
ORIGINAL PAPER

Modelling and optimization of syngas production by methane dry
reforming over samarium oxide supported cobalt catalyst:
response surface methodology and artificial neural networks
approach

Bamidele V. Ayodele1,2 • Maksudur R. Khan1,2 • Safdar Sk Nooruddin3 •

Chin Kui Cheng1,2

Received: 31 July 2016 / Accepted: 7 December 2016 / Published online: 21 December 2016

� Springer-Verlag Berlin Heidelberg 2016

Abstract The reforming of methane by carbon dioxide for

the production of syngas is a potential technological route

for the mitigation of greenhouse gases. However, the pro-

cess is highly endothermic and often accompanied by

catalyst deactivation from sintering and carbon deposition.

Besides, the applications of dissimilar catalytic systems in

methane dry reforming have made it difficult to obtain

generalized optimum conditions for the desired products.

Hence, optimization studies of any catalytic system often

resulted in a unique optimum condition. The present study

aimed to investigate optimum conditions of variables such

as methane (CH4) partial pressure, carbon dioxide (CO2)

partial pressure and reaction temperature that will maxi-

mize syngas yields from methane dry reforming over

samarium oxide supported cobalt (Co/Sm2O3) catalyst. The

Co/Sm2O3 catalyst was synthesized using wet-impregna-

tion method and characterized by thermogravimetric

analysis), field emission scanning electron microscopy,

energy-dispersive X-ray spectroscopy, X-ray powder

diffraction and nitrogen (N2) physisorption. Syngas

production by methane dry reforming over the synthesized

Co/Sm2O3 catalyst was investigated in a stainless steel

fixed-bed reactor. The process variables (CH4 partial pres-

sure, CO2 partial pressure and reaction temperature) for the

syngas production were optimized using response surface

methodology (RSM). The RSM and artificial neural net-

works (ANNs) were used to predict the syngas production

from the experimental data. The comparative analysis

between the two models showed that the ANN model has

better prediction of the syngas yields compared to the RSM

model as evident from the good agreement between the

observed and the predicted values. At maximum desirability

value of 0.97, optimum CH4 and CO2 partial pressures of

47.9 and 48.9 kPa were obtained at reaction temperature of

735 �C resulting in syngas yield of *79.4 and 79.0% for

hydrogen (H2) and carbon monoxide (CO), respectively.

Keywords Artificial neural networks � Cobalt � Methane

dry reforming � Response surface methodology �
Samarium � Syngas

Introduction

Synthesis gas (syngas) is a mixture of H2 and CO used as

chemical intermediate for the production of wide range of

oxygenated fuels and valuable chemicals such as dimethyl

ethers and methanol (Rostrup-Nielsen 2000; Chawl et al.

2012). The production of syngas on commercial scale has

been through steam reforming of natural gas and coal

gasification employing supported nickel catalysts (Lu and

Lee 2007; Kopyscinski et al. 2010). This process is, how-

ever, constrained by problems such as catalyst deactivation

from sintering, coking and poisoning (Sehested 2006;

Lakhapatri and Abraham 2009). In addition, these
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processes are major contributors to greenhouse gases, a

major cause of global warming (Figueroa et al. 2008;

Martavaltzi et al. 2010). Besides, the syngas produced via

these processes do not have the required ratios to be used as

feed stock for the production of oxygenated hydrocarbons

(Inderwildi et al. 2008).

Recently, there has been growing research interest in the

production of syngas from methane dry reforming due to

its advantages over the existing processes (Horváth et al.

