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Abstract
This study was designed to characterize extended-spectrum beta-lactamase (ESBL)–producing extra-intestinal pathogenic 
Escherichia coli (E.coli) (ExPEC) associated with urinary tract infections in nine different geographic regions of Zimbabwe 
over a 2-year period (2017–2019). A total of 48 ESBL-positive isolates from urine specimen were selected for whole-genome 
sequencing from 1246 Escherichia coli isolates biobanked at the National Microbiology Reference laboratory using pheno-
typic susceptibility testing results from the National Escherichia coli Surveillance Programme to provide representation of 
different geographical regions and year of isolation. The majority of ESBL E. coli isolates produced cefotaximase-Munich 
(CTX-M)-15, CTX-M-27, and CTX-M-14. In this study, sequence types (ST) 131 and ST410 were the most predominant 
antimicrobial-resistant clones and responsible for the increase in ESBL–producing E. coli strains since 2017. Novel ST131 
complex strains were recorded during the period 2017 to 2018, thus showing the establishment and evolution of this antimi-
crobial-resistant ESBL clone in Zimbabwe posing an important public health threat. Incompatibility group F plasmids were 
predominant among ST131 and ST410 isolates with the following replicons recorded most frequently: F1:A2:B20 (9/19, 
47%), F2:A1: B (5/19, 26%), and F1:A1:B49 (8/13, 62%). The results indicate the need for continuous tracking of different 
ESBL ExPEC clones on a global scale, while targeting specific STs (e.g. ST131 and ST410) through control programs will 
substantially decrease the spread of ESBLs among ExPEC.
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Introduction

The production of extended-spectrum beta-lactamases 
(ESBLs) by clinical isolates of extra-intestinal pathogenic 
Escherichia coli (ExPEC) is a serious global therapeutic 
threat [1]. These ESBLs can reduce the efficacy of the 
extended-spectrum cephalosporins, except for cephamycin 
and carbapenems [2]. ESBL production is associated with 
the presence of blaTEM, blaSHV, and blaCTX-M [3]. CTX-M 
producers are increasingly detected and replacing TEM 
and SHV producers in European and African countries [4]. 
A number of important E. coli clones have been detected 
among the ESBL producers, these include sequence type 
(ST) 131, ST405, ST38, ST648, ST410, and ST1193 [1].

Among these, the most studied phylogenetic lineage of 
E. coli in terms of antibiotic resistance is E. coli ST131, 
phylogenetic group B2 serotype O25:H4. This lineage har-
bours a wide range of core sets of virulence genes and var-
ious plasmid-mediated resistance genes. ST131 is involved 
in the global spread of the ESBL phenotype linked to the 
production of CTX-M-15 and CTX-M-27, which is the 
main mechanism of resistance to beta-lactams [1]. ST131’s 
virulence combined with its carriage of transferable ele-
ments encoding multidrug resistance is likely responsible 
for the pandemic success of ST131 strains [5, 6].

The ST131 population structure is divided into three 
clades, namely, A, B, and C. The C clade comprises two 
subclades, C1 and C2, which are defined by the presence 
of a specific fimbrial adhesin allele (fimH30) correspond-
ing to the H30R and H30Rx clades [7]. The C1 subclade 
contains mutations in the chromosomal genes gyrA and 
parC that confer fluoroquinolone resistance, while the C2 
subclade contains the same gyrA and parC mutations but is 
also associated with blaCTX-M-15. Reports of the occurrence 
of ST131 subgroup C1-M-27 associated with blaCTX-M-27 
in some parts of the world especially in Europe [8], Asia, 
and parts of Africa [9] emerged.

ESBL–producing E. coli associated with nosocomial- 
and community-acquired infections have been reported 
in most regions around the world [10]. These bacteria 
are resistant to most of the antimicrobials used for the 
treatment of urinary tract infections (UTIs), such as cip-
rofloxacin, trimethoprim-sulfamethoxazole, and most of 
the cephalosporins [11]. A few studies have been carried 
out in sub-Saharan Africa (South Africa, Nigeria, Tanza-
nia, and Democratic Republic of Congo) to investigate the 
molecular epidemiology and characteristics of the ExPEC 
strains [12–15], while in Zimbabwe, this remained unex-
plored. Thus, the main aim of this study was to character-
ize the ESBL ExPEC associated with UTIs in different 
geographic regions of Zimbabwe using whole-genome 
sequencing (WGS).

