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Abstract Arsenic poisoning has become one of the major

environmental worries worldwide, as millions of people,

which have been exposed to high arsenic concentrations

(through contaminated drinking water), developed severe

health problems. The high toxicity of this element made

necessary the enforcement of stringent maximum allow-

able limits in drinking water. So, the development of novel

techniques for its removal from aqueous streams is a very

important issue. This paper offers an overview of geo-

chemistry, distribution, sources, toxicity, regulations and

applications of selected techniques for arsenic removal.

The contribution briefly summarizes adsorption processes

and mechanism of arsenic species removal from water

streams by means of iron oxide/oxyhydroxide based

materials. Sorption capacities of various sorbents (e.g.

akaganeite, goethite, hydrous ferric oxide, iron oxide

coated sand, Fe(III) loaded resin, granular ferric hydroxide,

Ce(IV) doped iron oxide, natural iron ores, iron oxide

coated cement, magnetically modified zeolite, Fe-hydrox-

ide coated alumina) have been compared.
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Introduction

Water is a very limited natural resource and in many

cases there is not enough water supply of appropriate

quality for industrial and domestic use. Many pollutants

in water streams have been identified as toxic and

harmful to environment and human health. Among them

arsenic is considered as a high priority one. It occurs

naturally in rocks and soils, water, air, plants, and ani-

mals. Volcanic activity, the erosion of rocks and minerals,

and forest fires are also sources that can release arsenic

into the environment. Anthropogenic activities are also

responsible for arsenic release into the environment.

Wood preservatives, paints, drugs, dyes, metals, and

semi-conductors contain arsenic. Agricultural applications

(pesticides, fertilizers), fossil fuel combustion, mining,

smelting, landfilling and other industrial activities con-

tribute to arsenic releases as well. These natural and

anthropogenic sources introduce a certain amount of

arsenic to the environment and increase its concentration

and distribution. Figure 1 shows the occurrence and flow

paths of arsenic in the environment (Wang and Mulligan

2005). Arsenic has been found at higher levels in

underground drinking water sources than in surface

waters. In some cases, arsenic poisoning is so severe that

made worldwide headlines when reported (e.g. Bangla-

desh, West Bengal, India, etc.). Water containing 300–

4,000 lg L–1 of arsenic is not so rare (Berg et al. 2001;

Hossain 2006). Several studies have linked long-term

exposure even to small concentrations of arsenic with

cancer and cardiovascular, pulmonary, immunological,

neurological and endocrine effects. As a consequence,

arsenic is considered highly toxic and there is a tremen-

dous demand for developing efficient methods for arsenic

removal from drinking waters (Shih 2005).
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Chemistry and toxicity of arsenic

Arsenic is the twentieth most abundant element in the

earth’s crust, fourteenth in the seawater and the twelveth

most abundant element in human body (Mandal and Suziki

2002). Arsenic is a metalloid or inorganic semiconductor. It

occurs with valence states of –3, 0, + 3 (arsenite, As[III]),

and +5 (arsenate, As[V]). Because the valence states –3 and

0 occur rarely, this discussion of arsenic chemistry focuses

on As(III) and As(V). Arsenic forms inorganic and organic

compounds. Inorganic compounds of arsenic include

hydrides (e.g., arsine), halides, oxides, acids, and sulphides

(Kirk-Othmer 1992; Smedley and Kinniburgh 2002). The

dominant organic forms found in water are methyl and

dimethylarsenic compounds (Scheme 1, Hung et al. 2004).

Methylated arsenic species, such as monomethylarsonous

acid (MMA(III)), monomethylarsonic acid (MMA(V)),

dimethylarsonous acid (DMA(III)), dimethylarsonic acid

(DMA(V)) can be formed through biomethylation by

microorganisms under favourable conditions (Cullen and

Reimer 1989; Hasegava et al. 2001). Generally, As(V) is

more prevalent in surface water while As(III) is more likely

to occur in anaerobic ground waters. However, redox

potential (Eh) and pH are the most important factors con-

trolling As speciation. Under oxidising conditions, H2AsO4
–

is dominant at low pH (less than about pH 6.9), whilst at

higher pH, HAsO4
2– becomes dominant (H3AsO4

0 and AsO4
2–

may be present in extremely acidic and alkaline conditions,

respectively). Under reducing conditions at pH less than

about 9.2, the uncharged arsenite species H3AsO3
0 will

predominate (Fig. 2; Smedley and Kinniburgh 2002; Yong

and Mulligan 2004; Kundu and Gupta 2005; Wang and

Mulligan 2005). The toxicity and mobility of arsenic are

determined by its oxidation state, thus the behaviour of

arsenic will change depending on the biotic and abiotic

conditions of water (Meng at al. 2003; Thomas et al 2001).

