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Review

Class 1 Integrons, Gene Cassettes, Mobility,
and Epidemiology

A.C. Fluit, F.J. Schmitz

Abstract Integrons are genetic elements that, although unable to move themselves,
contain gene cassettes that can be mobilized to other integrons or to secondary sites
in the bacterial genome. The majority of approximately 60 known gene cassettes
encode resistance to antibiotics. Recently, a number of gene cassettes encoding
extended-spectrum b-lactamases or carbapenemases have been described. Up to at
least five cassettes may be present in an integron, which leads to multiresistance.
Frequently, more than one integron is observed within the same bacterial cell. Inte-
grons are widespread in their species distribution. Although integrons are normally
reported from Enterobacteriaceae and other gram-negative bacteria, an integron has
been described in Corynebacterium glutamicum, a gram-positive species. The gene
cassette in this integron showed even higher expression when compared to the
expression in Escherichia coli. Integrons have been reported from all continents and
are found frequently. The widespread occurrence of integrons is thought to be due
to their association with transposon plasmids, conjugative plasmids, or both. Inte-
grons form an important source for the spread of antibiotic resistance, at least in
gram-negative bacteria but also potentially in gram-positive bacteria. The aim of this
review is to describe the versatility of integrons, especially their mobility and their
ability to collect resistance genes.
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Introduction

The present-day definition of integrons was formulated
by Hall and Collis [1]. Integrons are elements that
contain the genetic determinants of the components of
a site-specific recombination system that recognizes
and captures mobile gene cassettes. An integron
includes the gene for an integrase (int) and for an adja-
cent recombination site (attI). Gene cassettes are not
necessarily part of the integron, but when integrated,
they become part of the integron. Expression of the
integron relies on the promotor in the integron (PANT);
thus, the promotor is part of the integron. Three classes
of antibiotic-resistance-encoding integrons have been
described. Each class has its own integrase. The

majority of integrons described belong to class 1 and
are associated with sulI (Figure 1). Class 2 integrons are
embedded in Tn7-family transposons [1, 2]. Only one
example of a class 3 integron is known [3, 4].

Gene Cassettes

Gene cassettes consist of one coding sequence. At the
3b end of this sequence, a so-called 59-base element is
located. Gene cassettes may also contain a variable
number of non-translated nucleotides. Most gene
cassettes lack a promotor in front of the coding
sequence (see the section “Expression” for details).
The structure and function of the 59-base element,
which has a variable length (Table 1), will be discussed
in the section “Gene Cassette Mobility”.

Currently, at least 59 gene cassettes are known
(Table 1). Most of these gene cassettes encode proteins
involved in resistance to antibiotics. At least two
cassettes are involved in resistance against quarternary
ammonium compounds, which are frequently used as
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Figure 1 Schematic representa-
tion of a class 1 integron. See
text for details

disinfectants and antiseptics. The function of the prod-
ucts encoded by at least six open reading frames
(ORFs) located on gene cassettes is unknown.

Gene cassettes encoding resistance against antibiotics
cover a wide range of antibiotics and antibiotic classes.
Resistance to b-lactam antibiotics is caused not only by
classical b-lactamases but also by extended-spectrum b-
lactamases encoded by, amongst others, oxa-type
genes. A carbapenemase encoded on a gene cassette
also has been described. These b-lactamases have a
zinc atom at their active center instead of a serine, as in
most b-lactamases. Another group of important resist-
ance genes present in integrons encodes resistance to
aminoglycosides. At least 15 different gene cassettes
have been described previously. Resistance to trime-
thoprim is encoded by at least eight different gene
cassettes. Resistance to chloramphenicol is encoded
either by one of seven gene cassettes encoding a chlor-
amphenicol acetyltransferase or by one of the three
known efflux pumps. Resistance to rifampin and
erythromycin encoded on gene cassettes has also been
described. Remarkably, most gene cassettes encode
resistance against antibiotics that have been in use for a
relatively long time. However, gene cassettes encoding
resistance against newer antibiotics, like blaIMP,
blaVEB-1, oxa15, oxa19, oxa20 and oxa21, have also
been described [5–10].