2011; Ayodele and Cheng 2015). One of such advantages

is the potential of the process to mitigate greenhouse effect

by utilizing CH4 and CO2 as feed stock for syngas pro-

duction (Braga et al. 2014). Moreover, syngas with low H2:

CO ratio suitable for the production of synthetic liquid

fuels and oxygenated chemicals via Fischer–Tropsch syn-

thesis (FTS) is produced (Khodakov et al. 2007; Wang

et al. 2012). However, one major drawback for developing

this technology into large-scale production is catalyst

deactivation (Lee et al. 2014). In order to overcome this

challenge, the synthesis of metal catalysts such as platinum

(Pt), palladium (Pd), ruthenium (Ru), rhodium (Rh), nickel

(Ni) and cobalt (Co) on magnesium oxide (MgO) (Fan

et al. 2011), cerium oxide (CeO2) (Ayodele and Cheng

2015), zirconium oxide (ZrO2) (Özkara-Aydınoğlu and

Aksoylu 2010), aluminium oxide (Al2O3), (Foo et al. 2011;

Ferencz et al. 2014), neodymium oxide (Nd2O3) (Ayodele

et al. 2016b), praseodymium oxide (Pr2O3) (Ayodele et al.

2016c), lanthanium oxide (La2O3) (Ayodele et al. 2016d)

and silicon dioxide (SiO2) (Bouarab et al. 2004), supports

have been reported for methane dry reforming with results

showing variation in activities of the catalysts in terms of

conversion and yield.

One way to improve the catalytic system and the

activities without increasing the cost of experimentation

is through modelling and optimization. Modelling and

optimization strategies such as empirical and phe-

nomenological have been employed for methane dry

reforming (Larentis et al. 2001). However, these mathe-

matical-based optimization methods are very rigorous

and time consuming and often do not represent the

interactions between the catalyst systems which will

invariably leads to misrepresentation. These challenges

can be overcome by employing response surface

methodology (RSM) which has the advantages of evalu-

ating the interaction effects of the factors on the

responses. Moreover, the RSM could help in obtaining

models that aid in predicting the optimum conditions

suitable for the desirable response. Furthermore, the

relationship between factors in a nonlinear system such as

catalytic reaction can be studied using artificial neural

networks (ANNs). ANN has been applied for modelling

processes such as hydrogen production from natural gas

steam reforming, propane dehydration over Pt–Sn/!-

Al2O3 catalyst and adsorption of Cu(II) from industrial

leachate by pumice, to name a few (Turan et al. 2011;

Amini et al. 2013; Zamaniyan et al. 2013). To the best of

the authors’ knowledge, application of ANN and RSM for

modelling and optimization of syngas production from

methane dry reforming over Co/Sm2O3 catalyst has not

been reported.

In this study, a novel Co/Sm2O3 catalyst was synthe-

sized via wet-impregnation method and subsequently

characterized for physicochemical properties using instru-

ment techniques such as TGA, N2 physisorption, XRD,

FESEM and EDX analyses. The synthesized Co/Sm2O3

catalyst was employed in methane dry reforming reaction

for the production of syngas in a stainless steel fixed-bed

continuous flow reactor. The effects of parameters such as

the reactants (CH4 and CO2) partial pressure, reaction

temperature and feed ratios on the syngas (H2 and CO)

yields were investigated in the methane dry reforming. The

design of experiment was performed in accordance with

Box–Behnken design (BBD), a form of response surface

methodology (RSM). The optimum conditions for the

production of syngas from methane dry reforming over the

Co/Sm2O3 were predicted using the BBD model and

compared with ANN model. The main objective of the

present study is to investigate the optimum conditions for

syngas production by methane dry reforming over a novel

Co/Sm2O3 catalyst. In addition, the predictive modelling of

the syngas production by methane dry reforming over the

catalyst was also investigated using ANN and BBD.

Experimental

Catalyst synthesis

Prior to the synthesis of the catalyst, the Sm2O3 support

was prepared by thermal decomposition of samarium(III)

nitrate hexahydrate (99.99% purity, Sigma-Aldrich) at

500 �C for 2 h (Hussein et al. 2003; Mohammadinasab

et al. 2014; Ayodele et al. 2016a). The Sm2O3-supported

Co catalyst was synthesized by wet-impregnation method.

The Co/Sm2O3 mixture was obtained by the addition of

aqueous solution of cobalt(II)nitrate hexahydrate (99.99%

purity Sigma-Aldrich) containing equivalent of 20 wt%

cobalt loading to the Sm2O3 powder under magnetic stir-

ring for 3 h. Consecutively, the slurry was oven-dried for

24 h at 120 �C, crushed and finally calcined at 600 �C for

6 h to obtain 20wtCo/Sm2O3.