Materials and methods

Selection of bacterial isolates for genomic 
evaluation

A total of 48 ESBL-positive isolates from urine specimens 
were selected for WGS from 1246 E. coli isolates biobanked 
at the National Microbiology Reference laboratory using 
phenotypic susceptibility testing results from the National 
Escherichia coli Surveillance Programme to provide rep-
resentation of different geographical regions and years of 
isolation (2017 (14); 2018 (22), and 2019 (12)) (Supple-
mentary File 1 Epidemiological features of the 48 ESBL iso-
lates). Demographic data associated with 48 ESBL-positive 
isolates were analyzed. The geographical regions included 
Bulawayo, Chitungwiza, Marondera, and Harare. The selec-
tion was also based on community-acquired UTIs, which 
was defined as an infection of the urinary tract that occurs 
in the community or within 48 h of hospital admission and 
was incubating during time of hospital admission [16]. No 
information of previous use of antibiotics was collected.

Study population phenotypic antibiotic resistance 
profiling

All the selected isolates were sub-cultured on MacConkey 
or eosin methylene blue (EMB) (Mast Group, Merseyside, 
UK), incubated in Memmert ICH110 (Germany) at 37 °C for 
18 to 24 h and then stored in 20% glycerol broth at 80 °C. 
Antimicrobial susceptibility testing was determined by the 
Kirby Bauer disc diffusion method using the Clinical Labo-
ratory Standards Institute (CLSI) guidelines [17]. The anti-
microbial drugs tested included ampicillin, trimethoprim-
sulfamethoxazole, ciprofloxacin, ceftriaxone, tetracycline, 
ceftazidime, nalidixic acid, cefepime, and ertapenem; results 
were interpreted as described by the CLSI [17]. The pres-
ence of ESBLs was confirmed according to the CLSI criteria 
for ESBL screening and confirmation [17]. E. coli ATCC 
25922 was used as quality control strain. Additional data 
included on collection of each isolate were the year, loca-
tion of isolation, travel associated, cities, age, and gender 
(Supplementary File 1.

Genomic DNA isolation and whole‑genome 
sequencing

Genomic DNA (gDNA) of E. coli was purified using the 
Wizard® Genomic DNA Purification Kit (Promega, Madi-
son, WI, USA) according to the manufacturer’s instruc-
tions [18] and stored at – 20 °C. Library preparation was 
performed using the Nextera XT DNA Library Preparation 
Kit (Illumina, San Diego, CA, USA) and sequenced on a 
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MiSeq benchtop sequencer (Illumina, San Diego, CA, USA) 
at Quadram Institute Biosciences in the UK. The data was 
uploaded to BaseSpace (http://​www.​bases​pace.​illum​ina.​
com) and then converted to FASTQ files.

Genomic sequence analysis

The sequences were analyzed on the Cloud Infrastructure 
for Microbial Bioinformatics [19]. Paired-end short-read 
sequences were concatenated, then quality-checked using 
FastQC v0.11.7. De novo assembly was performed with 
SPAdes 3.11 [20], and quality was assessed using QUAST 
4.5 [21]. Snippy v4.3.2 (https;//github.com/tseemann/
snippy) was used to generate a core SNP alignment using 
default parameters. The complete genome sequence of E. 
coli strain K12 sub-strain MG1655 was used as reference 
genome (NCBI accession: NC_000913.3). After the core-
genome alignment, a reconstruction of maximum likelihood 
phylogeny with 1000 bootstrap replicates with RAxML 
v8.2.4 based on a general time-reversible nucleotide sub-
stitution model was used [22, 23]. The phylogenetic tree 
was rooted using Escherichia fergusonii (E. fergusonii) as an 
outgroup (NCBI accession: GCA_000026225.1). The phylo-
genetic tree was visualized in Figtree v1.4.4 (https://​github.​
com/​ramba​ut/​figtr​ee/) [24] and annotated in RStudio v3.5.2 
and Adobe illustrator v 23.0.3 (Adobe Inc. San Jose, CA). 
Recombination was detected and masked using Gubbins [25] 
before the phylogenetic reconstruction. The pairwise SNP 
distances were computed between genomes from the core-
genome alignment using snp-dists v0.6 (https://​github.​com/​
tseem​ann/​snp-​dists).

Comparative genomics analysis

The assembled draft genomes were used to define the pres-
ence of genes and their alleles. The following databases or 
typing schemes were used to determine (i) STs (multi-locus 
sequence typing (MLST) method according to Achtman 
scheme, https://​guthub.​com/​tseem​ann/​mlst) [26]; (ii) phy-
logenetic groups (ClermonTyper v1.0.0) [27]; (iii) resist-
ance genes (ARIBA database) [28]; (iv) virulence factors 
(virulence factor database, VFDB) [29]; (v) serotypes 
(serotypeFinder O:H typing database) [30]; (vi) plasmids 
(PlasmidFinder) [26]; and (vii) sequence types for plasmids 
(plasmidMLST) [26] (Supplementary File 1). Novel STs 
were assigned by Enterobase [26].

