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Abstract In this paper, a new method for the efficient
sensitivity analysis in life cycle assessment is proposed.
Introduction of a perturbation method to matrix-based life
cycle assessment will enable one to evaluate the degree of
influence of each element on the total sum of environ-
mental loads. The mathematical background is described
in detail together with its formulation. Special emphasis is
placed on the advantage that the sensitivity matrix, in
which each entity denotes the sensitivity of the corre-
sponding element, is derived as a result of matrix opera-
tion. Therefore, even if the number of processes becomes
larger, all sensitivities can be calculated easily. Further-
more, the process sensitivity is also formulated. The pro-
posed method is compared with another sensitivity
analysis by Heijungs [Heijungs R (1994) Ecol Econ 10:69–
81] and the validity of the current method is examined
using the example given by Heijungs.

Introduction
By standardizing the evaluation procedure of life cycle as-
sessment (LCA) in ISO, this method has become widely
utilized in all over the world. With the advance in the con-
struction of the inventory database, the LCA procedure
seems to become a practical tool. Although the main feature
of LCA is to evaluate environmental loads by summing up
every contribution from each stage from procuring raw
materials to usage, manufacturing, transportation and dis-
posal, one of its important applications is as a decision-
making tool (Smet and Stalmans 1996; Maurice et al. 2000).
In particular, it has been required that each country makes
efforts to reduce CO2 emission, since a goal of CO2 reduction
was set in the Kyoto protocol. It is becoming more and more
important that LCA is utilized in order to determine the
priority of improvements for the reduction of CO2. For an
analysis centered on decision-making, the sensitivity

analysis is extremely important in addition to the evaluation
of the total amount of environmental load, which is evalu-
ated in conventional LCA. The importance of the sensitivity
in LCA has been widely recognized (Steen 1997). The sen-
sitivity has been widely used to investigate the relation be-
tween input data quality and model output value (Kennedy
et al. 1996). Heijungs pointed out that the identification of
key issues in an iterative procedure is also important to
achieve a certain level of reliability in LCA (Heijungs and
Kleijn 1996). Sensitivity analysis is also expected to play an
important role at the interpretation stage, which is the last
phase of LCA in the ISO standard (Heijungs and Kleijn
2001). For example, sensitivity and uncertainty analyses are
recommended and sometimes requested in ISO 14040, LCA
standard (Steen 1997).

It is generally understood that the sensitivity means the
degree of the effect of each element in the system on the
evaluation quantity. As a simple procedure, the sensitivity
can be evaluated by estimating the influence of the minute
fluctuation of the element of interest on the summed value
of the environmental load. Such a method is also available
for the sensitivity analysis in LCA. However, a one by one
treatment is required for the sensitivity analysis of all el-
ements since it is rather difficult to generalize the proce-
dure. In such a method, it may be time consuming and
laborious work to prioritize the elements if there are many
elements in the system. Therefore, it is extremely impor-
tant to formulate the procedure of the sensitivity analysis
for general purposes.

From this viewpoint Heijungs proposed the sensitivity
analysis for the LCA using process analysis and formulated
the procedure so it could be used for general purposes
(Heijungs 1994; Heijungs and Kleijn 1996). In his method,
the sensitivity analysis is formulated on the basis of the
matrix-based LCA. Since the method is expressed in
mathematical form, it is easy to integrate the method to
LCA. However, the derived equation is slightly compli-
cated and somewhat difficult for practical use.

In this paper, the perturbation method is applied to
formulate the sensitivity analysis in LCA. It will be shown
that this method will become advantageous in many as-
pects for practical use. For example, the derived equation
is expressed explicitly in matrix form and so its applica-
tion is extremely simple. Therefore, not only is its appli-
cation simple, but the method does not require much
calculation time. It will also be shown that several other
important properties related to sensitivity can be derived
through this formulation. In this paper, the fundamental
formulation will be described and its validity is examined
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by applying the method to the example that Heijungs set
out in his paper and comparing the results.

Although the procedure presented in this paper is ap-
plicable in the stage of inventory analysis, this method is
also available for overall LCA.