Fig. 1 Arsenic cycle in the

environment (Wang and

Mulligan 2005)

Scheme 1 Arsenic species found in water (Hung et al. 2004)

Fig. 2 Eh–pH diagram for aqueous As species in the system As–O2–

H2O at 25�C and 1 bar total pressure (Smedley and Kinniburgh 2002)
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Generally, inorganic forms are more toxic and mobile than

organoarsenic species, while arsenite is considered to be

more toxic than arsenate. It has been reported that As(III) is 4

to 10 times more soluble in water than As(V) (Squibb and

Fowler 1983; Xu et al. 1988; Lambe and Hill 1996; US EPA-

542–S-02-002, 2002a). Moreover, it has been found that

As(III) is 10 times more toxic than As(V) and 70 times more

toxic then MMA(V) and DMA(V). However, the trivalent

methylated arsenic species, i.e., MMA(III) and DMA(III)

have been found to be more toxic than inorganic arsenic

because they are more efficient at causing DNA breakdown

(Styblo et al. 2000; Dopp et al. 2004). The toxicity of

different arsenic species varies in the order: arsenite >

arsenate > mono-methylarsonate (MMA) > dimethylarsinate

(DMA) (Jain and Ali 2000).

Methods of arsenic removal

As the presence of arsenic species in drinking water, even

in low concentrations, is a threat to human health, the

World Health Organization (WHO) recommended the new

maximum contaminant level (MCL) of arsenic in drinking

water to 10 lg L–1 from an earlier value 50 lg L–1 (WHO

2004). This greatly reduced limit was recently accepted by

authorities of European Union (EU) as well as by United

States Environmental Protection Agency (US-EPA)

(Directive 98/83/EC 1998; US EPA 2002b). With the new

standard of 10 lg L–1 from the 74,000 total community

water systems in USA around 5,000 will contain arsenic

above the limit and should take corrective actions. As 94%

of these water systems serve fewer than 10,000 people each

cost effective procedures should be applied.

Various treatment methods have been developed for the

removal of arsenic from water streams, such as sorption

and ion-exchange (Jekel 1994; Rau et al. 2003; Shevade

and Ford 2004; Singh and Pant 2004), precipitation (Hering

et al. 1997; Wickramasinghe et al. 2004; Kartinen and

Martin 1995), coagulation and floculation (Hering et al.

1997; Han et al. 2002; Kumar et al. 2004; Song et al. 2006)

reverse osmosis (Ning 2002; Kang et al. 2000), membrane

technologies (Han et al. 2002; Sato et al. 2002; Shih 2005),

electrodialysis (Kundu and Gupta 2005), biological pro-

cesses (Katsoyiannis and Zouboulis 2004; Pokhrel and

Viraraghavan 2006) as well as lime softening (Dutta and

Chaudhuri 1991), etc. Among them, coagulation-precipi-

tation followed by filtration has been recognized as a

popular one. Reverse osmosis and electrodialysis have also

been found effective, but they were costly and water

recovery was not optimised (US-EPA 2003).

Co-precipitation/adsorption processes are commonly

applied today to meet the current drinking water standards

and show a good efficiency to cost ratio for higher arsenic

concentrations. However, they fail to remove arsenic to

concentrations below the new decreased limits (10 lg L–1)

(Deschamps et al. 2005). Arsenic is more difficult to be

removed when it occurs in As(III) form. Sorption methods

are based on the development of attractive forces between

the arsenic soluble species and the sorbent surface. Elec-

trostatic forces contribute quite a lot in the sorption

mechanisms. In order to understand the different sorption

behaviour of As(III) and As(V) the thermodynamic equi-

librium diagrams have been constructed with the computer

code Mineql Plus (1998) using the Mintequa II databases

and are presented in Figs. 3 and 4, respectively. It is ob-

served that, in As(III), the neutral H3AsO3 species pre-

dominate at pH values 2–8, while in As(V) the single

negatively charged H2AsO4
– predominates at pH values 3–6

and then the double negatively charged HAsO4
–2 at pH

values up to 11. So, the electrostatic forces between the

negatively charged As(V) species and the usually posi-

tively charged iron oxide surface, at the pH ranges of

natural waters, are much stronger. This might be a reason

for the better As(V) sorption removal. However, with de-

creased arsenic concentrations the contribution of electro-

static forces to sorption is not enough to remove arsenic

below the new stringent limits. Therefore, there is a tre-

mendous demand for developing cheap efficient methods

for removal of arsenic species from drinking water. Sorp-

tion methods are still considered promising, in regard to the

cost/efficiency factor and new sorbents are being devel-

oped with the aim of obtaining the new target limit. The

most commonly used sorbents can be classified in two

main groups: (1) those based on iron compounds, which are

the most frequently used (Xu et al. 2002; Rau et al. 2003;