A phylogenetic tree was constructed using recombination-
free core genomes including ST131 genomes from Africa 
retrieved from Enterobase, representative clade strains from 
Matsumura et al. [9] and this study’s ST131 sequence data 
to demonstrate the phylogenetic relatedness of isolates. 
The isolates EC958 fimH30 and KUN2145 fimH22 were 
used as reference and an outgroup, respectively. A similar 

comparative analysis was done for this study’s ST410 iso-
lates in comparison to ST410 genomes from Africa submit-
ted to Enterobase, Roer et al. [31], and this study’s sequence 
data. The reference genome used for the phylogenetic tree 
construction was YD786 (GenBank Accession Number: 
NZ_CP013112.1), while fimH53 isolates were used as out-
groups for the comparative analysis of ST410 isolates. Only 
ST131 and ST410 genomic data with relevant metadata 
(year of collection, country, source type, etc.) and availabil-
ity of raw reads on Enterobase were included. Mauve was 
used to visualize similarities of this study’s ST131 C1-M27 
genomic environments against a reference KUN 5781 for the 
presence of a phage integrase region annotated as M27PP1 
and M27PP2.

Ethical approvals

Ethical clearance was obtained from the Faculty of Health 
Sciences Research Ethics Committee, University of Preto-
ria (Ethics Reference Number: 782/2018) and the Medi-
cal Research Council of Zimbabwe, Approval Number: 
MRCZ/A/2394.

Results

Baseline characteristics of sequenced isolates

A total of 48 ESBL-positive isolates from three provinces 
(Harare, Bulawayo, and Mashonaland East) were analyzed. 
Among these, 27 (55%) were linked to UTIs in female 
patients and 21 (45%) to male patients. Thirty (62%) patients 
were aged 21 to 60 years. Thirty-eight (80%) of the iso-
lates were recovered from Harare with isolation years (2017 
(11); 2018 (16); 2019 (11)), while five isolates (10%) origi-
nated from Chitungwiza (2017 (2); 2018 (3)), three isolates 
(6%) were collected from Bulawayo (2018 (2); 2019 (1)), 
and two (4%) were from Marondera (2017 (1); 2018 (1)). 
These ESBL-producing ExPEC isolates originating from 
the outpatient clinics of hospitals in Harare, Chitungwiza, 
Marondera, and Bulawayo displayed increased resistance to 
all antimicrobials included in the study.

Whole‑genome sequence analysis

The phylogenetic tree in Fig. 1 was constructed using rep-
resentative reference strains of phylogenetic groups A, B1, 
B2, D, and E and an outgroup E. fergusoni. The isolates in 
this study were compared in terms of the virulence factors 
detected and those isolates belonging to the same phyloge-
netic group as the representative reference strains clustered 
together as shown in Fig. 1.

http://www.basespace.illumina.com
http://www.basespace.illumina.com
https://github.com/rambaut/figtree/
https://github.com/rambaut/figtree/
https://github.com/tseemann/snp-dists
https://github.com/tseemann/snp-dists
https://guthub.com/tseemann/mlst
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Genomic assembly, quality control, 
and phylogenetic tree

Forty-eight isolates had a combined length of contigs of 
assembled genomes ranging from ~ 4.7 to 9.8 Mbp, with 
a minimum contig length required to cover 50% of the 
genome (N50), ranging between 84 and 340 kbp. The 
SNP matrix output tables with sequenced isolates aligned 
and compared to reference genomes were used to con-
struct a phylogenetic tree as shown in Fig. 1.

Beta‑lactamases, plasmid‑mediated quinolone 
resistance determinants, and phylogenetic groups

The 48 ESBL E. coli isolates harboured diverse ESBL 
genes; blaCTX-M-15 (34), blaCTX-M-27 (11), blaCTX-M-14 (1), 
blaCTX-M-3 (1), and blaCTX-M-82 (1). Other ESBL genes 
were also observed, including blaTEM-1, blaOXA-1, and 
blaOXA-10 (Table 1). Table 2 illustrates the different beta-
lactamases that were detected in different geographic 
regions and years. Other antimicrobial resistance (AMR) 
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Fig. 1   A maximum likelihood phylogeny of the study isolates recon-
structed with RAxML, based on non-repetitive, non-recombinant 
core SNPs using a general time-reversible nucleotide substitution 
model with 1000 bootstrap replicates. The top labels indicate sam-
ple names with respective phylogroups and STs to which the iso-
lates belong. The outgroup (not shown) and the other E. coli refer-

ence genomes denoting the major E. coli phylogroups are in bold 
italics (A (MG1655), B1 (IAI1), B2 (CFT073), D (UMN026), and 
E (EDL933)). Overlaid on the tree are the years of sample isolation, 
Zimbabwe locations, and virulence factors for each isolate. The viru-
lence genes are grouped according to their functions
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genes included the aac (6′)-lb-cr gene (27) encoding ami-
noglycoside acetyltransferase, the qnrS gene (4) encoding 
a plasmid-mediated quinolone resistance, and the qepA (1) 
encoding a quinolone pump. Twenty isolates belonged to 
phylogenetic group B2; 14 to phylogenetic group C; four 
to phylogenetic group B1; three to phylogenetic groups 
A, D, and F each; and lastly one to phylogenetic group G.