Inventory analysis using the matrix method
In the formulation of the sensitivity analysis in this paper,
the inventory analysis is in essence based upon the matrix
method. The details of this method are described in the
paper of Heijungs (1994). A summary of this method is
given here briefly since this method is closely related to the
discussion in the subsequent section. The fundamental
unit to be considered is a process in which data are
composed of input, output, and environmental loads. Ex-
amples of the input and the output data are materials,
products, and energy. All of these are hereafter called
‘‘materials’’ in this paper. On the other hand, environ-
mental loads include emissions to the environment such as
CO2, SOx, NOx, and solid waste. These data are usually
normalized per standard unit and the property of the
process can be expressed as

a ¼

a1

..

.

..

.

an

0
BBB@

1
CCCAb ¼

b1

..

.

..

.

bs

0
BBB@

1
CCCA

where the bold face of lower case letters indicates their
vector properties. ai (i=1,....,n) stand for entities for input
and output properties and bi (i=1,...,s) represent entities
for environmental load properties. It is assumed that there
are n materials and s environmental loads in the current
process tree. A sign convention will be applied: inputs will
be expressed by negative coefficients and outputs by
positive coefficients. By multiplying the quantitative oc-
currence of the process by a and b, the total amount of
materials and that of environmental loads in each process
will be determined, respectively. By assembling each pro-
cess into a column of a coefficient matrix, the following
matrix will be derived:

A ¼

a11 � � � a1j � � � a1q

..

. ..
.

ai1 aij aiq

..

. ..
.

an1 � � � anj � � � anq

2
6666664

3
7777775

where the ith material of the jth process is described as aij

and q is the number of processes. Similarly, the environ-
mental load matrix will be derived as

B ¼

b11 � � � b1j � � � b1q

..

. ..
.

bi1 bij biq

..

. ..
.

bs1 � � � bsj � � � bsq

2
6666664

3
7777775

where the ith environmental load entity of the jth process
is described as bij. The bold face of capital letters indicates
they are matrix quantities. In every matrix, the column j
represents the index for the process. In the meantime, the
boundary condition for materials at the system boundary
will be given in the vector form as

a ¼

a1

..

.

..

.

an

0
BBB@

1
CCCA

If the ith material is closed within the system, ai=0. The
total amount of environmental loads will be expressed in
the vector form as

b ¼

b1

..

.

..

.

bs

0
BBB@

1
CCCA

Hereafter b is called as the environmental vector. Since
the total amount of materials must be balanced within the
system, the following equation has to be satisfied:

Xq

j¼1

aijpj ¼ ai ð1Þ

Since the above relation holds true for all materials
(i=1...n), the following linear equations can be derived:

Ap ¼ a ð2Þ

For the uniqueness of the solution, the number of
processes should coincide with the number of materials
and so A is a square matrix. Therefore, the unknown
vector p is obtained by solving the following equation:

p ¼ A�1a ð3Þ

where A–1 is the inverse matrix of A and the ijth entry of
A–1 is denoted as a�1

ij hereafter. The environmental load
vector b can be obtained by using the environmental load
matrix B as

b ¼ Bp ð4Þ

Evaluation of small variations of process occurrence
using a perturbation method
In the sensitivity analysis, the degree of variation of the
evaluation parameter due to the minute variation of an
element in the system is investigated. The contribution to
the improvement of environmental loads can be identified
with the sensitivity value. In the inventory analysis stage,
one of the most important properties to be investigated is
the variation Db due to the minute variation Daij. This will
help the analyst to specify the most effective part for the
improvement in the system. Db is calculated from Dp,
which is the variation of process vector due to Daij and is
expressed as
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Db ¼ BDp ð5Þ

Thus, it is necessary to derive Dp due to Daij first. The
parameter that shows the original value before the varia-
tion is expressed by putting a bar on its symbol. When the
small variation Daij is applied to the original coefficient
matrix �AA, the process vector p in Eq. (2) is also varied.
This variation Dp is derived using the concept of a per-
turbation method here. Let the small variation of A due to
Daij be DA; it is given as