Integron Structure

Class 1 integrons include the gene for an integrase (int)
and an adjacent recombination site (attI). Gene
cassettes are not necessarily part of the integron, but
when integrated, they become part of the integron.
Expression of the integron relies on the promotor in
the integron (PANT) and thus the promotor is part of
the 5b-conserved segment of the integron. In fact, the
PANT of class 1 integrons potentially contains two
promotors, P1 and P2 (see the section “Expression”).
The 3b side of class 1 integrons is less defined. Most
class 1 integrons have the so-called 3b-conserved
segment [9, 11]. This segment includes a DqacE and a
sulI gene and ORF5 (Figure 1). In addition, other
sequences may be conserved between some integrons,

but not all [12]. Duplications of the sulI gene in the 3b-
conserved segment have been described for integrons
In6 and In7 [13, 14].

The gene cassettes are integrated between the 5b- and
3b-conserved segments. The number of gene cassettes
can vary between 0 for In0 [15] and at least five [16, 17].
Numerous different combinations of gene cassettes
have been reported [9, 11, 13, 18–26]. Multiple copies
of gene cassettes in an integron have also been
described, such as the two copies of oxa2 in In1 [27].
The reported sequences show minor differences,
making it unlikely that duplication was involved.

Gene Cassette Mobility

The mobility of cassettes is mediated by the intI1 gene,
encoded IntI1. The IntI1 protein belongs to the family
of integrases.The IntI1 protein possesses the three
characteristic amino acids for this family of proteins,
and mutation of these amino acids leads to reduced
catalytic activity [28, 29].The integrase excises the gene
cassettes as covalently closed supercoiled circular mole-
cules [30]. Most likely, these circular cassettes can also
be integrated. In fact, deletions, duplications and rear-
rangements of gene cassettes in integrons have been
observed [31]. The formation of cointegrates between
plasmids may also contribute to gene cassette exchange
[32]. In this process, but also in integrase-mediated
gene cassette exchange, the upv1 gene from plasmid
R46, which encodes a resolvase, may play a role [33,
34]. In fact, the res site recognized by the resolvase
during cointegrate resolution lies partly within the
outer boundary of the 5bCS, and the upv1 gene is
located nearby. Cointegrate formation by the integrase
has been observed between integron-bearing plasmids
[32]. Besides the integrase, the attI and 59-base
elements are involved in gene cassette movement.

The 59-base elements (also known as attC) are not
highly conserved and vary considerably in length
(Table 1) [35–37]. They contain imperfect inverted
repeats with two 7 bp core regions. The consensus for
the LH (or left-hand) end is RYYYAAC and for the
RH (or right-hand) end GTTRRRY [31, 35]. The
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Table 1 Characteristics of class 1 integron gene cassettes

Genea Protein Length
of CDSb

Length of
59-base
element

Gene cassettec

length
Accession no. Reference no.

Resistance to b-lactam antibiotics
blaP1 PSE-1/CARB-2d 915 111 1044 Z18955 80
blaP2 – 915 111 1044 D13210 –
blaP3 CARB-4 867 192 11023 U14749 81
blaIMP IMP-1 741 127 880 D50438 5, 17
blaESP ESP 741 – 880 D78375 82
blaVEB-1 VEB-1 897 133 1059 AF010416 8
oxa1 OXA-1 831 90 1004 J02967 62
oxa2a OXA-2 828 70 876 M95287 22, 27, 35, 83–86
oxa2b OXA-2B 828 70 876 M95287 22, 27, 35, 83–86
oxa3 OXA-3 828 156 1861 L07945 87
oxa5 OXA-5 804 106 915 X58272 88
oxa7 OXA-7 801 65 874 X75562 89
oxa9 OXA-9 840 69 840 M55547 90, 91
oxa10 OXA-10(PSE-2) 801 111 920 U37105 92
oxa15 OXA-15 – – – U63835 6
oxa19 OXA-19 – – – AF043381 10
oxa20 OXA-20 798 117 953 AF024602 9
oxa21 OXA-21 828 – – Y10693 7

