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Abstract Current practices in natural resources con-

sumption are unsustainable and may eventually lead to

ecosystem extinction. Sustainable ecosystem management

is necessary to ensure that human and ecological needs of

the present are satisfied without compromising the ability

of future generations to meet their own. This paper uses a

simple mathematical model of an integrated ecological and

economic system representing our planet’s sectors,

including, but not limited to, natural, industrial, housing,

and energy production sectors. The aim of the project is to

maximize the sustainability of this system, using Fisher

information as a statistical measure as a measure of

sustainability, and derive socio-economic policies using

optimal control techniques. By controlling six policy

parameters, we were able to sustain all the ecological mass

compartments (which were not sustainable in the con-

sumption increase scenario of the future), thus significantly

increasing the lifespan of all the species in the model.

Keywords Sustainability � Ecosystem management �
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Introduction

Due to the recent globalization, the average standard of

living of the human population has improved consider-

ably. Apart from the conventional primary needs of food,

energy, clothing, and shelter, many more commodities

have become essential for a stable existence. Conse-

quently, the average per capita consumption of natural

resources is rising to unprecedented levels which the

environment cannot provide for indefinitely. In fact,

researchers have predicted that consumption of many

resources will increase by about 50 % in the next

50 years (Meadows et al. 1992).The intensification of

human activities and its continuous evolution has

encouraged different sectors of society to explore alter-

natives that counteract the negative impact of human

development. Therefore, sustainability has emerged as a

new discipline for analysis and evaluation that has dif-

ferent dimensions corresponding to political, social and

economic sectors in relation to human activity. When the

time dimension is added to sustainability, it becomes

more similar to sustainable development, which has been

defined as ‘‘the development that meets the needs of the

present without compromising the ability of future gen-

erations to meet their own needs’’ (Brundtland 1987).
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Mathematical models featuring key components of an

ecosystem help in the study of sustainable development.

These models yield qualitative and quantitative conclu-

sions that aid policy makers evaluate technologies and

ecosystem management strategies. Often times, these

models focus on specific aspects of the environment. For

example, Menshutkin et al. (2014) analyze the variety of

mathematical models used to understand freshwater lake

ecosystems, ranging from those formulated with systems of

differential equations to those implemented using fuzzy

logic.Chang et al. (2014) mathematically modeled green-

house gas emissions from Fortune 500 companies to study

their impact on the environment and derive policy con-

clusions. And, Llibre and Xiao (2014) study the global

dynamics of a 3-dimensional Lotka–Volterra system, a

mathematical representation of predator–prey population

dynamics. Of particular interest, the literature features

many attempts to incorporate optimal control—the devel-

opment oftime-dependent management strategies—with

different ecological models; examples include maximizing

forest carbon sequestration, sustaining shallow lake envi-

ronments, and optimally harvesting fish populations

(Sohngen and Mendelsohn 2003; Mäler et al. 2003; Cha-

kraborty et al. 2011). Although all these studies can help us

understand and manage specific aspects of our environ-

ment, a more comprehensive model of the planet’s envi-

ronment—including both human and natural aspects—is

required to evaluate government policy effects across the

many aspects of sustainable development. To fill this need,

many research projects in the field of sustainability have

aimed to incorporate economic features into ecological

models to reflect human interactions with nature.Brock and

Xepapadeas (2010) incorporated a basic economic–eco-

logical system in their mathematical study of the man-

agement and regulation of semi-arid systems. Expanding

the scope even more, Whitmore et al. (2006) incorporated a

rudimentary economy into atwelve-cell ecological model.

Kotecha et al. (2012) further enhanced Whitmore’s model

by incorporating biofuels to depict how energy production

impacts sustainability. The Whitmore model has shown

that in the current state of our planet, if per capita con-

sumption increases as predicted, our planet will not be

sustainable and species will start disappearing. Building

upon Whitmore’s and Kotecha’s framework, we propose a

novel application of multivariable optimal control for an

integrated model of the planet to derive socio-economic

policies in order to sustain the system. Since the govern-

ment needs to anticipate how the ecosystem will react to

not one but an entire array of policy options, we aim to

look at multiple policy options which will be controlled

simultaneously over time to guide the sustainable devel-

opment of the system.