Catalytic activity test

Figure 1 shows the schematic representation of the exper-

imental set-up for the production of syngas from methane
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dry reforming over the 20wt%Co/Sm2O3 catalyst. The set-

up comprised CO2 and CH4 which are the main reactants

for the dry reforming process, as well as N2 and H2 which

serves as the carrier gas and for reduction, respectively.

The continuous fixed-bed reactor was loaded with 200 mg

of catalysts supported with quartz wool placed vertically

inside a split-tube furnace. The temperature of the catalytic

bed was monitored using K-type thermocouple. The cata-

lyst was reduced in 60 ml min-1 of 20% H2 and 80% N2

prior to the commencement of the catalytic activity test.

The flow rate of the inlet gas was maintained at

100 ml min-1 and individually regulated with the aid of

Alicat digital mass flow controller (MFC). The outlet gas

products composition (CO2, CH4, CO and H2) was mea-

sured with gas chromatography (GC) equipped with ther-

mal conductivity detector (TCD). Two packed columns

were used, viz. Supelco Molecular Sieve 13 9 (3.1 m 9

0.0032 m OD 9 0.002 m ID, 60/80 mesh, stainless steel)

and Agilent Hayesep DB (9.1 m 9 0.0032 m OD 9

0.002 m ID, 100/120 mesh, stainless steel). He gas was

used as a carrier with flowrate of 20 ml min-1 with oper-

ating column temperature of 120 �C and detector temper-

ature of 150 �C (column pressure\90 psi). Separation and

quantification of gas analytes, viz. hydrogen (H2), methane

(CH4) and carbon dioxide (CO2) were performed using

Hayesep DB column, while CO was analysed using the

Molecular Sieve 139 column. The conversion of CH4 and

CO2 and the yields of H2 and CO were calculated using

Eqs. (1)–(4).

CH4 conversion %ð Þ ¼ FCH4in
� FCH4out

FCH4in

� 100 ð1Þ

CO2 conversion %ð Þ ¼ FCO2in
� FCO2out

FCO2in

� 100 ð2Þ

H2 yield ¼ FH2out

2� FCH4in

� 100 ð3Þ

CO yield ¼ FCOout

FCH4in
þ FCO2in

� 100 ð4Þ

where FCO2in;FCH4in; ;FCO2out;FCH4out
are the inlet and outlet

molar flow rates of CO2 and CH4, respectively; FH2out; and

FCOout; are the outlet molar flow rate of H2 and CO,

respectively.

Catalyst characterization

Thermal behaviour of the freshly prepared 20 wt%Co/

Sm2O3 catalyst was performed by thermogravimetric ana-

lyzer (Q-500 series) under N2 atmosphere. The TG and

DTG of the temperature programmed calcination of the

Fig. 1 Schematic diagram of experimental set-up for the syngas production from methane dry reforming
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catalyst were collected by heating about 5 mg of the

sample up to 1000 �C at a heating rate of 10 �C min-1.

The crystallites and phase identification of the catalyst

were analysed by X-ray powder diffraction using RIGAKU

Miniflex II X-ray diffractometer capable of measuring

powdered diffraction pattern from 3� to 145� in 2h scan-

ning range. The X-ray source is Cu K-alpha with wave-

length (k) of 0.154 nm radiation. The XRD is equipped

with the latest version of PDXL, RIGAKU full function

powder-diffraction analysis software. The textural property

analysis of the catalyst was done by N2 adsorption–des-

orption measurement. The catalyst sample was degassed at

250 �C prior to analysis. The BET specific surface area and

the pore volume were determined from the adsorption–

desorption isotherm. The morphology and the elemental

composition of the as-prepared catalyst were determined

using JEOL field emission scanning electron microscopy

(FESEM) equipped with energy-dispersive X-ray spec-

troscopy (EDX).

Response surface design of experiments

The experimental design for the optimization study was

performed employing a three-factor, three-level BBD, a

form of RSM design. BBD was employed for the experi-

mental design due to its feasibility, simplicity, efficiency

and its application for modelling systems without extreme

conditions (Shiva et al. 2014; Ayodele and Cheng 2015).