Multi‑locus sequence typing

MLST identified five major ST clonal complexes (CCs), 
which included the following: ST131CC as ST131 (17), 
ST11380 (1), and ST11387 (1); ST23CC as ST410 (13) and 
ST6332 (1); ST10CC as ST617 (2) and ST218 (1); ST405CC 
as ST405 (1) and ST11615 (1); ST648CC as ST648 (1); 

Table 1   Characteristics of sequence type complexes ST131, ST23, ST10, ST405, ST648, ST69, ST354, and ST155 and unknown STs for ESBL–
producing E. coli isolates in Zimbabwe, 2017 to 2019

Antimicrobial non-susceptibility includes intermediate or resistant rates. AMP ampicillin, TET tetracycline, CEFTR ceftriaxone, ERT ertapenem, 
NAL nalidixic, CIP ciprofloxacin, COT trimethoprim-sulfamethoxazole, CEF cefepime, CEFTA ceftazidime. ST complexes: ST131 complex 
(ST131 (17), ST11380 (1), ST11387 (1)), ST23 complex (ST410 (13), ST6332 (1)), unknown ST complexes (ST2448 (1), ST117 (1), ST224 (1), 
ST678 (1), ST636 (1)); ST10 complexes (ST617 (2), ST218 (1)); ST405 complexes (ST405 (1), 11,615 (1)); ST648 (ST648 (2)); ST69 complex 
(ST69 (1)); ST354 complex (ST354 (1)); and ST155 complex (ST155 (1))

Characteristic Number of isolates of each sequence type clonal complexes (n)

ST131
(19)

ST23
(14)

UNKNOWN
(5)

ST10
(3)

ST405
(2)

ST648
(2)

ST69
(1)

ST354
(1)

ST155
(1)

Location of acquisition
  Community 19 14 5 3 2 2 1 1 1
Clinical presentation
  Urinary tract infection 19 14 5 3 2 2 1 1 1
Antimicrobial non-susceptibility
  AMP 19 14 5 3 2 2 1 1 1
  CIP 19 13 2 3 2 2 1 1 1
  CEFTR 19 14 5 3 2 2 1 1 1
  TET 15 13 5 2 2 1 1 1 1
  COT 16 14 5 3 2 1 1 1 1
  ERT 0 0 0 0 0 0 0 0 0
  NAL 19 14 4 3 2 2 1 1 1
  CEFTA 18 14 5 3 2 2 1 1 1
  CEF 18 14 5 3 2 2 1 1 1
PMQR determinants
  aac(6′)-lb-cr 8 13 0 2 2 2 0 0 0
  qepA 0 0 0 0 1 0 0 0 0
  qnrS 0 0 1 1 0 0 0 1 1
Type of ESBL
  CTX-M-14 0 1 1 0 1 0 0 0 0
  CTX-M-15 10 13 4 2 2 2 0 1 0
  CTX-M-27 10 0 0 0 0 0 0 1 0
  Other CTX-M 1 0 1 0 0 0 0 0 1
  OXA-1, OXA-9, or OXA-10 8 14 0 2 2 2 0 0 0
  TEM-1 5 10 5 1 2 2 1 1 1
Phylogenetic group
  A 0 0 0 3 0 0 0 0 0
  B1 0 0 3 0 0 0 0 0 1
  B2 19 0 1 0 0 0 0 0 0
  C 0 14 0 0 0 0 0 0 0
  D 0 0 0 0 2 0 1 0 0
  F 0 0 0 0 0 2 0 1 0
  G 0 0 1 0 0 0 0 0 0
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ST354CC as ST354 (1); ST155CC as ST155 (1). Most of 
the isolates (43/48) belonged to one of these defined CCs 
(Table 1). Five isolates belonged to an undefined clonal com-
plex, referred to as “unknown CC”, which included ST2448 
(1), ST117 (1), ST224 (1), ST678 (1), ST636 (1). The clini-
cal presentation, year of collection, antimicrobial suscepti-
bility profile, plasmid-mediated quinolone-resistant (PMQR) 
determinants, ESBL types, and phylogenetic groups of the 
above defined and undefined CCs are shown in Tables 1, 2, 
and Supplementary File 1.