Sustainable development reaches across multiple disci-

plinary considerations; therefore, an equally interdisci-

plinary theory is required for measuring model

sustainability. Previous literature has suggested Fisher

information (FI), a concept from information theory, be

used to construct a basic theory of sustainability for eco-

logical applications (Cabezas and Fath 2002). According to

Frieden (1998), FI is a measure of the state of order or

organization of a system. In a dynamically sustainable

regime, the FI remains constant over time or oscillating

about a constant value. If the FI is increasing over time, the

system is migrating toward a state of increasing self-

organization and is in a potentially sustainable state. But if

FI is decreasing, the system’s loss of organization indicates

that it is unsustainable or transitioning to a different regime

(Cabezas and Fath 2002). Shastri and Diwekar (2006)

presented a mathematical definition of the sustainability

hypothesis proposed by Cabezas and Fath (2002) based on

FI. They assumed a system with n species, and calculated

the time average FIt using Eq. 1.

FIt ¼
1
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In Eq. 1, Tc is the time cycle, vðtÞ and aðtÞ are the

velocity and acceleration terms, defined by Eq. 2 and

Eq. 3, respectively. Here, the terms dxi
dt

and d
2
xi

dt2
represent

changes found in the n state variables. In this work, we use

an optimal control strategy to regulate the system’s FI in

order to achieve sustainability. The results presented here

yield quantitative and qualitative conclusions about how

different combinations of controlled economic, regulatory,

and technological policy options can influence individual

aspects of the environment as well as the overall

ecosystem.

Materials and methods

Model description and sensitivity analysis

The model used for this work is a simplified natural eco-

system compounded with human interactions. The model is

broken down into mass compartments, which are allowed

for the tracking of mass transfers. Figure 1 gives an overall

sense of all interactions occurring between the mass
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compartments. Refer to Online Resource Section 1 for

more details on the model.

The dynamic interactions were formulated based on the

Lotka–Volterra (LV) model. Usually these models are

represented as differential equations, but the previous

work, which formed the basis for this study, altered the LV

model to be implemented through difference equations.

Since the model presented here is an integrated economic–

ecological model, the demand for mass from each com-

partment depends on a series of economic price equations.

Both economic equations and ecological equations are

governed by key coefficients. These coefficients address

the efficiency of mass transfer and can be manipulated to

decelerate or accelerate trends in the model over time.

Therefore, altering parameters will impact the model’s FI,

and thus the sustainability. The model also relies on two

key assumptions:

• This model is closed to mass but open to energy.

• Biofuels utilize mass from primary producers for

meeting 30 % of the human and industrial energy

demand. The biofuel share of energy production is set

to 30 % to model the upper bound of biofuel energy

production estimates for the future. Remaining energy

needs are satisfied by conventional, finite fuel sources

such as fossil fuels (Kotecha et al. 2012).

Additionally, the model is simulated for a time-span of

200 years and can optionally be run with either the fol-

lowing scenarios:

• Base case (BC): this represents a sustainable system that

avoids extinction. The parameter values remain constant

and there is no increase in consumption. The base case

can serve as a standard for comparison since it can yield

information about the dynamics of an ideal system.

• Consumption increase (CI): certain coefficients related

to economic demands for natural resources are

increased as expected in the future. This causes many

mass compartments to deviate from the BC and

accelerate toward extinction, thus resulting in an

unsustainable system.

In terms of implementation, the current model has been

solved in Matlab. Kotecha et al. (2012) contains more

details about this model. We included additional functions

for performing optimal control in order to answer the

guiding questions behind this work.

The model presented in this paper was also studied by

Benavides et al. (2014). In this work, the model was rep-

resented as a network whose properties can be used to

determine the controllability of the system. The controlla-

bility was determined as the minimum number of nodes

that can guide the dynamics of the complete system. In that

sense, they found that at minimum twelve nodes were

needed to completely control the system; they argued that

if the system is controllable, then, it is sustainable.