Extreme conditions refer to corner points and star points

which are points selected from experimental values. In

addition, BBD also offers the advantages of fewer experi-

mental runs for three factors which can be used to explore a

quadratic response surfaces and create a second-order

polynomial model. In this study, the individual and inter-

action effects of the reactants partial pressures and the

reaction temperature on syngas yields were investigated

using BBD. The BBD experiment was designed using

Statistica version 13 (Dell corps, USA) (refer to Table S1).

The BBD design is made up of 51 runs consisting of CH4

partial pressure (10–50 kPa), CO2 partial pressure (10–

50 kPa) and reaction temperature (650–750 �C). A RSM

second-order polynomial equation shown in Eq. (5) was

employed for fitting the experimental data in order to

match the relationship between the input variables and the

responses.

Yi ¼ bo þ
Xk

j¼1

bjxj þ
Xk

j¼1

bjjx
2
j þ

XXk

i\j

bijxixj ð5Þ

where Yi, bo; bj, bjj and bij are the predicted responses, the

offset term, the linear effect, the square effect and the

interaction effect, respectively.

Artificial neural networks modelling

The ANNs were employed to develop a nonlinear model

using the neural networks toolbox made of input, hidden

(consisting of weight and bias) and output layers located in

the MATLAB software environment (Joo et al. 2015). The

inputs parameters into the ANNs are the reactants (CH4

and CO2) partial pressures and the reaction temperature,

while the output layers are the syngas yields. The hidden

neurons representing the data between the input and output

layers are scaled within the range of -1 and 1 using a

hyperbolic tangent function (activation function) depicted

in Eq. (6). The ways the neurons are link to each other

significantly influence the performance of ANN. In the

present study, the input parameters were modelled in such

a way to cause the summing mechanism of the next neuron

with a view to choosing the highest probability for the

output (Agatonovic-Kustrin and Beresford 2000). Each

input data set is assigned a weight which is iteratively

adjusted to minimize the training error. The ANN model

was configured using feed forward algorithm. The choice

of feed forward configuration is due to its wide applications

in industrial processes (Scott et al. 2007). In addition, the

feed forward configuration is easy to implement in variety

of chemical processes. The feedforward ANN was trained

using Levenberg–Marquardt expression (Eq. (7)) to ensure

accurate prediction of the model. The training was per-

formed by inputting a ‘‘training dataset to the ANN net-

work’’ (Scott et al. 2007; Zamaniyan et al. 2013). During

the training, the ANN matches the input and output values

in order to minimize the difference between the predicted

and the targeted values (Agatonovic-Kustrin and Beresford

2000). Consequently, the training algorithm was employed

to adjust the network’s interconnection weights in order to

reduce the prediction errors that might occur from the

trained dataset. The errors of the difference between the

input data and the output value were estimated using MSE

defined in Eq. (8) (Zamaniyan et al. 2013). The ANN

training and modelling was performed using the neural

network toolbox in MATLAB computing environment

(The Mathworks, Inc. version 2010a)

F nð Þ ¼ 2

1þ e�2n
� 1 ð6Þ

where n is the number of neuron.

ðJtJ þ kIÞd ¼ Jt 2 ð7Þ

where J is the Jacobian matrix for process, k is the

Levenberg’s damping factor, d is the weight update vector,

and E is the output vector.

MSE ¼ 1

N

XN

i¼1

Xi � Yið Þ2 ð8Þ
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where N, Xi and Yi are the number of data required for the

network training, the input data and the output data,

respectively.

