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Abstract
The dynamics related to the loss of stx genes from Shiga toxin-producing Escherichia coli remain unclear. Current diagnostic
procedures have shortcomings in the detection and identification of STEC. This is partly owing to the fact that stx genes may be
lost during an infection or in the laboratory. The aim of the present study was to provide new insight into in vivo and in vitro stx
loss in order to improve diagnostic procedures. Results from the study support the theory that loss of stx is a strain-related
phenomenon and not induced by patient factors. It was observed that one strain could lose stx both in vivo and in vitro. Whole
genome comparison of stx-positive and stx-negative isolates from the same patient revealed that different genomic rearrange-
ments, such as complete or partial loss of the parent prophage, may be factors in the loss of stx. Of diagnostic interest, it was
shown that patients can be co-infected with different E. coli pathotypes. Therefore, identification of eae-positive, but stx-negative
isolates should not be interpreted as BShiga toxin-lost^ E. coli without further testing. Growth and recovery of STEC were
supported by different selective agar media for different strains, arguing for inclusion of several media in STEC diagnostics.
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Introduction

Shiga toxin-producing Escherichia coli (STEC) are foodborne
pathogens that can cause a wide range of gastrointestinal and
systemic diseases. Shiga toxins are considered to be the major
virulence factors of STEC, and are necessary for the develop-
ment of severe conditions including hemorrhagic colitis and
hemolytic uremic syndrome (HUS) [1]. The family of Shiga

toxins contains two subgroups, Stx1 and Stx2, and several
subtypes, Stx1a, c, d and Stx2a-h, of which Stx2h is the most
recently described subtype [2]. Stx2 subtypes vary in their
pathogentic potential. Most studies describe Stx2a, c and d
as the most virulent [3]. However, severe clinical outcomes
have also been described for other subtypes [4, 5]. Genes
encoding Stx1 and Stx2 are located on different prophages
that integrate at specific sites into the E. coli genome, a pro-
cess known as lysogenic conversion. When the phages are
silent, their E. coli hosts survive as lysogenic strains without
expressing the stx genes [6]. Environmental stress factors and/
or DNA-damaging agents may activate the phage lytic cycle,
with concomitant stx expression and release of Stx toxins and
phage particles [7, 8]. Alternatively, the Stx encoding phage
DNAmay spontaneously excise from the STEC genomewith-
out subsequent cell lysis. The resulting E. coli, without inte-
grated stx, is termed ‘STEC lost shiga toxin’ (STEC-LST).
STEC and STEC-LST may co-exist in vivo and recycle Stx-
encoding phages so that they can exist as stx-negative variants
and then convert back to stx-positive forms [9–11]. The
Stx-encoding phage may also be lost during laboratory pas-
sages [11, 12].
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In clinical diagnostics, the presence of STEC is usually
confirmed by PCR-based detection of stx in cultured E. coli
or directly in stool samples. In the latter instance, positive
results are usually followed up by culturing E. coli from stools
and performing stx-PCR on isolates. Excision or loss of the stx
prophage in vivo or during laboratory sample processing,
complicates STEC diagnostics. STEC with intact prophages
may be low in numbers and, therefore, difficult to detect.
Furthermore, induction into the lytic cycle with subsequent
cell disruption adds to the complexity of STEC diagnostics.
The aim of the present study was to provide new insight into
in vivo and in vitro stx-loss in order to improve diagnostic
procedures. Loss of stx was investigated in patient stool sam-
ples at different stages of infection and after inoculation onto
agar, using qPCR. Whole genome sequencing of stx-positive
and stx-negative bacterial isolates was performed to gain in-
sight into genomic rearrangements that had occurred. Finally,
different selective agars were tested for recovery of STEC in
the presence of STEC-LST and background flora. Based on
our findings, we discuss strategies to improve STEC
diagnostics.

Materials and methods

Patient samples and clinical information

The period of investigation was from 2013 to 2014. Patients
included in the study were either hospitalized at Akershus
University Hospital, Norway (Ahus) or in primary health care.
All patients were suffering from infectious diarrhea, which
was in some cases bloody. Diagnostic samples were received
at the Ahus Department of Clinical Microbiology and
Infection Control. When STEC was detected in a sample,
the patient, or if a juvenile the parents of the patient, were
invited to participate in the study. Written consent was obtain-
ed from all participants. The study was approved by the Data
protection manager at Ahus (Project number12-042) and by
the Regional Committees for Medical and Health Research
Ethics (REK), South East, Norway (Project number 2012-
102).