Therefore, twelve parameters, all of which are able to be

regulated by government policies, were explored in this

work as potential candidates for the optimal control prob-

lem. Specifically, the sensitivity analysis is used to analyze

each parameter’s relative impact on the system’s FI. For

the sensitivity analysis, the values of these parameters were

increased and decreased by 5 %; then, its FI deviation from

the base case was evaluated. The sensitivity analysis nar-

rowed the list of candidate parameters from 12 to 6. Half of

the parameters were observed to have negligible effect on

the system’s FI, which indicates minimal impact on the

system’s sustainability. Despite not having twelve selected

parameters to completely control the system, as the

research of Benavides et al. (2014) would recommend, it

was empirically found that these six parameters were suf-

ficient enough to control the system for a finite amount of

time (in this case, the model’s simulated time duration of

200 years). Table 1 in the ‘‘Results and discussion’’ section

summarizes the selected and non-selected parameters.

Fig. 1 Compartment of the economic–ecological model. This figure

depicts the compartment model, which is comprised of : plants (Pi)

which are the primary producers, herbivores (Hi), carnivores (Ci),

humans households (HH), a resource pool, and inaccessible resource

pool (RP, IRP). The arrows represent the mass flows from one

compartment (origination) to another compartment (termination), and

all living compartments have an implied flow back to the resource

pool that represents death. (IS) is the industrial sector, whereas (EP)

and (ES) are the energy producers and the energy source compart-

ment, respectively (Kotecha et al. 2012)

Maximizing sustainability of ecosystem model 1575

123



Online Resource Section 2 also depicts the specifics of the

methodology used for conducting the sensitivity analysis.

Optimal control

Optimal control theory offers the mathematical tools nec-

essary for steering models of engineered systems along

desired pathways. It allows for the development of time-

dependent strategies to optimize a system. The control

problem consists of a set of mathematical equations

describing a system involving time-dependent variables,

also known as control variables, which can aid in con-

trolling the performance of the system. For a given system,

optimal control problems attempt to satisfy optimality

criterion by determining a control law (Diwekar 2003).The

optimality criterion is expressed as an objective function,

which involves a maximization or minimization problem in

terms of certain process variables.

In sustainable development, the challenge is to deter-

mine a mathematical objective that promotes the preser-

vation of all aspects of the natural environment and human

society. The objective can be formulated in two different

ways: maximize the FI or minimize the variance of FI

between the system under consideration and an ideal

sustainable system. By maximizing FI, the system is

pushed to a state that appears mathematically more sus-

tainable. Alternatively, by minimizing FI variance, the

system will be maintained in a sustainable state since the

system’s level of organization will strive to remain con-

stant (Shastri and Diwekar 2006). We chose the latter

approach.

As seen in Eq. 4, the objective function minimizes the

deviation of the system’s FI from the FI of a sustainable

base case (Shastri et al. 2008). The minimization function

was chosen in order to follow the sustainable regime

hypothesis, which states, ‘‘the system in a stable dynamic

regime has a FI which is constant with time’’ (Shastri and

Diwekar 2006). Furthermore, the maximization of FI may

result in a regime change; although the system may be

stable, the alternative system’s characteristics may not be

favorable to human existence. For this reason, we chose to

minimize FI variance for the objective function.

J¼MinDV
X10

i¼1
ðIðiÞ� IcðiÞÞ2 ð4Þ

subject to the model equations and bounds on decision

variable DV (Kotecha et al. 2012).

Here, J is the objective function, IcðiÞ is the current

FI,IðiÞ and is the ideal FI for a sustainable system. The

Table 1 Candidate policy options for the sensitivity analysis

Category Name Parameter Mass-flow Meaning Selected?

Regulatory variables Discharge fee dfee IS ! IRP Discharge fee imposed by government

to the Industry sector for waste disposal.

Yes

Energy production fee dEE
fee EP ! IRP Discharge fee imposed by government

to the energy producers.