Plasmid replicon types

The most predominant plasmids were Col156, ColBS512, 
and ColMG828, which were distributed among the ST131 
and ST410 isolates as shown in Table 3. All ST131 and 
ST410 isolates characterized in this study harboured incom-
patibility group F1A (IncF1A) plasmids. Different plasmid 
types belonging to IncF were distributed across all strains. 
The IncF plasmids with F1:A2:B20 (9/19) and F2:A1: B 
(5/19) replicons were predominant among ST131 isolates, 
while the F1:A1:B49 replicon (8/14) predominated among 
the ST410 strains. The F36:A4: B1 replicon was detected 

among isolates from ST23, ST131, and ST10 CCs as shown 
in Supplementary File 1.

E. coli ST131 core genome SNP‑based phylogenetic 
tree in an African and global context

The mapping and alignment of 19 ST131 study isolates to 
the reference genome EC958 produced a core genome of 
4,700,950 bp. The fluoroquinolone-resistant isolates with 
gyrA and parC mutations formed the C/H30R cluster that 
comprised the C2/H30Rx and C1/H30R clades. The C2/
H30Rx clade included isolates with blaCTX-M-15 (n = 43) 
and isolates with both blaCTX-M-14 and blaCTX-M-15 (n = 1), 
and blaCTX-M-15 and blaCTX-M-27 (n = 1) and isolates without 
blaCTX-M (n = 2). The C1/H30R clade included isolates with 
blaCTX-M-27 (n = 17) and blaCTX-M-14 (n = 8) and isolates with-
out ESBLs (n = 1) as shown in Fig. 2. Most Zimbabwean 
isolates belonged to the C2/H30Rx clade (10/19), with 
between 10 and 15 SNP differences between isolates from 
neighbouring African countries, such as Tanzania, DRC, 
Nigeria, Sudan, Niger, and Ethiopia as shown in Supplemen-
tary File 2. Within the C1/H30R clade, 15 of the 17 CTX-
M-27-producing isolates clustered into a distinct group, the 
C1-M27 clade. E. coli ST131 C1-M27 comprised isolates 

Table 3   Plasmid multi-locus 
sequence types for ESBL–
producing E. coli isolates in 
Zimbabwe, 2017 to 2019

ST complexes: ST131 complex (ST131 (17), ST11380 (1), ST11387 (1)), ST23 complex (ST410 (13), 
ST6332 (1)), unknown ST complexes (ST2448 (1), ST117 (1), ST224 (1), ST678 (1), ST636 (1)); ST10 
complexes (ST617 (2), ST218 (1)); ST405 complexes (ST405 (1), 11615 (1)); ST648 (ST648 (2)); ST69 
complex (ST69 (1)); ST354 complex (ST354 (1)); and ST155 complex (ST155 (1))

Number of isolates of each sequence type clonal complexes (n)

ST131
(19)

ST23
(14)

UNKNOWN
(5)

ST10
(3)

ST405
(2)

ST648
(2)

ST69
(1)

ST354
(1)

ST155
(1)

Plasmid multi-locus sequence types
  F1:A2:B20 9 0 0 0 0 0 0 0 0
  F2:A1:B 5 0 0 0 0 0 0 0 0
  F1:A:B20 1 0 0 0 0 0 0 0 0
  F36:A4:B1 1 2 0 1 0 0 0 0 0
  F1:A1:B16 1 0 0 0 0 0 0 0 0
  F2:A1:B20 1 0 0 0 0 0 0 0 0
  F1:A1:B49 0 7 0 0 0 0 0 0 0
  F31:A4:B1 0 2 0 1 0 0 0 0 0
  F59:A1:B49 0 1 0 0 0 0 0 0 0
  F89:A:B53 0 0 1 0 0 0 0 0 0
  F48:A:B25 0 0 1 0 0 0 0 0 0
  F33:A:B1 0 0 1 0 0 0 0 0 0
  F1:A1:B1 0 0 1 0 0 1 0 0 0
  F24:A:B6 0 0 0 1 0 0 0 0 0
  F24:A:B 0 0 0 0 1 0 0 0 0
F52:A:B48 0 0 0 0 0 0 1 0 0
  F:A1:B32 0 0 0 0 0 0 0 1 0
  F18:A:B1 0 0 0 0 0 0 0 0 1
  Unknown 1 2 1 0 1 1 0 0 0
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from Zimbabwe (n = 9, 2017–2019); Canada (n = 1, 2008); 
USA (n = 2, 2013–2014); Japan (n = 2 2007, 2010); and Aus-
tralia (n = 1, 2009). The novel STs assigned by Enterobase 
in the ST131 CC clustered in the C1-M27 clade, and these 
were closely related to Canadian strains (Fig. 2).