DA ¼ AIDaij ð6Þ

where

AI ¼ @

@aij
A ¼ alm½ �;

alm ¼
1 if l ¼ i;m ¼ j

0 otherwise

�

In other word, all the entries of AI are 0 except entry (i,
j) which is 1. Therefore, the solution after the small var-
iation can be given by solving the following equation:

�AAp þ AIDaijp ¼ a ð7Þ

In the perturbation method, it is assumed that the so-
lution of Eq. (7) is expressed by a series in Daij as

p ¼ �pp þ pIDaij þ pIIDa2
ij þ � � � ð8Þ

The unknown coefficients of pI, pII, ... can be deter-
mined by substituting Eq. (8) into Eq. (7) and comparing
the terms of Daij of the same order on both sides. For
example, comparing the 0th order terms yields the fol-
lowing equation:

�AA�pp ¼ a ð9Þ

This equation must be solved initially for conventional
LCA anyway. Similarly, comparison of 1st order terms
yields the following equation:

pI ¼ ��AA�1AI�pp ð10Þ

After obtaining �pp by solving Eq. (9), pI can be ob-
tained by substituting �pp into Eq. (10). Similarly, coeffi-
cient vectors for higher order terms can be determined
in order by comparing corresponding terms on both
sides. If we can determine the higher order terms in
Eq. (8), the precision of p may be improved. For the
sensitivity analysis, the quantity of interest is a first
order variation and so Dp is here evaluated up to the
first order term in Eq. (8). Later, the treatment is
extended to the higher order terms. Thus, Dp is
approximated as

Dp 	 pIDaij ¼ ��AA�1AI�ppDaij ð11Þ

It should be noted that the inverse matrix A–1 is
common regardless of the location of entry (i, j). Thus,
once A–1 has been calculated, it does not need to be cal-
culated again for the evaluation of Dp due to Daij. The
expression of AI is simple as was already shown in Eq. (6)

and so the calculations of Dp for various Daij are
extremely simple.

Derivation of sensitivity

Sensitivity to processes
Based upon Eq. (11) which is formulated using the per-
turbation method, the sensitivity of aij to pl will be derived.
By expanding Eq. (11), the following equation is derived.

Dp ¼ �

a�1
1i

..

.

..

.

a�1
ni

2
66664

3
77775�ppjDaij ð12Þ

where, a�1
ij means ijth entry of A–1.

Thus the physical sensitivity of aij to pi is given as

Dpl

Daij
¼ �a�1

li
�ppj ð13Þ

On the other hand, Heijungs derived the corresponding
sensitivity as

@pl

@aij
¼�

�ppl

det Að Þ �1ð Þiþjdet Aij

� �
þ

0 j¼ lð Þ
�1ð Þiþjdet Al

ij

� �
detðAÞ otherwiseð Þ

(

ð14Þ

where det(A) denotes the determinant of the matrix A, Aij

denotes the matrix A with the ith row and the jth column
deleted (the so-called minor) and Al

ij denotes the minor of
the matrix Al. Al is equal to the matrix A with the lth
column replaced by the vector a. It is seen that Eq. (13),
which is formulated with the perturbation method, is
much simpler than Eq. (14) and thus the calculation time
is expected to be short. In particular, it is advantageous
when sensitivities for many aij are to be calculated. When
one would like to know the relative relation within enti-
ties, the important property is the rate sensitivity, which
is given as

Dpl=�ppl

Daij

�
�aaij

¼�
�ppj

�ppl
�aaija

�1
li ð15Þ

Hereafter, the property given by Eq. (15) is denoted by
cl

ij. The confirmation of this derivation will be given later.