No

Economic variables Plant consumption kP1 P1 ! HH Parameter relating the price of P1

to the demand of P1 by human households

Yes

Animal consumption lH1 H1 ! HH Parameter relating the price of H1

to the demand of H1 by human households

Yes

Agricultural fee FP1H1 P1 ! H1 Parameter relating the price of P1 and

the demand of P1 by H1

No

Plant material fee SP1IS P1 ! IS Parameter relating the price of P1

to the demand of IS

No

Industrial energy

consumption

SEEIS EP ! IS Parameter relating the price of energy

to the demand of IS

No

Household Energy

Consumption

OEE EP ! HH Parameter relating the price of energy

to the demand of energy by Human household

No

Household Biofuel

Consumption

KEE P1 ! EP Parameter relating the price of P1

to the demand of energy by Human household

No

Technologic variables Theta hp1 P1 ! IS Amount of P1 required to produce a unit

of industrial product IS

Yes

Khat
k
^ P2 ! H1 Constant value specified by the government.

Represents the grazing of P2 by H1.

Yes

Biomass to biofuel

conversion rate

kbiom P1 ! EP Amount of biomass (P1) needed

to produce a unit of biofuel

Yes
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objective function can be rewritten in terms of the state and

decision variables. For more information please refer to

Online Resource Section 3.

We use nonlinear programming (NLP) optimization

methods to solve this problem. For NLP, we need to dis-

cretize the parameter space. Therefore, the total time is

divided into ten equispaced time intervals. In the six

parameter optimal control problems, six decision variables

represent the six policy parameters selected earlier from the

sensitivity analysis as they vary over time. Each decision

variable has ten dimensions to hold the optimized values of

the policy parameter for each of the ten time intervals.

Since the model runs for 200 years and there are ten time

intervals, each time interval, therefore, symbolizes

20 years. It is worth noting that the decision variable’s

value during each time interval remains constant for the

entire course of the 20 years.

The NLP optimization problem is solved in Matlab

using the constrained optimization algorithm ‘fmincon’.

The varying values of the policy parameters in each of the

time intervals are obtained and are then plugged into the

model to see the effects on the ecosystem model. The

results obtained from optimization are compared with the

ideal case and the projected consumption increase scenario.

To put it all together, at each successive time step, a

controlled parameter’s value will change every 20 years to

an optimized value, and, consequently, influence the sys-

tem’s FI. The parameter value is solved to satisfy the

objective function to the optimal extent with the help of

NLP. By satisfying the objective function during CI, the FI

profile of the controlled parameter scenario will try to

mimic the FI profile of the base case. Therefore, when

examining CI, the controlled parameter scenario will fol-

low a more sustainable trajectory than the uncontrolled

parameter scenario.

Results and discussion

Sensitivity analysis

Below in Table 1, you will find a summary of the selected

and non-selected parameter from the sensitivity analysis.

Six of the twelve parameters were ultimately selected for

optimal control. It is useful to be familiar the real world

meanings, and hence the policy implications, associated

with the selected parameters. The selected parameters

come from all three categories of variables being explored

in the model: regulatory, economic, and technological.

The sensitivity analysis of each parameter can give a

basic intuition of how various compartments in the system

react to changes in certain parameter values. For example,

Fig. 2 shows how the sensitivity analysis of the plant

consumption parameter, kP1, affects certain compartments

(e.g. P1, H1, and C1). As seen in Table 1, the parameter kP1
relates the price of P1 (primary producer) to the demand of

P1 by HH (human households). Therefore, increasing kP1
makes P1 more expensive for HH, which reduces HH

demand for P1 and decelerates the depletion of P1. This is

reflected in Fig. 2a since the dashed profile, signifying a

5 % increase in kP1, has a slowed depletion relative to the

solid profile, the base case. The dashed profiles in Fig. 2b,

c indicate that herbivores and carnivores species (i.e. H1

and C1, respectively) also deplete at a slower rate relative

to the base case; the slightly increased lifespan for these

species can be attributed to a larger food source of P1 since

P1 is not being as rapidly depleted through human con-

sumption. However, Fig. 2d’s dashed profile shows how

human per capita mass drops, indicating less P1 was

available as a food source for human beings due to price

increases.

