ton) 0.0 0.0 0.0 0.0 0.0 1.0

Environmental footprint (intervention matrix B)

Energy (kWh) -2.16 0.0 0.0 0.0 0.0 0.0

CO2 (ton) 0.0007 0.56 0.004 0.005 1.14 0.31

Indirect water (ton) -1.49 -41.3 -62.8 -81.5 -646.1 -23.3

Direct water (ton) 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 5 Material and energy system boundary for alternative 1, microalgae cultivation in open pond followed by dry biomass production
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w
*

fp ¼ 0:04 0:1 0:43 0:43ð Þ ð8Þ

The environmental footprints of the different technolo-

gies are compared to determine the worst environmental

performance in each environmental footprint considered as

shown in Table 7. Negatively signed entries indicate con-

sumption, while those that are positively signed indicate

Fig. 7 Material and energy system boundary for alternative 3, microalgae cultivation in fermenter (carbon source—starch) followed by dry

biomass production

Fig. 6 Material and energy system boundary for alternative 2, microalgae cultivation in photobioreactor (PBR) followed by dry biomass

production

Table 6 Pairwise comparison

matrix of environmental

footprints, z

Environment footprint Energy CO2 Indirect water Direct water

Energy 1.00 0.14 0.14 0.14

CO2 7.00 1.00 0.14 0.14

Indirect water 7.00 7.00 1.00 1.00

Direct water 7.00 7.00 1.00 1.00

Table 7 Summary of

environmental output for each

process option

Environmental footprint Open pond PBR Cultivation (starch) Cultivation (cellulose)

Energy (kWh) -3585.31 -4533.64 -15,048.74 -7220.17

CO2 (ton) 1.25 1.57 6.19 2.78

Indirect water (ton) -2492.24 -3147.21 -11,072.67 -5028.20

Direct water (ton) -79.98 -3.36 -0.57 -0.57
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release to the environment. The italic data show the worst

performance in each environmental footprint category

which are then used in the optimization function as (P)-1

in the optimization function to normalize the output data.

Alternatively, environmental footprint limits, based on the

performance of current technologies, may be identified and

used as the normalizing factors. The optimization function

is to minimize the overall environmental output, where

AHP weights w
*

fp

� �
in relation with the worst alternative

output (P)-1 and environment footprint (g) of the cultiva-

tion system. It is expressed in Eq. (9):

Cultivation of microalgae with starch fermentation

system performs the worst in three environmental foot-

prints mainly due to the involvement of starch which

requires large amounts of water. In addition, the con-

sumption of high electricity also adds into the water foot-

print as electricity generation consumes water. However,

cultivation of microalgae with open pond system shows the

highest amount of direct water usage due to the nature of

the cultivation method.

From these results, open pond cultivation system seems to

be chosen as the best technology option as it shows the overall

lesser impact to the environment (energy footprint, carbon

footprint and indirect water footprint) as compared to the

others. This is justified as 98% of the commercial microalgae

are using open pond system due to its cost-efficiency and

effectiveness, simplicity and ease in maintenance with scale-

up feasibility (Bharathiraja et al. 2015). However, open pond

cultivation systemsmay require more fertilizer due to its poor

productivity rate and because it is difficult to culture

microalgae for longer periods of time (Ugwu et al. 2008).

The results are further optimized by integrating the AHP

weights to determine the environmental concern preference

Table 8 Integrated AHP-LCO optimum solution

Environmental footprint Weight,

w
*

fp

Normalized value,

g(P)21
Optimized

value

Energy (kWh) 0.04 0.30 -4533.64

CO2 (ton) 0.10 0.25 1.57

Indirect water (ton) 0.43 0.28 -3147.21

Direct water (ton) 0.43 0.04 -3.36

minimize f(x) = 0:040:10:430:43ð Þ
15058

0

0
0

6:2
0
0

11072
0 80

0
B@

1
CA

�1
g1
g2
g3
g4

0
B@

1
CA ð9Þ

Fig. 8 Material and energy system boundary involved for alternative 4, microalgae cultivation in fermenter (carbon source—cellulose) followed

by dry biomass production

Study of microalgae cultivation systems based on integrated analytic hierarchy process–life… 2085

123



and the best process configuration as shown in Table 8.

The integrated AHP-LCO model has shown that the PBR

system is the best technology option based on these

weights. This is due to the associated weights for water

footprint (both indirect and direct water at 43%, respec-

tively) which are relatively more important when compared

with the other environmental footprints. Energy use (4%)

and carbon footprint (10%) for PBR seem to be moderate

compared to the other three options. Sensitivity analysis

was conducted to examine how variations in criteria

weights influence the selection of options. Figure 9 sum-

marizes the results from the sensitivity analysis by

changing the respective footprint weights. This is done by

parametrically adjusting the weight of one footprint, while

keeping constant the relative proportions of all the other

criteria. For instance, Fig. 9a shows how the environmental

output changes when the energy footprint’s preference

weight varies from 0 to 1. The environmental output can be

compared with Table 7 for each process option’s output. It

can be seen that when the energy footprint is not taken into

consideration as one of the criteria of environmental con-

cern, PBR is still the dominant option. In contrast, if energy

footprint is considered as the sole criterion for environ-

mental consideration, open pond system is the most pre-

ferred option. Note that PBR was still ranked first

regardless of the changes in weights for each environ-

mental impact criterion. No significant changes in the

selection option were observed as the weights of the

environmental footprint change between intervals of

0.1–0.8. The ranking of the cultivation selection options is

reversed mainly at the sole criterion environmental impact.

Microalgae cultivation with cellulose as carbon source is

selected as the best option when the direct water footprint

(DWF) is the sole environmental impact-considered crite-

ria during the selection process (Fig. 9b, d).

Conclusion

In this paper, an integrated LCO methodology has been

developed and applied in the selection of the best tech-

nology option and process configuration for the cultivation

system of microalgae. In this approach, AHP is used to

identify the environmental criteria weights, which are then

utilized within a hybrid MOLP model to integrate the

energy, carbon dioxide and water footprint limits. The

priority weights are systematically elicited from an expert’s

opinion via AHP. The proposed modeling framework is

then applied to a case study with multiple microalgae

cultivation pathways. By solving the model, it is found that

the PBR cultivation system is the optimum solution. Sen-

sitivity analysis is performed to give insights into the

robustness of the decision model particularly with respect

to criteria weights. Future work can focus on extensions of

Fig. 9 Sensitivity analysis for the AHP weights of environmental footprint for cultivation system at each different footprint’s weight interval (0,

1): a energy footprint, b carbon footprint, c water (direct) footprint, d water (indirect) footprint
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the model incorporating different harvesting, dewatering

and downstream processing alternatives.
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