The C1‑M27 clade‑specific region

The genome analysis of C1-M27 clade isolates identified 
an 11,894-bp region that is named M27PP1, which is a 
prophage integrase specific to all isolates from the C1-M27 
clade and to some non-ST131 from this study that had a 
CTX-M27 resistance gene. BLAST and Mauve software 

were used to align the isolates to a reference with these 
regions clearly annotated (KUN5781). Three isolates from 
C1-M27 clade (i.e. 58EC, 60EC, 92EC) and two non-ST131 
isolates (i.e. 72EC, 69EC) from this study had M27PP1 
alone. Six E. coli ST131 C1-M27 isolates (i.e. 38EC, 45EC, 
51EC, 53EC, 91EC, 67EC) aligned against the reference 
KUN5781 as shown in Fig. 3 had an additional insertion 
region named the M27PP2 situated upstream of M27PP1.

E. coli ST410 in Africa and global context

The phylogenetic reconstruction of 127 ST410 international 
isolates, 55 African isolates retrieved from Enterobase, and 
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Fig. 2   Core genome single-nucleotide polymorphism (SNP)–based 
phylogenetic tree of Escherichia coli sequence type 131 compari-
son of isolates from Africa uploaded on Enterobase, Europe [9], and 
this study. The maximum likelihood phylogenetic tree is based on 
a 4,720,950-bp core genome and 5000 SNPs. The tree is rooted by 

using the outgroup H22 isolate. A general time-reversible nucleotide 
substitution model with 1000 bootstrap replicates was used. Strains 
from Matsumura et al. [9] are all italicized, those from Africa (Enter-
obase) are in bold, and this study’s isolates have been labelled with an 
asterisk
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17 isolates from Zimbabwe in this study revealed two dis-
tinct clonal lineages of ST410: lineage A with fimH53 (A/
H53) and lineage B with fimH24 (B/H24) (Fig. 4). The B/
H24 lineage was further divided into three sublineages: B2/
H24R with the introduction of fluoroquinolone resistance 
by mutations in the gyrA and parC, B3/H24Rx with the 
introduction of blaCTX-M-15, and B4/H24RxC with the intro-
duction of blaOXA-181. Zimbabwean isolates were all part of 
the B3/H24Rx clade.

Discussion

Emerging and established high-risk clones of ESBL-
producing ExPEC are factors that negatively impact on 
human health management globally. This study focused 
on elucidating the molecular characteristics of ESBL–pro-
ducing E. coli isolates associated with UTIs over a 2-year 
period (2017–2019) in Zimbabwean communities (Harare, 
Marondera, Bulawayo, and Chitungwiza). The Zimbabwean 
uropathogenic E. coli isolates harboured a high rate (28%) of 
ESBL production; similarly, high rates have been reported 
in studies from Tanzania (24%) [32], Algeria (31%) [33], 
and Rwanda (38%) [34]. In Zimbabwe’s hospital setting, 
beta-lactam antibiotics, such as ceftriaxone, are frequently 
used as first-line treatment for bacterial infections, which 
create a selective pressure for the pathogens to evolve and 
adapt [35, 36].

The high diversity of uropathogenic ESBL–produc-
ing E. coli isolates in this study suggests the circulation of 
diverse community-acquired UTI clones within Zimbabwe. 
Most isolates belonged to major CCs, such as ST131, ST23 
(ST410), ST10, ST405, ST648, ST69, ST354, and ST155. 
The pandemic clone, ST131, was the most detected clone in 
this study and is known to harbour blaCTX-M-15, blaCTX-M-27, 
and fluoroquinolone resistance. The presence of this clone 
has been reported in small sample size studies from South 
Africa [37], Nigeria [38], and Tunisia [39]. This clone is 
known for its high virulence leading to infections, such as 
invasive bloodstream, urinary tract, and intra-abdominal 
infections [40].

A comparative analysis on the phylogenetic relatedness 
of this pandemic clone in relation to those reported from 
other African countries revealed a possible constant influx of 
ST131 strains as these isolates are mixed with other African 

and European sublineages in the phylogeny (Fig. 2). A local 
national transmission cluster of ST131 blaCTX-M-27 was 
observed. This clade named C1-M27 within C1/H30R in 
ST131 has been previously reported as responsible for epi-
demics of ESBL-producing ExPEC in Japan [9] and has so 
far disseminated across different continents including Africa. 
The isolates clustering in this clade originated from Harare 
and Marondera. The proximity of these two cities could have 
contributed to the spread of C1-M27, although information 
on travel could not be retrieved upon collection of samples. 
Local transmission could be the largest contributor to the 
spread of infections with ESBL–producing E. coli ST131 in 
Zimbabwe given the small number of SNPs between isolates 
in the C1-M27 clade. Travel history becomes an important 
characteristic to consider in future studies as a better method 
to link these transmission dynamics.