Results and discussions

Catalyst characterization

The TG and DTG curves obtained from the temperature

programmed calcination of the freshly prepared Co/Sm2O3

catalyst are depicted in Fig. 2a. Seven peaks representing

weight losses of each component in the catalyst mixture with

respect to temperature can be identified from the DTG

curves. The first three peaks (I-III) at temperature ranged

80–200 �Ccan be attributed to the sequential loss of physical

and hydrated water leading to the formation of anhydrous

Co(NO3)2. Further increase in temperature leads to sequen-

tial thermal decomposition of the anhydrous Co(NO3)2
represented by peaks IV-VI at temperature ranged

200–400 �C to obtain Co3O4. This implies that the catalyst is

in its pure state at temperature[400 �C which informed the

choice of setting the calcination temperature at 500 �C.
The XRD pattern of the as-prepared catalyst is depicted

in Fig. 2b. The spinel Co3O4 crystal can be identified at

Fig. 2 a TG and DTG profiles for temperature programmed calcination, b XRD pattern and c N2 adsorption–desorption isotherm of the fresh 20

wt%Co/80 wt%Sm2O3 catalyst
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2h = 21.70�, 33.53�, 38.67� and 67.14� representing (1 3

1), (2 1 1), (2 2 2) and (1 3 1) lattice planes of body-centred

cubic and faced-centred cubic structures of Co3O4,

respectively. The Sm2O3 crystal particles can be identified

at 2h = 28.74�, 36.87�, 40.29�, 44.91�, 49.68�, 56.79�
59.33� and 65.33� representing (1 0 1), (1 1 1), (2 0 1), (4 0

1), (3 3 1), (1 1 2), (5 1 1) and (4 4 0) lattice plane of body-

centred cubic, hexagonal and face-centred cubic structures

of Sm2O3, respectively. The interaction between Co3O4

and Sm2O3 leads to the formation of perovskite SmCoO3

which can be identified at 2h = 15.87�, 19.02�, 26.89�,
27.73�, 31.36�, 32.08� representing (1 0 0), (1 1 1), (1 0 1),

(1 1 0), (2 2 0) and (2 0 0) lattice plane of body-centred

cubic, hexagonal and faced-centred cubic structures of

perovskite SmCoO3. The crystallite size of the Sm2O3 was

estimated as 46.56 nm from full width half maximum

(FWHM) of the (1 1 1) peak. Figure 2c shows the N2

adsorption–desorption isotherm of the freshly prepared

catalyst. It can be seen that the isotherm displayed type-IV

curve with H2 hysteresis based on IUPAC classification

signifies uniform mesopores within the sample. BET

specific surface area of 23.05 m2 g-1 was obtained for the

freshly prepared 20 wt%Co/Sm2O3 catalyst.

The EDX micrograph and the FESEM image of the

freshly prepared 20 wt%Co/Sm2O3 catalyst are depicted

in Fig. 3. It can be seen that part of the 20 wt%Co/Sm2O3

Fig. 3 a EDX micrograph and

FESEM image, b EDX-dot

mapping of the fresh 20 wt%Co/

80 wt%Sm2O3 catalyst
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particles are spherically shaped with evidence of weak

agglomeration. The elemental composition of 21.96 and

78.08% obtained for Co and Sm2O3 from the EDX anal-

ysis is consistent with the stipulated amount of the as-

prepared 20 wt%Co/Sm2O3 catalyst. The EDX-dot map-

ping depicted in Fig. 3b shows that the Co species are

uniformly distributed on the Sm2O3 support which is

consistent with the XRD pattern of the fresh Co/Sm2O3

catalyst.

Response surface methodology

Effect of reactant partial pressure and reaction

temperature on syngas yield

The three-dimensional response plots showing the effects

of the reactants (CH4 and CO2) partial pressure on the

syngas yields are depicted in Fig. 4. Interestingly, the H2

yields are significantly influenced by changes in CH4 par-

tial pressure and the reaction temperature (cf. Fig. 4a–c).

The increase in the CH4 partial pressure leads to corre-

sponding increase in the H2 yields as shown in Fig. 4a.