Resistance to aminoglycosides
aadA1a AAD(3n) 792 60 856 X12870 93
aadA1b AAD(3n) 792 60 856 M95287 22, 27, 35, 83–85
aadA2 AAD(3n) 780 60 856 X68227 52, 94
aadB AAD(2n) 534 60 591 L06418 13, 14, 37, 84, 95
aac(6b)-Iae AAC(6b)-Ia 558 – 1778 M18967 95
aac(6b)-Ib AAC(6b)-Ib 555 70 637 M55547 77, 90, 91, 96
aac(6b)-Id AAC(6b)-Id 450 72 526 X12618 97
aac(6b)-Il AAC(6b)-Il 521 109 720 – 98
aac(6b)-Iq AAC(6b)-Iq 551 108 712 AF047556 99
aacA7 AAC(6b)-I 459 112 591 U13880 25
aac(6b)-IIa AAC(6b)-IIa 555 60 628 M29695 100
aac(6b)-IIb AAC(6b)-IIb 543 97 653 L06163 –
aac(3)-Ia AAC(3)-Ia 465 109 577 X15852 77, 101
aac(3)-Ib AAC(3)-Ib 465 134 1498 L06157 102
aac(3)-VIa AAC(3)VIa 901 – – – 103

Resistance to trimethoprim
dfrA5 DHFRV 474 87 568 X12868 93
dfrA7 DHFRVII 474 134 617 X58425 2, 64, 104
dfrA12 DHFRXII 498 90 584 Z21672 63, 105
dfrA14 DHFRIb 483 143 1523 S76821 106
– DHFRXV 474 84 593 Z83311 20
dfrB1 DHFRIIa 237 57 485 U36276 –
dfrB2 DHFRIIb 237 57 384 J01773 107
dfrB3 DHFRIIc 237 57 408 X72585 2

Resistance to chloramphenicol
catB2 CATB2 633 72 739 M80188 26
catB3 CATB3 633 60 739 U13880 25
catB5 CATB5 633 125 1677 X82455 –
catB6 CATB6 633 77 730 AJ223604 17
cmlA CmlA 1260 70 1549 U12338 16, 13, 24, 31, 35, 101
cmlA2 CmlA2 1434 68 – – 108
cmlB CmlB – – – – 109

Resistance to quarternary compounds (disinfectants and antiseptics)
qacE QacE 333 141 587 X72585 2
qacF QacF – – – – 108
qacG QacG 333 94 532 AJ223604 17

Resistance to rifampin
arr-2 ARR-2 453 114 663 AF078527 109

Resistance to erythromycin
ereA EreA – – – – Fluit, personal observa-

tion
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Table 1 Continued

Genea Protein Length
of CDSb

Length of
59-base
element

Gene cassettec

length
Accession no. Reference no.

Unidentified ORFs
orfA – 435 69 501 J01773/X12869 93, 107
orfC – 378 60 507 X17477 110
orfD – 291 60 320 M95287 84
orfE – 246 60 262 U12338 16, 13, 24, 31, 35, 101
orfF – 291 60 320 – –
orfN – 615 77 689 AJ223604 17

a Gene names may differ from the name given in the original
publication

b The initiation codon is not always known; in these cases, gener-
ally the first initiation codon is assumed functional

c Gene cassette sizes are not always accurate [36]

d The genes for PSE-4 and CARB-3 differ in one nucleotide from
the blaP1 sequence

e The aac(6b)-Ia gene cassette contains an ORF (orfG) as well,
followed by a 59-base element [36]

CDS, coding sequence; –, no data available; ORFs, open reading
frames

recombination occurs close to one end of the 59-base
element between the G and T residue of the consensus
sequence GTTRRRY [30, 35, 38]. Due to the integra-
tion of a circular gene cassette, part of the 59-base
element ends up at the 5b side of the coding sequence
of the gene cassette to which it belongs [30, 35]. In prin-
ciple, integration can take place at the boundary of any
two gene cassettes using two 59-base elements or
between the 59- base element of the circular gene
cassette and the attI1 site [31, 32, 35, 39, 40], but the
interaction between the 59-base element and the attI1
site is preferred [30]. The attI1 site, located at the 3bend
of the 5bCS, is less complex than the 59-base element
but has its 7 base core region GTTRRRY at the recom-
bination cross-over point [39].