Singh and Pant 2004) and (2) those based on aluminium

compounds, e.g., activated alumina c-Al2O3 or gibbsite

Al(OH)3. Other sorbents that have been studied comprise

coconut husk carbon (Manju et al. 1998), carbon from fly
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Fig. 3 Arsenite speciation as a function of pH for total As(III)

concentration 50 mg L–1 (constructed by Mineql Plus)
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ash (Patanayak et al. 2000, Bertocchi et al. 2006), hybrid

polymeric materials (DeMarco et al. 2003), red mud

(Genc-Fuhrman et al. 2005, Altundogan et al. 2002),

titanium dioxide (Dutta et al. 2004; Jing et al. 2005),

manganese dioxide (Lenoble et al. 2004; Deschamps et al.

2005), orange waste (Ghimire et al. 2003) and also

biosorbents, e.g., fungal biomass (Loukidou et al. 2003;

Pokhrel and Viraraghavan 2006).

Sorbents based on iron oxides/oxyhydroxides

Iron compounds have been reported to be effective for the

removal of metal ions. Several iron(III) oxides/oxyhy-

droxides, such as amorphous hydrous ferric oxide (FeO-

OH), poorly crystalline hydrous ferric oxide–ferrihydride

(Wilkie and Hering 1996), goethite (a-FeOOH) and akag-

aneite (b-FeOOH) are promising sorbents for removing

both As(V) and As(III) from aqueous solutions (Lakshmi-

pathiraj et al. 2006; Vaclavikova et al. 2005b; Deliyanni

et al. 2003; Matis et al. 1999). Other type of sorbents based

on iron oxides/oxyhydroxides such as iron oxide-coated

polymeric minerals (Katsoyiannis and Zouboulis 2002),

iron oxide-coated sand (Thirunavukkaresu et al. 2003),

granular ferric hydroxide (Badruzzaman et al. 2004;

Sperlich et al. 2005), iron oxide-coated cement (Kundu and

Gupta 2005), iron-hydroxide coated alumina (Hlavay and

Polyak 2005), Ce(IV)-doped iron oxide adsorbent (Zhang

et al. 2003), silica-containing iron(III) oxide (Zeng 2003),

magnetically modified zeolite (Vaclavikova et al. 2005a),

natural iron ores (Zhang et al. 2004) and waste materials

containing iron particles e.g. fly ash and red mud

(Bertocchi et al. 2006) have been investigated as well. A

comparison of the removal capacities of selected sorbent

materials towards As is given in Table 1.

Recent data indicated that hydrous ferric oxide (HFO)

such as granular ferric hydroxide (GFH), ferrihydride,

goethite as well as akaganeite sorb strongly arsenic species.

Sperlich et al. (2005) studied the breakthrough behaviour

of GFH fixed bed adsorption filter for removal of arsenic.

Equilibrium adsorption isotherms were developed for

initial concentrations (1–8 mg L–1) of arsenate spiked in

deionized water. The maximum uptake values for low

(0–1 mg L–1) and high initial concentrations (1–8 mg L–1)
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Fig. 4 Arsenate speciation as a function of pH for total As(V)

concentration 50 mg L–1 (constructed by Mineql Plus)

Table 1 Arsenic removal

capacities of selected sorbent

materials

Adsorbent Qmax (mmol g–1) pH Reference

As(III) As(V)

Akaganeite N/A 1.79 7.5 Deliyanni et al. (2003)

Akaganeite N/A 0.93 3.5 Vaclavikova et al. (2005b)

Goethite N/A 0.33 5.0 Matis et al. (1999)

Hydrous ferric oxide N/A 1.34 4.0 Wilkie and Hering (1996)

Iron oxide coated sand 0.0057 0.0055 7.6 Thirunavukkarasu et al. (2003)

Fe(III) loaded resin 0.15 0.80 1.7 Rau et al. (2003)

Granular ferric hydroxide

low initial conc. N/A 0.39 7.0 Sperlich et al. (2005)

higher initial conc. N/A 0.57 7.0

Ce(IV) doped iron oxide N/A 0.93 5.0 Zhang et al. (2003)

Natural iron ores N/A 0.0053 4.5–6.5 Zhang et al. (2004)

Iron oxide coated cement 0.0093 N/A 7.0 Kundu and Gupta 2005

Magnet. modified zeolite N/A 0.93 3.5 Vaclavikova et al. (2005a)

Fe-hydroxide coated alumina 0.102 0.212 6.6–7.2 Hlavay and Polyak (2005)

Sand-red mud columns 0.012 N/A 5.8–7.5 Altundogan et al. (2002)

N/A 0.013 1.8–3.5

Fly ash N/A 0.0026 6.9 Bertocchi et al. (2006)
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were 28.9 and 42.7 mg g–1, respectively, at pH 7. Bad-

ruzzaman et al. (2004) presented an arsenate adsorption

density of about 8 mg As per g of dry GFH at pH 7.