This could be attributed to dissociation of methane

(CH4 ? C ? H2) on the surface of the catalyst leading to

increase in the H2 yields. This observation is consistent

with the literature where methane dissociations have been

reported as the rate determining steps in dry reforming

reactions (Nandini et al. 2006; Cui et al. 2007; Pakhare

et al. 2014). Similarly, increase in temperature significantly

increases the H2 yields (Fig. 4c). This could be due to the

substantial effects of temperature on the conversion of

methane leadings to increase in H2 yields which is con-

sistent with Arrhenius behaviour for temperature-depen-

dent chemical reaction (Senum and Yang 1977). The effect

of CO2 partial pressure on H2 yield was insignificant

between 10 and20 kPa; however, there was a marginal

significant increase in H2 yield at CO2 partial pressure of

30–50 kPa (cf. Fig. 4a, c). Furthermore, CO yields signif-

icantly increase with both CO2 partial pressure and tem-

perature (Fig. 4d–f). The increase in CO yields with CO2

partial pressure and temperature could be as results of the

CO2 dissociation on the catalyst surface. According to Cui

et al. (2007), the dissociation of CO2 (CO2 ? CO ?

1/2O2) is thermodynamically favoured at temperature

ranged 550–750 �C with the release of surface O2 to neu-

tralized the effect of coke deposited from sides reaction

such as methane cracking and reverse Boudouard. The

ANOVA results shown in Table 1 revealed that the three

factors are statistically significant in the production of

syngas from methane dry reforming over the Co/Sm2O3

catalyst since their respective p\ 0.005. Moreover, the

interaction effect between CH4 and CO2 partial pressures

as well as, CH4 partial pressure and reaction temperature

are statistically significant on the H2 yield (p\ 0.005).

However, the interaction effect between CO2 partial pres-

sure and reaction temperature is not statistically significant

(p[ 0.005). The CO yield is favoured by the interaction

effect of CO2 partial pressure and reaction temperature

(p\ 0.005), while the interaction effects between CH4

partial pressure and CO2 partial pressure are marginally

significant. Moreover, the R2 values of 0.94 and 97

obtained for the H2 and CO yields, respectively, signify

that over 90% of the experimental data were well fitted into

the model. Similarly, adj-R2 values of 0.96 and 0.97 were

obtained from the RSM model for H2 and CO yields. This

implies that over 96 and 97% of variation actually

explained by the independent variables (reactant partial

pressures and the reaction temperature) have significant

effects on the responses (H2 and CO yields). The quadratic

model of RSM obtained for H2 and CO yields in terms of

coded factors from multiple regression analysis of the

experimental data is shown in Eq. (9) and (10).

H2yield ¼þ39:42þ 31:01Aþ 6:28Bþ 33:14Cþ 9:95AB

þ 5:52ACþ 5:98A2 þ 2:73B2 � 2:67C2 ð9Þ

CO yield ¼þ40:46þ 5:86Aþ 31:69Bþ 33:65C

þ 8:60ABþ 4:90BCþ 1:59A2þ 6:37B2 ð10Þ

Artificial neural networks modelling

The ANN model for the prediction of syngas production

was developed using the 51 data sets comprised the inputs

(reactants partial pressures and temperature) and the targets

(syngas yield). Prior to the development of the ANN

model, 75% of the data were employed for the network

training while the remaining 25% were used for testing the

ANN feed forward algorithm. The training of the data

allows the input variables to be repeatedly iterated in such

a way that the weights (bias) are adjusted based on the

learning rule until the network structure has a very low

MSE value (Zamaniyan et al. 2013). An initial screening of

the hidden neuron that minimizes the MSE was performed.

The hidden layer with 2 neuron (MSE = 7.3 9 10-9) was

selected for the network training.

Comparison of the ANN and RSM model

Comparison between the predictive capability of the ANN

and RSM models for syngas production from methane dry

reforming was statistically discriminated using statistical

parameters such as mean absolute percentage error

(MAPE), standard error of estimate (SEE), standard error

Modelling and optimization of syngas production by methane dry reforming over samarium oxide… 1187
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Fig. 4 Response surface plots showing the effects of a reactants

partial pressure on H2 yield, b reaction temperature and CH4 partial

pressure on H2 yield, c reaction temperature and CH4 partial pressure

on H2 yield, d reactants partial pressure on CO yield, e reaction

temperature and CH4 partial pressure on CO yield, f reaction

temperature and CH4 partial pressure on CO yield
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of prediction (SEP), mean percentage error (MPE), mean

absolute error (MAE) and coefficient of determination (R2)

