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Abstract
Selecting high-risk patients may improve the cost-effectiveness of rapid diagnostics. Our objective was to assess whether model-
based selection or clinical selection is better for selecting high-risk patients with a high rate of bacteremia and/or DNAemia. This
study involved a model-based, retrospective selection of patients from a cohort from which clinicians selected high-risk patients
for rapid direct-from-blood diagnostic testing. Patients were included if they were suspected of sepsis and had blood cultures
ordered at the emergency department. Patients were selected by the model by adding those with the highest probability of
bacteremia until the number of high-risk patients selected by clinicians was reached. The primary outcome was bacteremia rate.
Secondary outcomes were DNAemia rate, and 30-day mortality. Data were collected for 1395 blood cultures. Following
exclusion, 1142 patients were included in the analysis. In each high-risk group, 220/1142 were selected, where 55 were selected
both by clinicians and the model. For the remaining 165 in each group, the model selected for a higher bacteremia rate (74/165,
44.8% vs. 45/165, 27.3%, p = 0.001), and a higher 30-day mortality (49/165, 29.7% vs. 19/165, 11.5%, p = 0.00004) than the
clinically selected group. The model outperformed clinicians in selecting patients with a high rate of bacteremia. Using such a
model for risk stratification may contribute towards closing the gap in cost between rapid and culture-based diagnostics.
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Introduction

Appropriate empirical antibiotic therapy decreasesmortalitywith
an odds ratio of about 1.6, relative to patients where appropriate
therapy is initiated when a pathogen has been isolated and tested
for its susceptibility to antibiotics [1]. Susceptibility results are
typically available 48–72 h after blood is drawn for culture [2].

Rapidmolecular diagnostics applied directly to primary blood
samples have the potential to significantly shorten the time to
pathogen identification, with turnaround times of 6–8 h [3, 4],
thus shortening the time to appropriate therapy, which may lead
to reducedmortality [1]. These rapidmethods are, however,more
expensive than the standard diagnostic procedure. A review by
the National Institute for Health and Care Excellence (NICE)
estimated that the incremental cost of rapid molecular diagnos-
tics, such as those based on the polymerase chain reaction (PCR),
range from 127€ to 373€ [5], whereas the price of a blood culture
(BC) is approximately 33€ [6].

Selecting patients with higher pre-test probability of positive
PCR result and higher mortality could contribute to improving

Preliminary results were presented at the 27th European Congress of
Clinical Microbiology and Infectious Diseases, Vienna, Austria, 2017.
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the cost-effectiveness of rapid diagnostic methods. A method for
selecting high-risk patients for rapid diagnostics could potentially
be implemented as a clinical decision support system, integrated
into the hospital’s electronic health record.

SepsisFinder (SF) is a stochastic model implemented as a
causal probabilistic network, which predicts the probability of
bacteremia based on laboratory variables and vital signs [7, 8].
Assuming that a high probability of bacteremia correlates with
a high pre-test probability of a positive PCR, then SF may be
able to predict a positive PCR based on a high probability of
bacteremia. It has been shown that positive BC and positive
PCR can be predicted using the same factors [9]. SF’s estimate
of the probability of bacteremia could then be used to select
patients for rapid diagnostic testing by stratifying them into
low- and high-risk groups. For use in a laboratory setting, we
used a modified version of SF: SepsisFinder-Lab (SFL).

The aim of this paper was to compare two strategies for
selection of Bhigh-risk^ patients from among those who had
blood cultures. The rates of bacteremia, DNAemia, and 30-
day mortality were compared in groups of high-risk patients
selected either by SFL or clinically selected based on Sepsis-3
definitions [10].

Methods

Patients and setting

Data were collected retrospectively for patients in the emer-
gency department or infectious disease ward who had BCs
drawn between May 1 and December 31, 2016 at five hospi-
tals in the southern part of the Emilia-Romagna region of Italy.
All patients were admitted through the emergency ward, but
due to the local procedures at two of the hospitals, some pa-
tients had blood cultures drawn at the infectious disease ward.
Inclusion criteria were suspicion of infection (drawing of BCs
within 2 h of hospital admission, as part of standard clinical
care) and age 18 years or older. Infection variables were col-
lected retrospectively from the laboratory information system
and included albumin, bilirubin, C-reactive protein (CRP),
lactate, neutrophil fraction, and platelets. Values with
timestamps closest to the time of BC draw, but within a win-
dow of 48 h before to 18 h after, were chosen.