Looking to the real world, the conclusions derived from

the sensitivity analysis provide keen insights about the

relationship between human appropriation of net primary

productivity (HANPP) and biodiversity. Our planet’s pri-

mary producers generate a finite amount of biomass

annually. This biomass provides humans with food, fiber,

and fuel, but, the same biomass is a vital dietary resource

for other animals and microorganisms. HANPP tells us

how much of the planet’s capacity to produce biomass is

occupied by humans, serving as a useful metric on human

alteration of the biosphere. During the last century, HANPP

has doubled from around 13 % to 25 %. Furthermore,

estimates predict that HANPP will raise to 44 % globally

by 2050 due to the increased usage of biofuels (Krausmann

et al. 2012). The literature also indicates evidence that

increases in HANPP correlate to decreases in biodiversity

(Haberl et al. 2005; Rodrı́guez-Labajos and Martı́nez-Alier

2013). The reasoning matches the conclusions from the

sensitivity analysis of the plant consumption parameter: if

humans consume more biomass, then there is less biomass

available to other species (e.g. herbivores and carni-

vores).To support this, by looking to the dotted profile in

Fig. 2 and examining the decrease in kP1, one can see the

increase in per capita mass of humans is correlated to the

depletion P1, H1, and C1.

While the sensitivity analysis for other parameters can

be found in Online Resource 2, there are still a few key

findings worth mentioning. First, the sensitivity analysis for

the animal consumption parameter (lH1) suggests that

increased consumption of herbivores will adversely affect

carnivore populations while leaving primary producer

populations unaffected. Furthermore, the sensitivity ana-

lysis for the biomass to biofuel conversion rate parameter

(kbiom) reveals that, when it comes to humans deciding how

to utilize biomass, there is an inherent tradeoff between
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meeting human food and energy needs; basically, since the

amount of biomass generated by primary producers in

limited, allocating biomass for biofuel comes at the

expense of biomass available for food, and vice versa.

Applying this trend in the model to the real world provides

insight on how U.S. subsidies for the production of corn

ethanol may be responsible for cost increases in interna-

tional food prices (Waage 2008). These discussion above

reveals the type of qualitative conclusions about ecological

systems a sensitivity analysis can yield.

Single variable optimal control

The purpose for conducting single variable optimal control

is to confirm the effectiveness of each parameter from the

sensitivity analysis as a decision variable in control prob-

lems. Each of the six selected parameters from Table 1

were independently controlled and evaluated. To document

an example of this process, this paper includes the results

from controlling the plant consumption parameter (i.e. kP1).

Also, single variable optimal control is meant to serve as a

basis for comparison when evaluating the impact of mul-

tivariable optimal control on sustainability.

Figure 3e compares the controlled and uncontrolled

values of kP1. The optimal control results suggest increas-

ing kP1 for the 80 years. Increasing kP1 would increase the

cost for P1 by HH; therefore, humans will purchase less

biomass. In the real world, this could be implemented

through atax on the purchasing on biomass. The model

predicts that this policy strategy would decelerates the

depletion of P1, H1, and C1, as predicted in Fig. 3a–c,

respectively. To explain this, since P1 is more expensive

for the first 80 years, humans will consume fewer primary

producers during this time; the slightly larger plant popu-

lation in the controlled scenario relative to the base case

will act as an increased food source capable of supporting

more herbivores and carnivores relative to the base case.

Therefore, the slowed rate of depletion of P1 is responsible

for the slowed rate of depletion of H1 and C1. After

80 years, the kP1 parameter reverts back to its default

levels; the real-world policy analog would be the expiration

of the biomass tax mentioned earlier. Figure 3d shows the

FI for the three cases. The controlled parameter scenario

has less deviance from the base case compared to the

uncontrolled parameter scenario during consumption

increase. Fig. 3d, however, indicates that kP1 alone does

not significantly increase the sustainability of the system

since the FI of the controlled scenario still begins its

decreases to zero after the 50th year, just like the uncon-

trolled scenario. Regardless of the improvements due to the

controlling of the kP1 parameter, the system still goes

extinct while running a consumption increase scenario.