The IntI1 protein has been demonstrated to bind to
both the attI1-site and the 59-base element. Binding to
the first site is considerably stronger than to the second
site. The attI1 site contains two IntI1 binding sites. The
first is a 14 bp sequence located 24–37 bp to the left of
the cross-over site. The second site, which is a much
weaker binding site, is an imperfect repeat of the first
and is located 41–55 bp to the left of the cross-over-
point. Mutational analysis showed that a single base
pair change accounts for the difference in binding
strength [28]. Recently, similar results were reported by
Gravel et al. [41], although differences exist. It was
shown that up to four integrase molecules appear to be
able to bind to the attI1 site. GTTA or GTTG
sequences (also found as part of the core region) play
an important role in this process, but it is not clear
whether all four sites are necessary for recombination.
The importance of a strong binding site for in vivo
recombination has been demonstrated earlier by
Recchia et al. [39], although Hansson et al. [42] found
slightly different sites required for in vivo recombina-
tion. On the 59-base element, binding occurs putatively
to the core regions at the LH and RH regions. In addi-
tion, two more putative binding sites have been iden-

tified. One is to the right of the LH core region and the
other to the left of the RH core region [38].

Besides the recombination described above, recombi-
nation between one specific site and a secondary site
has been demonstrated. This reaction can be mediated
by either the Tn21 integrase or the integron integrase
IntI1 when the integration sites conform to the
consensus sequence GWTMW or GNT, respectively
[39, 43–47]. Recombination to a secondary site is infre-
quent but is more frequent when the consensus
sequence is present as an inverted repeat separated by
a few base pairs [47]. Potentially, this may lead to the
integration of gene cassettes at locations outside the
integron. However, the lack of a second specific site at
this location will prevent excision.

The stability of gene cassette order and integrons is not
clear. Martinez-Freijo et al. [48] reported three
predominant types of integron in Enterobacteriaceae
from ten different European hospitals. Sequencing
revealed that the four integrons of the first type
contained only the strong promotor, whereas eight of
nine type 2 integrons used the weak and active P2
combination. The eight integrons of the third type like-
wise used the weak or the weak promotor and active P2
combination. Induction of changes with antibiotics did
not succeed. These data suggest that, at least in Euro-
pean hospitals, integrons are rather stable structures.

Collis and Hall [31, 49] easily achieved the exchange of
gene cassettes. These data suggest that, at least under
certain circumstances, the order of the gene cassettes
may change under antibiotic pressure.

Expression

The gene cassettes in an integron are expressed from a
common promotor region located in the 5bCS of the
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Table 2 The integron promotors P1 and P2 –35 and –10
sequences, the separation of these sequences, and the relative
strength of the promotors

Promotor –35 region –10 region Spacing
(nucleotides)

Strength

P1 TTGACA TAAACT 17 strong
TGGACA TAAGCT 17 weak
TGGACA TAAACT 17 hybrid 1
TTGACA TAAGCT 17 hybrid 2

P2 TTGTTA TACAGT 14 inactive
TTGTTA TACAGT 17 unknown

integron. The promotor region contains two potential
promotors called P1 and P2. Four different P1 and two
different P2 promotors have been described [22, 25]
(Table 2). Levesque et al. [50] and Collis and Hall [49]
also assessed the strength of these promotors relative to
the derepressed Escherichia coli tac promotor. The
strong version of the P1 promotor is six times more
effective than the tac promotor, but the tac promotor is
more efficient than the weak and hybrid promotors.
The P2 promotor, with a spacing of only 14 nucleotides,
is probably inactive because this spacing is unfavour-
able to expression, the optimum spacing being approxi-
mately 17 nucleotides. The weak and active second
promotor initiates transcription three times more effi-
ciently than the tac promotor. Therefore, the P2
promotor with this spacing is believed to be active,
although its relative strength is unknown. The hybrid 1
and strong P1 promotors have only been found in
combination with the inactive form of P2. Both the
weak and the strong promotors have been described in
association with the active form of P2.

The results are in agreement with data from Collis and
Hall [49]. They also demonstrated that the position of
the gene cassette in the integron determined the level
of resistance observed. The highest level of resistance
for a gene cassette was obtained when the gene cassette
was located directly behind the 5bCS. Northern blots
showed multiple transcripts originating from P1. Only
longer transcripts contained sequences from the more
distal gene cassettes. Apparently, premature termina-
tion of transcription occurs within the gene cassettes,
and the 59-base elements may act as transcriptional
terminators.

The start codons of many gene cassettes have not been
determined, but the first in-frame start codon is gener-
ally assumed to function as such [51]. This codon often
is located close to the 5bend of the gene cassette, and
the supposed ribosome binding sites are weak at best.
However, in the aadA2 gene cassette, for example, the
second start codon is used. This codon also has a suit-
able ribosome binding site upstream [52].