Initial diagnostic procedures

Stool samples were investigated for the presence of STEC and
other gastrointestinal pathogens using a commercial CE-
labeled PCR kit (RIDA®GENE EHEC/EPEC real-time
PCR, R-Biopharm AG, Darmstadt, Germany) [13]. Samples
that tested positive for stx were cultured to recover the STEC
isolate, which was then verified, serotyped, and further char-
acterized at the National Reference Laboratory for
Enteropathogenic Bacteria (NRL) at the Norwegian Institute
of Public Health. Stx subtype was determined as described by

Scheutz et al. [14] with minor modifications. Patients with
STEC serotypes known to cause severe infection and subtypes
stx2a, stx2c, stx2d, and stx1were included in the study. STEC
subtypes stx2b and stx2e-g were excluded as they have only
rarely been associated with clinical infections in Norwegian
patients [3]. STEC subtype stx2hwas not identified in Norway
at the time of the study. Two or three follow-up stool samples
were collected from each patient at intervals of approximately
1 week during the period of illness. Stool samples were stored
at − 80 °C until processed Table 1.

Recovery of STEC on different culture media

Samples included in the study were cultured onto
CHROMagar STEC (CHROMagar Microbiology, Paris, FR)
and lactose agar to quantify STEC and putative STEC-LST.
Lactose agar, an in-house medium for detection of
Enterobacteriaceae, contains tryptose agar base, lactose, sodi-
um chloride, and bromothymol blue. For each sample, 16–48
different colonies growing on the agars were examined for stx,
eae, and the corresponding O-serogroup (target genes wzx or
wzy), H-serogroup (target gene fliC), or lysozyme P (lysP)
using real-time PCR [13, 15–19]. Primers and probes are de-
scribed in Table 2. QuantiFast Pathogen PCR/IC Kit (Qiagen,
Hilden, Germany) was used for TaqMan probe assays, while
SYBR Premix Ex Taq (Takara Bio, Inc., Otsu, Japan) was
used for the SYBR green assays.

Loss of stx during in vitro culture

To investigate if stx was lost during the in vitro culture step,
the amount of stx relative to its corresponding STEC O-
serogroup target gene (alternatively H-serogroup/lysP) was
determined before and after culture on lactose agar. DNA
was extracted from stool samples (100 μl) in Cary-Blair trans-
port medium (Copan Italia S.P.A, Brescia, Italy) or
RNAlater™ stabilization reagent (Qiagen, Hilden, Germany)
using QIAsymphony (Qiagen) as previously described [13].
Following stool culture (100 μl) on lactose agar, all the colo-
nies on the plate were suspended in 5 ml PBS, and 200 μl of
this suspension was used for DNA extraction using the
QIAsymphony protocol. qPCR was performed in triplicate
(Table 2) and the relative quantity of stx (ΔCt stx-O-serogroup
target gene) in the stool sample versus colonies on lactose agar
was determined for every patient. Four patients were excluded
from these analyses due to the unsuccessful recovery of STEC
(patients 3 and 9) or insufficient amounts of sample material
(patients 8 and 10).

Loss of stx across stages of infection

Follow-up stool samples from each patient were investigated
for stx and the O-sergroup target gene (alternatively H-
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serogroup or lysP) that was detected in the initial sample. At
intervals of approximately 1 week from the onset of infection,
the relative quantities of stx (ΔCt stx-O-serogroup target gene)
were determined and compared to the primary diagnostic sam-
ple (time point 1). Patients 2, 3, 4, 9, and 12 were not included
in these analyses as follow-up samples were not available.

Whole genome sequencing of stx-positive
and stx-negative isolates

When stx-positive and stx-negative E. coli of the same
serogroup were identified in a sample, whole genome se-
quencing (WGS) was performed for comparison of isolates.
DNA was extracted with QIAGEN Genomic-tip 100/G
(Qiagen) and a library was prepared using the Pacific
Biosciences 20 kb library preparation protocol (Pacific
Biosciences, Menlo Park, CA). Size selection of the final li-
brary was performed using BluePippin (Sage Science,
Beverly, MA, USA) with 10 kb cut-off. The library was se-
quenced using a Pacific Biosciences RS II instrument
employing P6-C4 chemistry with 360 min movie time. One
SMRT cell was used for sequencing.