(Prakash Maran et al. 2013; Ayodele and Cheng 2015). The

estimation of the prediction errors using the aforemen-

tioned statistical parameters helps in the quantification and

better understanding of the performance of the models and

their reliability. The results of the comparative statistical

analysis of the models using Eqs. (11)–(16) are summa-

rized in Table 2. It can be seen that the statistical errors of

predictions of the syngas yields obtained from the ANN

model were lower compared to that of RSM model in all

cases. This implies that ANN model has a better capacity to

predict syngas production from methane dry reforming

compare to the RSM model. The better prediction capa-

bility of ANN model obtained in this study is consistent

with the findings of Prakash Maran et al. (2013) and Singh

et al. (2013) who employed ANN and RSM for modelling

the production of l-glutamise by Bacillus cereus MTCC

1305 and for prediction of mass transfer parameters during

osmotic dehydration of Carica Papaya L. The parity plots

showing the comparison between the observed syngas

yields from the experimental runs and the predicted yields

using the ANN and the RSM models are depicted in Fig. 5.

It can be seen that the ANN model closely predict the

syngas yields compared to the RSM model. This could be

attributed to the high tendency of the ANN model to

approximate the nonlinearity of the system irrespective of

the order, while the RSM model is constrained to second-

order polynomial (Singh et al. 2013).

MAPE ¼ 1

n

Xn

t¼1
Et � Ptj j: ð11Þ

SEE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Et � Ptð Þ2

n

s

ð12Þ

SEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
Et�Ptð Þ2

n

r

Et

ð13Þ

MPE ¼ 100%

n

Xn

t¼1

Et � Pt

Et

ð14Þ

MAE ¼ 1

n

Xn

i¼1

Pi � Eij j ð15Þ

R2 ¼ n
P

PiEi�ð
P

PiÞð
P

EiÞ
ðn

P
P2
i

� �
�

P
PiÞ2

� �
ððn

P
E2
i

� �
�

P
EiÞ2

� �

ð16Þ

where n, Et and Pt are the total number of predictions,

experimental and predicted values, respectively.

Optimization of the syngas production

The method of desirability was employed to obtain the

optimum process conditions that will maximize the pro-

duction of syngas from methane dry reforming over the 20

Table 1 Analysis of variance

of the factors used for the RSM

model

FAactor H2 yield (%); R2 = .97; Adj R2: 0.97 CO yield (%); R2 = 0.98; Adj R2: 0.97

SS df MS F p SS df MS F p

A 5772.20 1 5772.20 333.96 0.0000 205.69 1 205.69 14.07 0.0005

B 236.50 1 452.78 26.19 0.0000 6026.49 1 6026.49 414.19 0.0000

C 6591.55 1 6591.55 381.37 0.0000 6792.93 1 6792.93 464.62 0.0000

AB 297.51 1 297.51 33.92 0.0000 221.71 1 221.71 27.40 0.0000

AC 91.25 1 91.25 10.40 0.0025 17.62 1 17.62 2.18 0.1477

BC 12.18 1 12.18 1.39 0.2454 72.28 1 72.28 8.93 0.0047

A2 452.78 1 452.78 26.19 0.0000 32.22 1 32.22 2.20 0.1448

B2 94.29 1 94.29 5.46 0.0000 511.95 1 511.95 35.02 0.0000

C2 90.36 1 90.34 5.23 0.0271 0.31 1 0.31 0.03 0.8858

Lack of fit 778.57 10 77.86 0.94 0.5109 502.99 10 50.30 0.72 0.7027

Error 359.56 41 8.77 331.70 41 8.09

Total SS 13,992.09 50 14,228.67 50

Table 2 Comparison between ANN and RSM for prediction of

syngas production

Statistical parameters H2 yield (%) CO yield (%)