The Zimbabwean isolates are defined by the presence of 
either the M27PP1 unique region or by both the M27PP1 and 
M27PP2 insertion regions. The E. coli ST131 C1-M27 iso-
lates harboured the unique prophage-like region (M27PP1) 
within its chromosome, while in ST131 C2/H30Rx, it was 
not identified (Fig. 3). The direct flanking repeat sequences 
surrounding M27PP1 suggest that this region was introduced 
into E. coli ST131 C1/H30R with blaCTX-M-27 by a recombi-
nation event that was then followed by the clonal expansion 
of the C1-M27 clade [8, 9]. Therefore, the screening for the 
presence of M27PP1 genetic environment is important to 
check for recombination since other studies have noticed 
that some ST131 isolates might have acquired blaCTX-M-27 
independently from the C1-M27 clade [8, 9].

UTIs are often preceded by colonization of the gut [41]. 
In a recent study by Wilmore et al. [42] on the carriage of 
ESBL–producing Enterobacteriaceae in HIV-infected chil-
dren in Zimbabwe, it was observed that out of 175 collected 
stools, 24 isolates were ESBL-positive and nine isolates 
belonged to ST131 producing either CTX-M-15 or CTX-
M-27. Infection as a result of colonization by these resistant 
strains may complicate treatment. The presence of such high 
rates of ESBL–producing commensal bacteria is a reflection 
of the high usage of these antibiotics in the public sector in 
Zimbabwe and its contribution to the creation of selective 
pressure for pathogens to evolve and spread.

Novel strains of the ST131 complex (ST11380 and 
ST11387) and ST405 complex (ST11615) were detected 
over a period of 1-year (2017–2018) harbouring blaCTX-M-15, 

Fig. 3   Genetic environment 
of the C1-M27 clade-specific 
region of Escherichia coli 
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and blaCTX-M-27. These novel strains originated from patients 
who live in one of the densely populated suburbs, where fre-
quently poor sanitation and hygiene conditions are reported. 
As these resistant clones can persist in the environment, it is 
important to improve sanitation, water quality, and patient 
care through education and awareness campaigns in com-
munities as a way of controlling the spread of such resistant 
clones [43, 44]. From our global analysis, other environ-
mental-associated isolates were included, which showed the 
existence of different clades including C1-M27 among ani-
mal and environment; this shows how such isolates might act 
as reservoirs for the introduction of such clades in humans.

Enterobacterales are known for having relatively open 
pan-genomes that can rapidly adapt to changing selection 
pressures (including antibiotic usage) as observed in the 

ST131 and ST410 strains in this study. To the best of the 
authors’ knowledge, this is the first report of ST410 ESBL 
ExPEC from Zimbabwe harbouring blaCTX-M-15 along with 
other antimicrobial resistance (AMR) genes. Recent stud-
ies have indicated the E. coli ST410 as another successful 
pandemic ExPEC lineage [31]. Our study results corroborate 
this theory; however, as national surveillance programmes 
monitoring only local epidemiology, global surveillance 
programmes are required to follow the dissemination of 
pandemic clones [45]. A comparative analysis of the ST131 
and ST410 isolates revealed the presence/predominance of 
the self-transmissible IncF plasmids in ST410, which like 
in ST131 allows the bacteria to capture additional virulence 
genes and resistance determinants [5]. Similar studies on 
poultry, companion animals, freshwater fisheries, and swine 
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from Tunisia and South America have described the pres-
ence of IncF plasmids in ST410 as a contributing factor to 
the spread of ESBL [46, 47]. Due to the lack of ecological 
barriers and trading of food items between nations and con-
tinents, feacal carriage of these resistant clones may contrib-
ute greatly to the spread of AMR [48].

IncF-type plasmids have a narrow host range (limited to 
Enterobacteriaceae) and contribute to bacterial fitness via 
antibiotic resistance and virulence determinants [49]. These 
plasmids have been associated with the rapid emergence 
and global spread of blaCTX-M-15, as well as genes encoding 
resistance to aminoglycosides and fluoroquinolones (e.g. 
aac(6′)-Ib-cr, qnr, armA, rmtB) [49]. There was an associa-
tion between blaCTX-M-15 and blaOXA-1, as well as the aac(3)-
IIa and aac(6′)-Ib-cr in clade C2 ST131 carrying IncF plas-
mids, the majority of which came from patients in Harare.

Previous work from North America suggested that the 
H30-R/C1 clade of ST131 most commonly carries IncF-
type F1:A2:B20 plasmids and the H30-Rx/C2 clade is 
associated with IncF-type F2:A1:B-plasmids [50]. In this 
study, plasmid types were associated with different sublin-
eages of ST131. For example, IncF-type F36:A4:B1 plas-
mids were most frequently seen in clade C2, whereas IncF-
type F2:A1:B-plasmids were mostly seen in clade C1. A 
similar observation in ST410 was noted with F1:A1:B49 
frequently being observed in B3/H24Rx.