Exclusion criteria

Patients were excluded:

& If the associated data contained two or fewer infection
variables

& If the infection variables were not available within 1 h
after BC draw

& If the BC test result was not available

& For patients with multiple visits, only the first encounter
was included

Mortality data were collected from the local government
population register.

The eligibility criteria for this study were designed such
that the inclusion criteria were the same as, and the inclusion
period spanned the period where a prospective trial of a rapid
microbiology (RM) assay based on universal PCR amplifica-
tion coupled with mass spectrometry (PCR/ESI-MS), referred
to as the BRM study,^ was conducted by AUSL Romagna
[11].

Mathematical prediction model: SFL

We modified the original SF, a causal probabilistic network
model that included temperature, heart rate, calculated mean
arterial pressure, mental status, neutrophil fraction, platelets,
CRP, lactate, creatinine, and albumin as input variables for
prediction of the probability of bacteremia [7, 8].

The modified SF model was trained using the EM-learning
procedure provided in Hugin (Hugin Expert, Aalborg,
Denmark) following the same process used in construction
of SF [7]. The training dataset was based on 4707 patients
with a community acquired infection at Beilinson Hospital,
Petah Tikva, Israel. For the training of the bacteremia predic-
tion, the input variables were limited to those available in the
data from the Emilia-Romagna hospitals (neutrophil fraction,
platelets, bilirubin, CRP, lactate, creatinine, and albumin)
(27th European Congress of Clinical Microbiology and
Infectious Diseases, abstract P2055). Creatinine was subse-
quently eliminated from the model because it did not contrib-
ute to the predictive performance.

On the training dataset, the model had an area under the
receiver operating characteristic curve (AUROC) = 0.717
(0.691–0.744) for prediction of bacteremia (Fig. E1a in
Online Resource 1).

Risk assessment

The goal of the present study is to compare the ability of
clinicians to select high-risk patients to that of SFL. Two sub-
groups were defined to make the comparison: Clinical high
risk and SFL high risk; see flow diagram (Fig. 1).

Clinical high risk

Physicians were requested to include high-risk patients in the
RM study (defined as those with a SOFA score of 2 or more,
thereby fulfilling the Sepsis-3 definitions [10]) by ordering
concurrent blood samples for RM at the time of BC order.
Where SOFA was not available, clinical judgment was used
as to whether patients were included or not.
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SFL high risk

An alternative selection was performed by SFL. We chose to
include a number of SFL high-risk patients equal to the num-
ber of clinical high-risk patients by choosing the threshold
value for high-risk post hoc in order to achieve the same num-
ber of patients in each group.

Microbiology

Positive BCs and positive PCR tests were considered clinical-
ly significant when contaminants were excluded. Such posi-
tive BCs and PCR tests, including those with fungal isolates,
will be referred to as bacteremic (BC+) and DNAemic (DNA+
), respectively. Bacillus spp. (except B. anthracis), coagulase-
negative staphylococci, Corynebacterium spp., and
Micrococcus spp. were considered contaminants, in accor-
dance with local policy at AUSL Romagna. In the absence
of clinical data indicating the site of infection, viridans strep-
tococci were also considered contaminants, even though they
may occasionally be pathogens.

Blood cultures were performed using the BacT/Alert® sys-
tem (bioMérieux, Marcy l’Etoile, France), and RM with the
Iridica-BAC BSI assay (Ibis Biosciences-Abbott Molecular,
Des Plaines, IL). The techniques used are described fully in
the RM study [11].

Outcomes and statistical analysis

The primary outcome was the rate of BC+. Secondary out-
comes were all-cause 30-day mortality (M30) and the rate of
DNA+. Outcomes were compared for the clinically and SFL-
selected groups.

Dichotomous categorical variables (including the two out-
comes) were compared using the binomial test, while contin-
uous variables were compared using theMann-WhitneyU test
orWilcoxon signed-rank test. Difference in survival was com-
puted using the Mantel-Cox log-rank test. Differences in rates
across subgroups were tested using Pearson’s chi-squared test
or Fisher’s exact test, as appropriate. SFL probability of BC+
was calculated using Hugin Researcher 7.6 (Hugin Expert
A/S). Graphical presentations were constructed in Excel
2017 (Microsoft Corporation) and MATLAB R2016a
(MathWorks Inc.) and statistical analyses were performed in
SPSS 25 (IBM Corporation) and Excel 2017.

A preliminary version of the results in this manuscript was
presented at the 27th European Congress of Clinical
Microbiology and Infectious Diseases, Vienna, Austria,
April 24, 2017 (OS0558B).