This motivates us to explore multivariable control.

Multivariable optimal control

In this section, we first present the results of the simulta-

neous control of three parameters: kP1, lH1, and kbiom. As
seen in Fig. 4a–c, there is a slight improvement from single

variable optimal control since the lifespan of P1, H1, and

C1 all increase by approximately 5 years. Figure 5a–c

depict potential policy values for 20 year intervals if the

government were to simultaneously implement and coor-

dinate the three regulatory options represented by the three

parameters. For example, looking to Fig. 5 to determine a

Fig. 2 Sensitivity analysis

results for plant consumption

(kP1) without consumption

increase.kP1 is increased and

decreased by 5 % to observe

changes in P1, H1, C1, and per

capita mass. The base case kP1
value is used as a standard of

comparison
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general policy strategy for the first 20 years, one may

conclude to implement a tax increase for biomass (corre-

lates to the increase in kP1), slight tax increase for the

purchasing of livestock (correlates to the minor increase in

lH1), and a relaxing of the standards which dictate the

conversion rate of biomass to biofuel (correlates to the

decrease in kbiom). Still, as seen in Fig. 4d, controlling

three parameters is not enough to ensure sustainability

Fig. 3 Effects of controlled and

uncontrolled plant consumption

(kP1) on P1, H1, C1, and FI.CI

stands for consumption

increase. The controlled

parameter scenario (dashed

profile) is aiming to emulate the

sustainable base case (solid

profile) and avoid extinction, a

path taken by the uncontrolled

parameter scenario (dotted

profile). Also, the control profile

for kP1 is included to show how

its value varies with time

relative to the constant

uncontrolled parameter values

Fig. 4 Three parameter

multivariable optimal control.

Graphs a–d depict the effects of

three parameter optimal control

on P1, H1, C1, and FI. In the

legend, CI stands for

consumption increase. The

controlled parameter scenario

(dashed profile) is aiming to

emulate the sustainable base

case (solid profile) and avoid

extinction, a path taken in the

uncontrolled parameter scenario

(dotted profile)
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during the consumption increase scenario; the controlled

dashed profile still hits zero within a 100 years, which is

only half of the model’s 200 year duration. This realization

urges us to explore whether the optimization of six

parameters would give enough control over the system to

guide it towards sustainability for the model’s full duration.

Figure 6a–d present the results of dynamic optimization

using all the six control variables. Only the most influencing

compartments are presented whereas others are reported in

Online Resource Section 4. Considering Fig. 6d, it can be

observed how the dashed profile is deviating from the dotted

profile and better matching the solid profile, reflecting the

extended lifespan of each compartment in the system (see

Fig. 6a–c). This indicates that optimal control helps themodel

to better match the behavior of the base case. Figure 7 graphs

the value of the objective function, the accumulated FI vari-

ation from the base case, for the uncontrolled and controlled

scenarios. By comparing the dashed profile to the dotted

profile, one can see that the accumulation of FI variance was

successfully minimized, proving the objective function was

satisfied. Interestingly, in Fig. 7, around year 70, the objective

function value for the uncontrolled case dramatically began

increasing since, according to Fig. 6d, the model’s FI

approached zero, resulting in maximum deviation from the

Fig. 5 Three parameter optimal

control profiles. Graphs

a–c show how the three

controlled parameters vary with

time relative to the constant

uncontrolled parameter values

Fig. 6 Six parameter

multivariable optimal control

profiles. Graphs a–d depict the

effects of multivariable optimal

control on P1, H1, C1, and FI.