Goethite and akaganeite have also been studied. Goethite

showed a satisfactory sorption capacity of about 25 mg g–1

(Matis et al. 1999). Synthetic akaganeite (b-FeOOH) has

shown an uptake of 65 mg of As per g of akaganeite at pH

3.5 and temperature 22�C (Vaclavikova et al. 2005b) and

of 120 mg of As per g of sorbent at pH range 4.5–7 and

temperature 25�C (Deliyanni et al. 2003). The higher re-

moval capacity of akaganeite could be attributed to its

higher surface area (i.e., 330 m2 g–1 for akaganeite and

130 m2 g–1 for goethite), which is an important factor for

an effective sorption process. The particle size of the above

mentioned iron oxyhydroxides is in the range of nano-

materials, and the solid/liquid separation as well as the use

of the materials in sorption columns is problematic. Here, a

good challenge is the development of novel advanced

sorbents that will include nano-sized guests (iron oxide/

oxyhydroxide) into a well organized host matrix. Zeolites

are ideal hosts for the accommodation of organic and

inorganic molecules, polymer chains, etc. because of their

uniform pore size and their ability to adsorb molecular

species. They are known to be good sorbents/ion-

exchangers for cations and their surface modification can

create localized functional groups with a good affinity to

anions too. Recently, Vaclavikova et al. (2005a) presented

the synthesis of magnetic iron oxide based nano-partiles

inside porous natural zeolite. Initial sorption experiments,

have shown a sorption capacity of around 70 mg of As per

g of sorbent. This novel synthesised sorbent had good

magnetic properties and the solid/liquid (S/L) separation is

expected to be easy in a high gradient magnetic field.

Moreover, the material has a porous microstructute that

might make it suitable for sorption columns; fixed-bed

sorption studies are planned.

Recently, Katsoyiannis and Zouboulis (2004) reported a

promising technology for the effective removal of arsenic

from groundwaters. They used the naturally occurring

microorganisms Gallionella ferruginea and Leptothrix

ochracea to oxidize the iron which exist (or it is added) to

natural waters and form new iron oxide precipitates on

filter medium which adsorb the arsenic and remove it from

the aqueous streams. Under optimized experimental con-

ditions, trivalent arsenic was found to be oxidized by these

microorganisms, contributing to increased overall arsenic

removal (up to 95%) even when initial arsenic concentra-

tions were 200 lg L–1. In addition, the pentavalent arsenic

content, under the same experimental conditions was

removed effectively, leading to residual concentrations

below the newly enforced limit of 10 lg L–1.

Conclusions

The presence of arsenic in groundwater has been recog-

nized as a major problem for many parts of the world. Due

to its high toxicity, even in low concentrations, it is a threat

to human health. Hence, the new maximum contaminant

level (MCL) of arsenic in drinking water has been set by

authorities worldwide to 10 lg L–1 from an earlier value of

50 lg L–1. There are many techniques, which can be

effectively applied to remove arsenic from water streams

with high arsenic concentrations. However, the same

techniques are not very effective at lower initial arsenic

concentrations and very often it is not possible to reach the

regulatory limit of 10 lg L–1. Moreover, some of the

existing techniques, are costly and they are not economi-

cally applicable in small community systems. Therefore,

there is a need for developing cheap efficient methods for

the removal of arsenic species from drinking water. So,

from our point of view, it is important to develop efficient

sorbent materials suitable for easy S/L separation and/or

for column operations. A novel developed sorbent (by

incorporation of iron oxide based magnetic nano-particles

into a zeolite structure) seems to be a promising one for

economic application in small systems. Another promising

technique, presented by Katsoyiannis and Zouboulis

(2004), capable to remove both As(III) and AS(V) from

ground waters to concentrations below the limit of

10 lg L–1, involves the biological oxidation of Fe(II) to

Fe(III) (by microorganisms naturally found in the ground

waters) and the subsequent sorption of arsenic in the newly

formed iron hydroxide.
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