Results

The eligible study population included 1395 patients.
Following exclusion, BCs were analyzed for a total of 1142
patients (Fig. 1). Of 1142 patients, 384 (33.6%) had a positive
BC, and after excluding contaminants 296 (25.9%) were con-
sidered BC+. Of 296 BC+, 186 (62.8%) had a single Gram-
negative isolate, 84 (28.4%) had a single Gram-positive iso-
late, and 2 (0.7%) had a fungal isolate, while 24 (8.1%) were
polymicrobial (9 with multiple Gram-negatives, 1 with multi-
ple Gram-positives and 14 mixed Gram-negative and Gram-
positive). Table 1 presents a breakdown of the BC isolates.

The infection variables CRP, neutrophil fraction, and plate-
lets were available for > 98% of patients. Bilirubinwas record-
ed for 53% of patients. Albumin and lactate were only

Fig. 1 Inclusion/selection flow
diagram
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available for 0.9% and 0.7% of patients, respectively.
Descriptive statistics are presented in Table 2.

Clinical high risk

Two hundred twenty patients were in the clinical high-risk group.
According to the original RM study design, these patients should
have had SOFA > = 2 on admission. However, calculating a
SOFA score for these patients prior to inclusion was impractical.
Retrospectively, the SOFA score was available for 180/220 pa-
tients, with 45 patients having SOFA< 2. Among the patients for
whom SOFA was available, there was no difference in BC+
(33.3% vs. 31.1%, p = 0.78) or 30-day mortality (13.3% vs.
14.8%, p = 0.81) for patients with SOFA < 2 and with SOFA
> = 2. There was a significant difference between the rate of

BC+ in the clinical high-risk group compared to the remaining
low-risk patients (32.3% vs. 24.4%, p = 0.02) (Fig. 2a). The sen-
sitivity of the clinical high-risk for BC+ was 24.0% (71/296),
while the specificity was 82.4% (697/846). The predictive power
of inclusion in the clinical and SFL high-risk groups for BC+
prediction is detailed in Table 3.

SFL high risk

The SFL high-risk group had significantly higher BC+ rate
than the SFL low-risk group (45.5% vs. 21.3%, p < 10−12, Fig.
2b). The sensitivity of SFL high risk for BC+was 33.8% (100/
296) and the specificity was 85.8% (726/846). The area under
the ROC curve for prediction of BC+ was 0.70 for the study
data (Fig. E3a in Online Resource 1). Calibration plots for

Table 1 Isolates from the 384 positive cultures

Gram negative 220 Gram positive 100 Fungi 2 Contaminants 119

Escherichia coli 133 Staphylococcus aureus 39 Candida spp. 2 CoNS* 95

Klebsiella spp. 29 Enterococcus spp. 25 Viridans streptococci 12

Pseudomonas spp. 15 Streptococcus pneumoniae 15 Bacillus spp. 4

Proteus spp. 15 Group A/B/F Streptococci 10 Corynebacterium spp. 3

Enterobacter spp. 6 Eubacterium lentum 4 Propionibacterium acnes 3

Citrobacter spp. 5 Clostridium spp. 3 Micrococcus luteus 2

Acinetobacter spp. 3 Brevibacterium casei 1

Aeromonas spp. 2 Listeria monocytogenes 1

Bacteroides fragilis 2 Microbacterium spp. 1

Haemophilus spp. 2 Peptostreptococcus micros 1

Salmonella spp. 2

Morganella morganii 1

Neisseria cinerea 1

Prevotella intermedia 1

Providencia stuartii 1

Serratia marcescens 1

Shewanella alga 1

*Coagulase-negative staphylococci

Table 2 Descriptive statistics

All (n = 1142) Bacteremia (n = 296) No bacteremia (n = 846)

% Median [IQR] % Median [IQR] % Median [IQR]

Age 100 73 [56–82] 100 77 [67–84]* 100 70 [54–81]

CRP [mg/dL] 98.7 8.8 [3.4–18.3] 99.3 11.6 [4.9–21.7]* 98.5 8.1 [3.1–16.5]

Leukocyte count [109/L] 100 11.3 [7.7–16.1] 100 11.5 [6.8–16.7] 100 11.2 [7.8–16.1]

Neutrophil count [109/L] 99.9 9.2 [5.7–13.4] 100 9.8 [6.0–14.6] 99.9 9.0 [5.6–13.2]

Neutrophil fraction 99.9 0.83 [0.74–0.89] 100 0.88 [0.82–0.92]* 99.9 0.81 [0.72–0.87]

Platelet count [109/L] 100 195 [141–261] 100 170 [124–227]* 100 204 [147–272]

Bilirubin [mg/dL] 53.4 0.7 [0.4–1.1] 54.1 0.9 [0.5–1.7] 53.2 0.6 [0.4–0.9]

*p < 0.05 for difference vs. no bacteremia, Mann-Whitney U test
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training and study data can be found in Fig. E2 and E4 of
Online Resource 1, respectively.