In the legend, CI stands for

consumption increase. The

controlled parameter scenario

(dashed profile) aims to emulate

the sustainable base case (solid

profile) and avoid extinction, a

path taken by the uncontrolled

parameter scenario (dotted

profile)
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base case. Putting together all the conclusions fromFig. 6 and

7, one can see that minimizing FI variance by controlling six

parameters sustained all the model compartments for at least

200 years despite increased resource consumption by

humans—a key breakthrough.While one parameter and three

parameter optimal control may not have been able to guide

sustainable development for 200 years, six parameters

optimal control finally managed to achieve to do so, a crucial

extension of previous research on this model.

The implementation of the control strategy of the six

parameters is illustrated in Fig. 8. In this figure, we can

observe the fluctuation of each parameter every 20 years,

which can represent a 20 year plan that the government can

use. It has not escaped our notice that the parameter values

change drastically over short periods of time between the

time steps, which may be seen as unrealistic in a real-world

policy context. However, we found that gradual parameter

changes does this idea, as a goal for future work, the model

can be altered to facilitate a smooth change in parameter

values over greater amounts of time but we include addi-

tional control parameters than the six we have chosen. This

will signifying the gradual adoption and implementation of

government standards and legislation.

Comparing Figs. 3d,4d, and 6d, it is evident that having

control over a greater number of decision variables (policy

options) allowsus to better control theFI, thus the sustainability

of the system.Additionally, we can conclude thatmultivariable

optimal control is preferable over single variable optimal

control. This reinforces the idea that there is not a single

magical solution to the world’s sustainability needs. Rather, a

combination of regulatory strategies implemented to various

degrees would be most effective.

Fig. 7 Objective function profile for six parameter multivariable

optimal control. The objective function increases as deviation from

the base case FI value is accumulated. By comparing the dashed

profile to the dotted profile, it is seen that controlling the model’s six

parameters significantly slows the accumulation of FI deviation from

the base case

Fig. 8 Six parameter optimal

control profiles. Graphs a–
f show a comparison of the

control profiles with the

uncontrolled parameters and

how their values vary over time
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Conclusion

In this work, we used optimal control techniques to guide a

mathematical model of the planet away from extinction and

towards a path of sustainable development for at least

200 years. We met original goals; none of the eight eco-

logical compartments (P1, P2, P3, H1, H2, H3, C1, and C2)

went extinct and growing resource demands from human

society were met. This was a vital extension to previous

work on this model since this is the first time multivariable

optimal control has been successfully applied to achieve

such long term sustainable development. We achieved this

by controlling real-world policy analogs in the model:

industrial waste discharge fees, biomass fees, animal fees,

industrial efficiency regulation, grazing fees, and biomass

to biofuel conversion rate standards. By grounding this

work in real-world policy options within regulatory reach,

we demonstrated how the strategic implementation of

policies may have a significant impact on sustainability in

practicality.

Also, we examined how the model reacted to manipu-

lating different policy options and yielded both qualitative

and quantitative conclusions relevant to sustainable eco-

system management. For example, the sensitivity analysis

yielded insights into real-world policy challenges such as

the trade-off between using biomass for food and fuel and

the inverse relationship between HANPP and biodiversity.

This work also showed how there is a critical level of

control—a ‘‘tipping point’’ per se - necessary for guiding a

complex system, such as the environment, along a path of

sustainable development. While efforts to control one and

three parameters failed to guide the system towards sus-

tainable development, simultaneously controlling and

optimizing six policy parameters managed to ensure sys-

tem sustainability for at least 200 years. Then, models like

the only developed in this work can be used by policy

makers to figure out the necessary amount of system

control needed for sustainable development. Ultimately,

integrating sustainable ecosystem management with mul-

tivariable optimal control techniques and mathematical

modeling can be useful for defining policy approaches that

maintain the integrity of the environment and satisfy

consumption demands.

Still, even this model is not perfect, which is why there is

room for future work. As mentioned earlier in ‘‘Multivari-

able optimal control ’’ section, themodel should be refined to

transition between controlled parameter values gradually to

reflect the time lag associated with the adoption of new

government regulations. Another goal for the future is to

incorporate new fuel sources such as shale gas and algae in

order to further understand the role of energy production in

determining decisions regarding sustainability.
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