Sensitivity to environmental loads
Let the sensitivity of aij to the kth environmental load item
be denoted as dk

ij. This dk
ij will be derived in the same manner

as Eq. (15) by substituting Eq. (11) into Eq. (5) as

dk
ij ¼

Dbk=
�bbk

Daij=�aaij
¼ �

�aaij

�bbk

�ppj

X
l

bkla
�1
li ð16Þ

This sensitivity parameter is extremely important to the
improvement of the analysis for the environmental load.
On the other hand, Heijungs (1994) derived the sensitivity
corresponding to Eq. (16) as
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Dbk=
�bbk

Daij=�aaij
¼� �aaij

�1ð Þiþjdet Aij

� �
det Að Þ

þ
�aaij �1ð Þiþj

�bbk det Að Þ
Xn

l¼1
l 6¼j

bkl det Al
ij

� �� � ð17Þ

By comparing Eq. (17) with Eq. (16), it is clear that the
formulation derived by the perturbation method is much
simpler. Furthermore, once A–1 and b are obtained, the
calculation of Eq. (16) is not a time-consuming process.
The difference becomes remarkable when the number of
processes and materials becomes larger in the practical
LCI.

Sensitivity matrix
The process sensitivity matrix Sl

p of size n·n is defined
here so that its ijth entry coincides with cl

ij defined in
Eq. (15). Since all sensitivities of cl

ij are listed in this ma-
trix, the relation between the sensitivities can be under-
stood easily. Similarly, the environmental load sensitivity
matrix Sk

b of size n·n can be defined so that its ijth entry
coincides with dl

ij defined in Eq. (16). Since this matrix
includes all sensitivities of dl

ij, we can determine the pri-
orities of the entry from this matrix in the improvement
analysis. As is shown in the Appendix in detail, the process
sensitivity matrix is derived from Eq. (15) as

Sl
p ¼ � 1

�ppl
A�1
� �t

el�pp
t � A ð18Þ

where (A)t means the transpose matrix of A and � is the
operation between matrices of size n·n which is defined as

X ¼ Y � Z; xij ¼ yij � zij ð19Þ

el is a vector of size n and is defined as

el ¼

e1

..

.

ei

..

.

en

2
666664

3
777775; ei

1 if i ¼ l
0 otherwise

�
ð20Þ

Similarly, the environmental load matrix is derived
from Eq. (16) as

Sk
b ¼ Etek�pp

t � A ð21Þ

where

E ¼ �bdiagBA�1

bdiag ¼

1=b1 0

. .
.

. .
.

0 1=bs

2
6664

3
7775

Both Eq. (18) and Eq. (21) have the following advan-
tages.

1. The sensitivity matrix is expressed by an explicit op-
eration of matrices and vectors.

2. Once A–1 and �pp are calculated, only one vector modi-
fication is sufficient for the calculation of the sensitivity
corresponding to pl or bk: only el needs to be modified
in Eq. (18) and ek in Eq. (21).

3. Thus, it is extremely easy to incorporate the algorithm
into computer programs.

Verification of the proposed method

Applicability
At first, the applicability of the proposed sensitivity anal-
ysis method is examined by applying the method to a
practical example. Fig. 1 shows a schematic drawing of the
steel making process given in a previous paper (Sakai
1998). This system includes a large number of systems
together with material loops and so is very complicated.
Performing sensitivity analysis for CO2 by applying the
proposed method shown above, it is confirmed that the
sensitivity for all parameters can be calculated practically.
In Table 1, 10 calculated sensitivities are shown in de-
scending order of the absolute values. If the sensitivity is
negative, it means that the total sum of CO2 decreases in
accordance with the increase of the parameter. If the
sensitivity is positive, however, it means that the total sum
of CO2 increases in accordance with the increase of the

Fig. 1. Process tree for steel-making
process
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parameter. It is easy to specify the parameter that con-
tributes to the reduction of total CO2. Thus the applica-
bility of the method is confirmed for a practical example.

Sensitivity matrix
The verification of the sensitivity matrices presented in the
previous section is done using a simple example set out in
Heijungs’s reference (Heijungs 1994). The process data
used are shown in Table 2.