Figure 2c compares the clinical and SFL high-risk patients.
Fifty-five patients were in both the clinical and the SFL high-
risk groups (intersecting selections). The clinical and SFL
high-risk groups are therefore not independent. To form inde-
pendent groups, allowing the use of the binomial test for dif-
ferences between clinical and SFL high-risk groups, we de-
fined three groups which were then compared pairwise. The
three groups defined by the overlapping sets are referred to as
clinical only, both, and SFL only. The rate of BC+ was higher
in the SFL-only group than in the clinical-only group (44.8%
vs. 27.3%, p = 0.001), and patients had higher mortality than
those in the clinical-only group (29.7% vs. 11.5%, p =
0.00004). There were no significant differences, neither in
mortality nor in BC+ rate for SFL-only group compared to
the both groups (p = 0.26, p = 0.75, respectively). However, in
both groups, the rate of BC+ was significantly higher com-
pared to the clinical-only selection (47.3% vs. 27.3%, p =
0.006), while the difference in 30-day mortality (21.8% vs.

11.5%, p = 0.06) did not reach significance. The DNA+ rate
was also significantly higher (52.7% vs. 32.1%, p = 0.006) in
both group compared to the clinical-only group.

Survival analysis

Figure 3 shows log-survival curves for patients included in the
study. The upper panel (a) presents curves for SFL high-riska

b

c

Fig. 2 Clinical and SFL high risk among the 1142 patients. aComparison
of clinical high risk vs. clinical low risk. b Comparison of SFL high risk
vs. SFL low risk. c Comparison of clinical high risk vs. SFL high risk.
BC+, bacteremia; DNA+, DNAemia; M30, 30-day mortality

Table 3 Predictive power of inclusion in the high-risk groups for BC+
prediction

Bacteremia

SFL Clinical

Sensitivity 33.8% 24.0%

Specificity 85.8% 82.4%

Positive predictive value 45.5% 32.3%

Negative predictive value 78.7% 75.6%

Positive likelihood ratio 2.48 1.36

Negative likelihood ratio 0.77 0.92

Diagnostic odds ratio 3.09 1.48

a

b

Fig. 3 Survival curves. Upper panel (a) shows SFL high risk and SFL
low risk. Lower panel (b) shows clinical high risk and clinical low risk
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and low-risk patients, and the lower panel (b) presents curves
for clinical high-risk and low-risk patients. SFL high-risk pa-
tients had lower survival than low-risk patients (p < 0.001).
There was no significant difference for clinical high-risk vs.
low-risk patients (p = 0.98). The patterns in survival remained
when stratifying by age; the separation between survival
curves for SFL high-risk and low-risk patients was still present
(Fig. E5a in Online Resource 1), as was the lack of separation
for the clinical high-risk and low-risk groups (Fig. E5b in
Online Resource 1).

Discussion

The primary finding was that risk assessment provided by
SFL significantly outperformed the clinical risk stratification
in terms of selecting patients with higher bacteremia rates.
These patients may also have a higher DNAemia rate, if it is
accepted that the DNAemia rate is linked to the bacteremia
rate by a fixed odds ratio. In addition, the clinical selection
appeared to fail: although there was a difference in BC+ rate
between clinical high risk and clinical low risk, there was no
difference between the Clinical only group and the Clinical
low-risk. In addition, there was no difference in 30-day mor-
tality for clinical high-risk and low-risk patients.

A strength of SFL is that the prediction of bacteremia
seems robust with consistent areas under the ROC curve of
0.72 for the training set (Israel) and 0.70 for the validation set
(Italy). SFL also provided a Bfair^ area under the ROC curve,
even though the number of available variables was limited:
none of the vital parameters and only three of the six lab
values in the original version of SF [7, 8] were available.
The absence of lactate in the present dataset was mainly lo-
gistical. Clinical practice at the time meant that lactate was
measured by blood gas analysis in the hospital and available
in the hospital’s patient record, but not in the laboratory infor-
mation system. It is expected that the addition of both lactate
and albumin measurements (particularly for ER patients)
would improve predictive performance. Albumin is linked to
mortality [12], while lactate is also used as a severity marker
or a marker for septic shock [10, 13]. Bilirubin was also added
in SFL due to data availability and lack of a measure of liver
dysfunction in the model. In practice, the ability to stratify the
patients based on lab values alone may be logistically impor-
tant, since lab values in most hospitals/microbiology labora-
tories can be drawn automatically from the laboratory infor-
mation system.