Besides the common arrangement where the gene
cassettes are transcribed from a common promotor

region, some gene cassettes appear to carry their own
promotor sequences. The first gene cassette with its
own promotor described was the chloramphenicol
resistance determinant cmlA [16, 24]. The regulatory
region includes a nine amino acid leader peptide, a
potential ribosomal stall sequence, and two alternative
stem-loop structures that may open up or close off the
ribosome binding site and start coding preceding the
coding sequence. In addition to the promotor sequence,
potential translation attenuation signals were found
[16]. The qacE and qacG gene cassettes carry their own
promotor sequences as well [11, 17, 53].

Integron Epidemiology

Only a few studies have made systematic surveys of
integron distribution. One of the first studies was by
Sallen et al. [54], who systematically screened 49
isolates from one location in France and showed inte-
grons in 59% of the isolates belonging to six different
species of Enterobacteriaceae. Some of these isolates
carried multiple integrons. A Chilean study [55] investi-
gated Acinetobacter baumannii isolates in which 17
integron-carrying isolates were found. Remarkably, the
majority of the isolates carried the Tn7 type integron,
and 14 isolates carried both types of integron. Class 1
integrons are also prevalent among German blood
isolates. Schmitz et al. [56] tested 278 consecutive blood
isolates belonging to 11 different gram-negative
species. Thirteen percent of these, belonging to six
species, were shown to carry an integron.

Jones et al. [57] described a similar result for the
Netherlands. Of 135 strains belonging to seven species
of Enterobacteriaceae, more than half carried an inte-
gron. In addition to the high prevalence of integrons,
many of the isolates carried multiple integrons (unpub-
lished observation). This situation can be more or less
extended to the rest of Western and Central Europe
[58]. Screening of 163 strains of 13 species of gram-
negative bacteria from nine countries showed that 42%
of the strains carried an integron. The latter study also
showed that integron-carrying strains tend to show
resistance to a larger number of different antibiotics
than strains without an integron. However, integron-
related gene cassettes are not limited to gram-negative
bacteria. A survey by Kazama et al. [59] demonstrated
the presence of qacED1 in both staphylococcal and
enterococcal isolates. Besides being found in isolates
from humans, integrons are also found in gram-nega-
tive isolates from primates [60].

All these data suggest that integrons are common
worldwide, especially in Enterobacteriaceae, and that
they contribute to resistance.

Although integrons themselves are not mobile, they are
sometimes found as part of transposons. Class 1 inte-
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grons are found in Tn21 and Tn21-related transposons
[26, 61–64]. These transposons generally are located on
plasmids. The location of transposons on potentially
mobile plasmids further enhances the spread of gene
cassettes. However, integrons are also found in many
different locations. This finding strongly suggests that
integrons are moved around, although they lack
obvious enzymatic machinery to do so. Sequence data
showed the presence of imperfect 25 base pair repeats
flanked by 5 bp direct repeats at the boundaries of the
integron in Tn21 [65, 66]. These 25 base pair repeats
were also detected at the 3b end of integrons from
various locations [2, 13]. Kholodii et al. [67, 68]
observed strong homology of these and other
sequences with sequences involved in the transposition
of Tn5053 from a Xanthomonas isolate from a mercury
mine. The transposition genes of this transposon are
closely related to the putative transposition genes from
Tn21 and Tn5090 of plasmid R571, both of which carry
an integron [2, 67]. In fact, Radström et al. [2] propose
that integrons are transposons or at least transposon
derivatives. Evidence for this suggestion was actually
provided by Brown et al. [69], who showed that inte-
grons In0, In2 and In5 are defective transposons.
Kholodii et al. [67] suggested that the transposition of
Tn5053 may therefore provide a paradigm for the
diverse locations where integrons are found.

Integron Evolution

The origin of gene cassettes is unknown. As noted,
gene cassettes generally lack a promotor and contain a
59-base element, but how this combination arose is
unknown. A likely explanation for the absence of a
promotor would be that the cassettes arose via reverse
transcription from mRNA [70]. This explanation
requires the existence of a yet-unknown reverse tran-
scriptase, but bacterial reverse transcriptases have been
described [71].