This produces the following related matrices

A ¼

1 �50 �1 0

�0:01 1 �1 0

0 0 1 �1

0 0 0 1

2
66664

3
77775

B ¼

0 �5 0 0

�0:5 0 0 0

3 0 0 0

2 10 0 1

2
66664

3
77775

a ¼

0

0

0

0:1

2
66664

3
77775

ð22Þ

By substituting these values into Eqs. (3) and (4), the
environmental load vector can be obtained as

b ¼

�1:01
�5:1
30:6

22:52

2
664

3
775 ð23Þ

These values agree with those in Heijungs’s results. On
the other hand, the process sensitivity factor matrix for the
process of production of aluminum can be calculated
using Eq. (18) and is obtained as

S2
p ¼

�1:010 1:000 0:010 0
1:010 �2:000 0:990 0

0 0 �1:000 1:000
0 0 0 �1:000

2
664

3
775 ð24Þ

Furthermore, the environmental load sensitivity matrix
for the solid waste can be calculated using Eq. (20) as

S4
b ¼

�1:902 1:884 0:019 0
�0:996 1:973 0:977 0

0 0 �0:996 �0:996
0 0 0 �1

2
664

3
775 ð25Þ

These solutions agree completely with those given by
Heijungs and so the applicability of Eq. (20) is confirmed
numerically. The proof in the equation level is investigated
in the subsequent section.

Proof in the equation level
The agreement of the perturbation method and Heijungs’s
method is examined using a simple property of ¶pi/¶aj

here. He derived the following expression in the appendix
to his paper.

@pi

@aj
¼ 1

det Að Þ �1ð Þjþidet Aji

� �
ð26Þ

On the other hand, the property is derived using the
perturbation method as follows. If a perturbation is given
to aj, the equation of material balance should be modified
as

Ap ¼ a þ @a
@aj

Daj ¼ a þ ejDaj ð27Þ

Table 1. Results of sensitivity analysis for steel-making process

Order Process Material I/O Sensitivity

1 Rolling Steel O –1.0648
2 Rolling Steel ingot I 0.996102
3 Converter Crude steel O –0.997843
4 Converter Pig iron I 0.954844
5 Blast furnace Pig iron O –0.89579
6 Blast furnace BFG O 0.70339
7 Power

generation
BFG I –0.70339

8 Plating Tinplate O –0.18247
9 Plating Steel I 0.179626

10 Blast furnace Sintered steel I 0.119452

Table 2. List of process data
(Heijungs 1994) Process

material
Production of
electricity

Production of
aluminum

Production of
aluminum foil

Usage of
aluminum foil

Total
sum

Electricity 1 –50 –1 0 0
Aluminum –0.01 1 –1 0 0
Aluminum foil 0 0 1 –1 0
Sandwich

packages
0 0 0 1 0.1

Env. load
Bauxite 0 –5 0 0
Crude oil –0.5 0 0 0
CO2 3 0 0 0
Solid waste 2 10 0 1

Clean Techn Environ Policy 4 (2002)
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where ej is the vector defined in Eq. (20). If the solution of
p in Eq. (27) is expressed as

p ¼ �pp þ pIDaj ð28Þ

substituting Eq. (28) into Eq. (27) and comparing on both
sides the first order terms of Daj, we obtain the following
equation:

ApI ¼ ej

Thus pI can be derived as

pI ¼ A�1ej ¼

a�1
1j

..

.

..

.

a�1
nj

2
66664

3
77775 ð29Þ

By substituting Eq. (29) into Eq. (28) and differentiat-
ing p with respect to aj, the following equation is obtained.

@pi

@aj
¼ a�1

ij ð30Þ

By the way, the inverse matrix of A satisfies the fol-
lowing fundamental relationship:

A�1 ¼ 1

det Að Þ

A
0

11 � � � � � � A0
n1

..

. ..
.

..

. ..
.

A0
1n � � � � � � A0

nn

2
66664

3
77775 ð31Þ

where A0
ij is a so called cofactor determinant which is

defined as

A0
ij ¼ ð�1Þiþj detðAijÞ

Since a�1
ij is the (i, j)th entry of A–1, a�1

ij is derived as

a�1
ij ¼

A
0

ji

det Að Þ ¼
1

det Að Þ �1ð Þjþidet Aji

� �
ð32Þ

Substituting this equation into Eq. (30) yields Eq. (26).
Thus it is proved that Eq. (30), which is derived by the
perturbation method, agrees with Eq. (26), which was
derived by Heijungs.