The clinical selection of high-risk patients performed poor-
ly in identifying patients with a higher rate of bacteremia and
higher mortality. We believe there are three possible explana-
tions why clinicians were outperformed by SFL; the first ex-
planation is that the mortality-based SOFA score, used accord-
ing to the Sepsis-3 definitions [10], is unsuitable, or it was not

used as intended. The unsuitability of SOFA is supported by
the finding that there were no significant differences in mor-
tality and bacteremia in patients with SOFA < 2 and SOFA ≥
2. This is supported by other studies showing that while the
Sepsis-3 criteria provide a good prognostic indication in the
ICU [14], they are less effective in the emergency department
[15]. However, it is a limitation of the study that clinical data,
and thus also SOFA scores, were only collected for the clini-
cally selected patients.

The second explanation is that the SOFA score has not been
applied appropriately. It is possible that some patients who
were critically ill were not clinically selected due to the sever-
ity of their illness, with the clinicians perhaps focused on fluid
resuscitation and timely antimicrobial treatment [16] instead
of enrolment in the RM study. This would create a selection
bias disfavoring the clinical selection, but the study is limited
in the sense that it does not provide the clinical data required to
confirm or reject this explanation. It is also possible that cli-
nicians may err on the side of caution, partly due to incomplete
history and clinical data [17], resulting in an overestimation of
the risk of bacteremia [18]. This is backed by the fact that 49
patients with SOFA < 2 were included in the clinical high-risk
group.

The third explanation is that the comparison between SFL
and the SOFA score is not fair: SFL selects for high bacter-
emia rates, while the SOFA score selects for high mortality.
However, this explanation is incompatible with the finding
that SFL selection outperforms the clinical selection with a
significantly higher mortality.

It remains unexplained why the rate of positive BCs
(33.9%) as well as of bacteremia (26.3%) was high compared
to rates reported in the literature (5–15%) [19–21] for patients
suspected of sepsis. However, the bacteremia rate in this study
is consistent with historical averages for AUSL Romagna.
Yearly bacteremia rates for cultures drawn in the emergency
department ranged from 23 to 25% for 2013–2016 (Report di
Sorveglianza Microbiologica AUSL della Romagna 2013–
2016, available on request). One possible explanation of the
high rate of bacteremia is that blood may not have been drawn
for culture in all low-risk patients. However, this does not
explain that the observed rate of bacteremia is twice as high
as that predicted by SFL (see Fig. E4 in Online Resource 1).
Other speculative reasons for the high rate of bacteremia in-
clude differences in workflow and/or culture-related processes
such as temperature control of the sample or the rate of anti-
biotic therapy preceding blood sampling, but the exact reasons
have not been determined. Improved culture technique would
be consistent with the observation that the contamination rate
(6.8%) is also about twice as high as those reported in the
literature [21–23].

The lack of access to clinical data for the patients included
in the study also made it difficult to provide a true determina-
tion of the contamination rate. It is possible, for example, that
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a number of the patients, whose blood cultures grew CoNS or
viridans streptococci, had an infection where one of these
organisms was the causative pathogen.

Since the completion of the study, the RMproduct has been
withdrawn from the market. However, the concept of risk-
based stratification remains valid as a selection method for
improving the utilization of rapid microbiology. The methods
presented here are test agnostic.

A recent review [24] of predictive models for bacteremia
included two computerized models. One model was TREAT
[20]. SF was originally a component of the decision support
system TREAT [25–27], which advises on optimal antimicro-
bial therapy. TREAT requires more data including background
information and the physical examination of the patient. The
other predictive model was another Bayesian model [28]
which focused on hospitalized patients, where many of the
input variables would not typically be available in the emer-
gency department. SFL had similar performance characteris-
tics in terms of the AUROC reported for these other models,
but with the practical advantage that it only uses data typically
available in the emergency department, and that these data are
often available in a structured electronic format.

SFL was able to select a group with a higher rate of bac-
teremia and higher mortality than in the clinically selected
high-risk group. Presumably, early appropriate antibiotic treat-
ment is more important in a severely ill group and thus the
SFL high-risk group would benefit more from rapid diagnos-
tics than the clinical high-risk patients. A practical implemen-
tation of SFL as part of a clinical decision support system for
risk stratification may contribute towards improving the selec-
tion of emergency department patients with suspected sepsis
for rapid diagnostics. Such an implementation should be
assessed in a prospective study, where the true benefits can
be assessed.
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