RSM ANNs RSM ANNs

SEE 3.86 1.25 3.28 1.55

SEP 21.62 1.11 15.37 2.74

MAPE 10.26 3.46 3.43 3.43

MPE 4.51 0.24 0.37 3.15

MAE 3.42 1.25 1.33 2.91

R2 0.97 0.98 0.98 0.99

adj. R2 0.97 0.97 0.97 0.98
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wt%Co/Sm2O3 catalyst. Desirability function was

employed as a tool for the optimization of the syngas

production in this study due to its wide applications in

industrial processes to determine the optimum conditions

of multiple responses (Wang and Wan 2009). The appli-

cation of desirability function often leads to the best

operation conditions that provides the most desirable

responses (Wu 2014). In order to maximize a response, the

individual desirability is expressed in Eq. (17)

fiðxiÞ ¼

0 if viðxÞ\li
viðxÞ � li

Ti � li

� �s

if li \viðxÞ\Ti

1:00 if viðxÞ [ Ti

8
>><

>>:
ð17Þ

where vi;Ti, li are the desirability values, target values, and

lower values of each of the responses, while s is a deter-

minant reflecting how important to hit the target.

The desirability approach for optimization entails the

conversion of each response to an individual desirability

function within the range of 0.1–1.0. In order to obtain the

optimum conditions for the syngas production, the overall

desirability (the geometric sum of the individual desir-

ability) was maximized. Table 3 shows the optimum con-

ditions obtained for the syngas production over 20 wt%Co/

Sm2O3 based on desirability approach. Solution one (CH4

partial pressure = 47.9 kPa, CO2 partial pres-

sure = 48.9 kPa, reaction temperature = 735 �C) with

Observed vs. Predicted Values
3 3-level factors, 1 Blocks, 51 Runs; MS Residual=8.090196

DV: CO yield (%)
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Fig. 5 Parity plots showing the comparison between the observed values and the predicted values a ANN model for CO yield, b ANN model for

H2 yield, c RSM model for CO yield, d RSM model for H2 yield
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desirability of 0.97 was selected as the best. The maximum

overall desirability of 0.97 was obtained for the optimiza-

tion of the syngas production based on the profiles for

predicted values and desirability (Fig. S1). Corresponding

optimum values of 47.9 kPa, 48.9 kPa and 735 �C were

obtained for CH4 partial pressure, CO2 partial pressure and

reaction temperature, respectively, at the maximum desir-

ability. At these optimum conditions, maximum values of

79.4 and 79.0% were predicted for the H2 and CO yields,

respectively.

Validation of optimum conditions from the desirability

approach

The best set of solutions obtained from the desirability

functions were validated by setting those conditions in

methane dry reforming triplicate experiment runs over the

20 wt%Co/Sm2O3 catalyst as shown in Table 4. The mean

values of the absolute percentage error of deviation

obtained for the H2 and CO yields were *0.68 and

*0.26%, respectively. This implies that the best optimum

conditions obtained from the models using the desirability

approach is statistically reliable with over 99% confidence

level for both H2 and CO yield.

Conclusions

For the first time, a comparative approach was employed to

investigate the application of ANN and RSM for modelling

and optimization of syngas production by methane dry

reforming over 20 wt%Co/Sm2O3 catalyst based on

experimental data obtained from the BBD. The compara-

tive analysis using statistical parameters shows that ANN

model possesses better capability for prediction of syngas

production from methane dry reforming than the RSM

model. The method of the desirability function was

employed to simultaneously optimize the H2 and CO

yields. Maximum desirability values of 0.97 were obtained

from the profiles for predicted and desirability using RSM.

The maximum H2 and CO yields of*79.4 and*79.0% as

well as CH4 and CO2 conversions of *71.0 and *74.0%

were obtained at the following optimum conditions: CH4

partial pressure of 47.9 kPa; CO2 partial pressure of

48.9 kPa and reaction temperature of 735 �C. A further

validation of the models showed that the predicted opti-

mum conditions are statistically reliable with high level of

confidence interval. This study has significantly con-

tributed to finding optimum conditions of process variables

(CH4 partial pressure, CO2 partial pressure and reaction

temperature) that maximized the syngas yields obtained

from methane dry reforming over Co/Sm2O3 catalyst.

Moreover, the application of ANN and RSM models as

useful tools for modelling, prediction and optimization of

syngas production from methane dry reforming over 20

wt%Co/Sm2O3 has been demonstrated. However, due to

uniqueness of any catalytic system, the optimum conditions

obtained in this study cannot be generalized.
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