Discussion
In calculating all sensitivities regarding relations between
elements and environmental loads, the method proposed
above has great advantages. It does not consume much
time for the calculation compared with the case when the
elements are perturbed one by one. In the matrix based
LCI, most of the calculation time is consumed in calcu-
lating the inverse matrix. However, it is not required to
calculate the inverse matrix every time the sensitivity is
calculated using the proposed perturbation method, be-
cause once the inverse matrix has been calculated, it can be
used for the evaluation of other sensitivities. Since the
inverse matrix must be calculated once for conventional LCI

anyway, the additional time to the LCI for the evaluation of
sensitivities is not so great. Furthermore, the sensitivity
matrix is expressed by the explicit operation of given vectors
as shown in Eq. (21). Thus it is extremely easy to obtain
sensitivities of all elements and so the implementation in
computer software is not difficult.

However, it should be noted that the sensitivity shows
only the index for the variation due to the input pertur-
bation. If the property of interest is the range of output
variation, the evaluation by a first order approximation is
not sufficient for the accurate estimation. Considering the
higher order term in the perturbation method shown
above, we can improve the accuracy of the evaluation of
output values. By expressing Dp in Eq. (8) by the series
expansion until the nth order term as

Dp ¼ pIDaij þ pIIDa2
ij þ � � � þ pnDan

ij ð33Þ

and using a derivation similar to Eq. (8), the coefficient pn

in this equation can be expressed as follows:

pn ¼ �1ð Þn �AA�1AIÞn�pp
�

ð34Þ

This means that Eq. (33) is a geometric progression
with a common ratio �AA�1AIDaij. Therefore, using the
formulation of the geometric progression, the summation
of the series expansion can be described as

Dp ¼
�ppj

a�1
ji

a�1
1i

..

.

..

.

a�1
ni

2
66664

3
77775c

1 � cnþ1

1 � c
ð35Þ

where c ¼ �a�1
ji Daij. If c is sufficiently small compared

with 1, Eq. (35) converges to

Dp ¼ � Daij

1 þ a�1
ji Daij

�ppj

a�1
1i

..

.

..

.

a�1
ni

2
66664

3
77775 ð36Þ

since cn+1fi0 as nfi¥. Finally, the variation of the envi-
ronmental loads can be described as

Db ¼ BDp ¼ � Daij

1 þ a�1
ji Daij

�ppjB

a�1
1i

..

.

..

.

a�1
ni

2
66664

3
77775 ð37Þ

This result is shown in the curve in Fig. 2 which is
calculated using Eq. (37). Solid circles in the figure show
the results calculated directly using conventional LCA and
are confirmed to be situated on the curve. Thus, Eq. (37) is
shown to be valid for the evaluation of the variation of b.
The straight line in the figure shows the first order ap-
proximation evaluated using Eq. (21) and it is clear that
the sensitivity represents the slope at the inventory data
point. Thus, for the investigation of the influence of the
variation of input value on the output value, Eq. (21) is
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effective and Eq. (37) should be used for the evaluation of
the varied range.

Conclusions
This paper develops a new method for sensitivity analysis
in LCA by introducing the perturbation method. After the
formulation for sensitivity for each element is derived, the
formulation for the sensitivity matrix using matrix oper-
ation is also shown. Applying the proposed method to a
steel-making process, it is shown that the method is suf-
ficiently applicable to a practical problem. Finally, the
method is examined using the example given by Heijungs
and its validity is shown.

Appendix: Derivation of process sensitivity matrix
The process sensitivity matrix Sl

p, the ijth entry of which is
given by Eq. (15), can be derived as follows. All entries of
Sl

p can be expressed as follows.

In this equation, the following relation holds.

a�1
l1

..

.

..

.

a�1
ln

2
66664

3
77775 ¼ a�1

l1 � � � � � � a�1
ln

� �t¼ A�1
� �t

el ð39Þ

Substituting this equation into Eq. (38) yields

Sl
p ¼ � 1

�ppl
A�1
� �t

el�PP
t � A
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Fig. 2. Relation between variation ratio of input value and that of
output value
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