The ST10 CC with blaCTX-M-15 together with other 
broad-spectrum beta-lactamases, such as blaOXA-1 and 
blaTEM-1, has been described in clinical isolates from Nige-
ria [32] and Egypt [51], as well as in poultry from Gambia 
[52], vegetables from South Africa [39], and enteroag-
gregative E. coli (EAEC) from Nigeria [53]. EAEC is an 
established diarrhoeagenic pathotype, transmitted either 
via consumption of meat products and vegetables or 
through contact with animals, which has been suggested 
as a potential source of ESBL bacteria causing diarrhoea 
and UTIs at the same time. EAEC with ExPEC markers 
belonging to ST10 has been found to be potential agents of 
UTIs. Recombination events are important in the evolution 
of pathogenic EAEC-ST10 UTI linked clones [54].

Several of the other clones identified in this study have 
been detected elsewhere. ST405 and ST648 are emerging 
clones associated with carbapenemases, specifically New 
Delhi metallo-beta-lactamases [55]. ST405 E. coli isolates 
producing CTX-M-3, CTX-M-14, or CTX-M-15 have been 
described for using self-transmissible IncF plasmids in 
acquiring different resistance genes within its clonal line-
age [56]. ST354 with CTX-M-15 has been described in 
humans [57] and stray dogs [58], while to the best of the 
authors’ knowledge, this is the first report on the presence of 
blaCTX-M-27 and the insertion prophage integrase M27PP1 in 
this clone. ST155 has been identified in the current study to 
harbour blaCTX-M-82. This was also observed in a Gambian 

study reporting the diversity of E. coli isolates from backyard 
chickens and guinea fowl; 32% (22/68) of the isolates har-
boured blaCTX-M-82 [52]. ST354 and ST155 might be strains, 
which can be exchanged between animals and humans.

This study offers a better understanding of the epidemi-
ology of Zimbabwean ESBL-producing ST131 and ST410 
and there close relationship to internationally disseminat-
ing ST131 and ST410 strains. It is evident that the Zimba-
bwe ST131 and ST410 strains are part of the international 
lineages and that several introductions combined with 
national transmission have formed the current E. coli popu-
lation. The clonal nature of the ST131 and ST410 lineage, 
with highly conserved plasmids in some sublineages, com-
plicates estimation of local circulation and transmission, 
and highlights the importance of the space time epidemio-
logical link events in the genomic era. However, very close 
genetic relationships (10–15 SNPs) could indicate a direct 
transmission even if the epidemiological link is unknown.

Improved strategies for the control of these clones will impact 
positively on public health management. A number of antimi-
crobial resistance control strategies have been put in place by 
different countries. These strategies include (i) improvement of 
awareness and understanding of antimicrobial resistance through 
effective communication, education, and training; (ii) strength-
ening the knowledge and evidence base through surveillance 
and research; (iii) reduction of the incidence of infection through 
effective sanitation, hygiene, and infection prevention measures; 
(iv) optimization of the use of antimicrobial medicines in human 
and animal health; and (v) the development of the economic 
case for sustainable investment that takes account of the needs 
of all countries, and increased investment in new medicines, 
diagnostic tools, vaccines, and other interventions [59].

The One Health approach is an important initiative for 
all countries especially in the sub-Saharan countries where 
information is scarce. The significance of this study from 
Zimbabwe was to define the scope of the resistance problem. 
A limitation of this study was the small sample size of only 
48 ESBL E. coli isolates with most isolates selected from 
Harare; however, results from this study contributed to the 
baseline molecular information for isolates/clones currently 
and previously linked to resistance in Zimbabwe. Short-read 
plasmid profile analysis was explored, which does not give 
a full description of the plasmids as compared to long read 
sequencing, although this technique provides some indica-
tion on the different plasmids within each isolate. Plasmid 
conjugation experiments could not be performed due to 
funding and time constraints; therefore, future studies should 
focus on such experiments to get an in-depth understand-
ing of the characteristics of the ESBL-encoding plasmids. 
As far as we are aware, this is the first study to be done in 
Zimbabwe to provide baseline data on virulence, antimicro-
bial resistance, and detection of specific lineages of ExPEC 
circulating in our communities using WGS.
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Conclusion

Our study has shown a high level of E. coli diversity in terms 
of STs, antimicrobial resistance genes, serotypes, and viru-
lence genes, which underlines the necessity for concerted 
efforts for continuous surveillance of the ESBL-producing 
ExPEC clones. Targeting specific STs (e.g. ST131, ST410, 
and ST405) through control programs will substantially 
decrease the spread of ESBLs among ExPEC.
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