The origin of the antibiotic resistance genes is also
subject to speculation. Some resistance gene families,
like the dihydrofolate reductase B family, are found
only in combination with a 59-base element, suggesting
a pool of antibiotic resistance genes different from the
pool of resistance genes that are not linked to gene
cassettes. However, the ability of gene cassettes to inte-
grate at secondary sites complicates the tracing of the
origin of the resistance genes.

The 59-base elements do not appear to be unique for
gene cassettes in integrons: closely related elements
were described in Vibrio cholerae by the groups of Roy
(personal communication), Mazel et al. [72] and
Recchia and Hall [70]. These 123–126 bp sequences,
known as Vibrio cholerae repetitive DNA sequences
(VCRs), are present in up to 100 copies in a part of the
genome that appears to consist of arrays of single

genes. It is not clear whether these VCRs are functional
in the integration of the genes, but the potential inte-
grase gene for these gene cassettes has been described
[72]. Interestingly, a class 1 integron has been reported
for Vibrio cholerae [73].

Since the 59-base elements cluster into different fami-
lies, it has been speculated that these elements were
attached to the reverse transcribed mRNA at some
later point, but other possibilities certainly cannot be
excluded. Originally, the 59-base elements may have
originated from transcription terminators, which have
inverted repeats, from inverted repeat sequences like
REP and ERIC, which are scattered throughout the
genomes of many bacterial species, or from tRNAs,
whose genes often contain integrase recognition sites
such as attB of lambdoid phages [70].

Not only the origin of gene cassettes is unknown but
also how the conserved segments evolved. The DqacE
and sulI genes may be remnants of gene cassettes. The
evolution of the 5-conserved segment containing the
integrase gene, the gene cassettes promotor(s) and the
att site is less clear. The development of different
promotor sequences that give rise to different levels of
expression is especially intriguing [50].

Class 1 integrons were long believed to exist only in
gram-negative bacteria, but recently the presence of a
class 1 integron in Corynebacterium glutamicum was
described. This integron differed in only two nucleo-
tides from In6. One substitution was in the only gene
cassette of this integron, aadA2a, the other in the -10
region of the promotor. This mution enhanced expres-
sion five times in both Corynebacterium glutamicum
and Escherichia coli when compared to the original
sequence [74]. This indicates that class 1 integrons also
can be functional in gram-positive bacteria and that
single point-mutations in the promotor region may
increase the expression of the gene cassettes, poten-
tially leading to higher levels of resistance. Bissonnette
and Roy [15] proposed an evolutionary tree from the
ancestral integron to the plethora of integrons observed
today, but the value of this evolutionary tree can be
questioned because of the potential for mobility of
gene cassettes. Sundstrom [75] proposed a complete
network for the exchange of gene cassettes extending
into eukaryotes.

Although the origin of integrons and gene cassettes is
still unclear, evidence has been provided that integrons
continue to evolve. Remarkably, most integrons carry
gene cassettes encoding resistance to the older antibio-
tics. However, gene cassettes encoding resistance
against newer antibiotics, like blaIMP, blaVEB-1, oxa15
and oxa21, have also been described [5–8]. Apparently,
new resistance genes against new generations of anti-
microbial agents can still be recruited to the gene
cassette pool or arise by mutation.
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Concluding Remarks

Integrons are widespread versatile genetic elements,
although they are not independently mobile. Their
ability to integrate gene cassettes and especially gene
cassettes encoding resistance to antimicrobial agents
makes them prime pools for the further dissemination
of antibiotic resistance. Since many integrons possess
more than one antibiotic resistance-conferring gene
cassette and are often located on genetic elements that
carry other resistance determinants, selection for one
antimicrobial resistance determinant selects for many.
The association of these integrons with plasmids that
confer the extended-spectrum b-lactamase phenotype
on Enterobacteriaceae is an example [76, 77]. This
makes these integrons even more dangerous to infected
patients. Luckily, gene cassettes encoding resistance to
the newest generations of antibiotics are still rare. The
latest generation of antimicrobial agents may provide a
line of defense against these bacteria, but can suscepti-
bility to the older antibiotics be restored? Experiments
by Chiew et al. [78] suggest it cannot be restored.
Perhaps integrons offer one advantage: they make very
convenient vectors in genetic engineering [79].
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