Bioinformatic analysis of whole genome sequence
data

Reads were assembled using HGAP v3 (Pacific Biosciences,
SMRTAnalysis Software v2.3.0). Only subreads longer than

8 kb were used for assembly. Minimus2 software of Amos
package was used to circularize contigs which were confirmed
by dotplot to contain the same sequence at the beginning and
end of the contig. RS_Resequencing 1 software (SMRT
Analysis v2.3.0) was used to map reads back to assembled
and circularized sequences. Low-coverage contigs were re-
moved from the genome sequence before the mapping. Fasta
files were submitted to the Centre for Genomic Epidemiology
(CGE) (http://www.genomicepidemiology.org/) [20] for
species identification with PathogenFinder [21], serotype-
and multilocus sequence type identification with
SerotypeFinder and MLST Finder [22, 23] and the detection
of plasmids, and virulence genes with PlasmidFinder and
VirulenceFinder [24, 25] (Table 3). The assembled chromo-
some sequences of each pair of stx-positive and stx-negative
E. coli of the same serogroup were compared using MAUVE
genome comparison tool version 2.4.0 [26]. Core genome
MLST (cgMLST) was performed in Ridom SeqSphere+ ver-
sion 5.1.0 (Ridom GmbH, Germany). Briefly, raw sequence
reads were trimmed until an average base quality of 30 was
reached in a window of 20 bases, and de novo assembly was
performed using Velvet version 1.1.04 with default settings.
The integrated Escherichia coli cgMLST scheme v1 from
Enterobase (https://enterobase.warwick.ac.uk/species/index/
e.coli) was used. The allelic profiles of the isolates were
visualized as a minimum spanning tree using the parameter
Bpairwise ignoring missing values^.

Table 2 PCR Primers and probes used in this study

PCR assay Target gene Primer/probe sequence 5′ to 3′ Amplicon size (bp) Ta PCR-
efficiency

Reference

Stx 1 stx1 Fwd: GGATAATTTGTTTGCAGTTGATGTC
Rev.: CAAATCCTGTCACATATAAATTATTTCGT
6-FAM: CCGTAGATTATTAAACCGCCCTTCCTCTGGA

107 60 °C 92 [15]

Stx 2 stx2 Fwd: GGGCAGTTATTTTGCTGTGGA
Rev.: GAAAGTATTTGTTGCCGTATTAACGA
Y.yellow: ATGTCTATCAGGCGCGTTTTGACCATCTT

131 60 °C 99 [15].

O26 wzx Fwd: TTTTATCTGGCGTGCTATCG
Rev.: CGGGGTTGCTATAGACTGAA
6-FAM: TGGCACTCT/ZEN/TGCTTCGCCTG

247 52 °C 94 [16]

O103 wzx Fwd: GGGCTTGTATTGTACCG
Rev.: AGTGGCAAACAGCCAACTAC
6-FAM: TCGGGGATT/ZEN/TTCTGCGGATT

169 52 °C 97 [16]

O145 wzy Fwd: TGTTCCTGTCTGTTGCTTCA
Rev.: ATCGCTGAATAAGCACCACT
6-FAM: TGGGCTGCC/ZEN/ACTGATGGGAT

291 52 °C 96 [16]

O157 per Fwd: GTACAAGTCCACAAGGAAAG
Rev.: CTTGTTTCGATGAGTTTATCTGCA
6-FAM: AGGACCGCAGAGGAAAGAGAGGAATT

125 52 °C 98 [17]

H25 fliC Fwd: CACAACATYCTTGATAAAGATGG
Rev.: AACAGAAGCAGCATAGAAGTC
6-FAM: GCAACAGCTGATTATGTTGTTCAGTCAGG

81 60 °C 101 [18]

Lys P lysP Fwd: GGGCGCTGCTTTCATATATTCTT
Rev.: TCCAGATCCAACCGGGAGTATCAGGA

252 52 °C 93 [19]

Ta annealing temperature
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Results

STEC isolates and their recovery on different culture
media

Thirteen patients were enrolled in the study and 12 stx--
positive isolates were isolated from 11 of these patients. Two
different STEC were identified from one of the patients. In the
case of two patients, no STEC were cultured from the sam-
ples. The 12 stx-positive isolates represented four different O-
serogroups. One isolate was an unknown O-serogroup and
one isolate was identified as Escherichia albertii [27]
(Table 1). CHROMagar STEC was successful in selecting
for STEC O157 and suppressed growth of commensal
E. coli. STECO157:H7 from patient 13 was recovered in pure
culture on CHROMagar STEC, while it was suppressed by
commensal flora on lactose agar in the primary cultivation
step (Fig. 1). CHROMagar STEC was also successful in
selecting for STEC O103 from two patient samples, although
a third STECO103 was not initially found using this medium.
STECO26:H11 was not able to grow on CHROMagar STEC,
while lactose agar supported growth of all STEC in this study
(Fig. 1).

Co-existence of STEC, STEC-LST, and other E. coli
pathotypes

In samples from three different patients, a co-existence of
stx2-positive/eae-negative and stx2-negative/eae-positive
Escherichia was found. In one of these patients (p5), 14 of
40 colonies from lactose agar were stx2-negative E. coli
O145:H28, while only one of 40 colonies was stx2-positive
E. coli O145:H28. Twenty-five colonies from lactose agar
were commensal E. coli (Fig. 1). In samples from patient 7,
one colony of stx2-positive E. albertii and four colonies of
stx2-negative E. albertii were identified out of 34 colonies
tested from lactose agar (Fig. 1).

Pairs of stx-positive and stx-negative colonies of the same
serogroup were subjected to whole genome sequencing.
Bioinformatic analysis identified the pair of O145:H28 iso-
lates as E. coli of the same MLST type. Both isolates
contained the same plasmids and virulence genes and differed
only in their Stx-encoding genes (Table 3). The pair of
E. albertii isolates was also shown to contain identical viru-
lence genes, except for stx (Table 3). Genome analysis using
MAUVE showed that the stx-negative O145:H28 isolate was
lacking a ~ 9000 base pair partial sequence region of the stx--
prophage (Fig. 2a). The stx-negative E. albertii was missing

Table 3 Whole genome sequencing of pairs of stx-positive and stx-negative Escherichia spp.

stx-negative E. coli O145:H28 stx-positive E. coli O145:H28 stx-negative
E. albertii

stx-positive E. albertii

Number of
reads

94,292 101,347 72,997 63,006

Read length 15,445 16,738 16,527 bp 17,540

Average
coverage

182,3 175,6 210,5 72,26

Number of
contigs

5 5 1 8

Number of
contigs after
circulariza-
tion

4 3 1 1

Contig lengths 5,457,886 bp
115,737 bp
114,722 bp
56,994 bp

5,461,692 bp
109,862 bp
57,341 bp

4,539,208 bp 4,599,602 bp

Concensus
accuracy

0.99982 0.99989 0.99979 0.99964

Stx integration
site

yecE yecE – wrbA

Serotype1 O145:H28 O145:H28 No H/O No H/O

MLST type2,5 ST-6130 ST-6130 No ST No S

Plasmids3 IncFIB(AP001918)
IncI2

IncFIB(AP001918)
IncI2

None none

Virulence
genes4

iha, tccP, nleC, espJ, cif, nleB, efa1, tir,
eae, espA, espB, gad, nleA, nleB,
nleC, astA, etpD, ehxA

iha, tccP, nleC, espJ, cif, nleB, efa1, tir, eae,
espA, espB, gad, nleA, nleB, nleC, astA,
etpD, ehxA, STX2A, STX2B

nleB,, cif, espJ,
espF, espA, eae,
tir, gad, cdtB,
gad

nleB,, cif, espJ, espF,
espA, eae, tir, gad,
cdtB, gad, STX2A,
STX2B

1 = SerotypeFinder [22], 2 =MLST Finder [23], 3 = PlasmidFinder [24], 4 = VirulenceFinder [25], 5 = cgMLST Ridom SeqSphere+
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approximately 62,000 base pairs (corresponding to a complete
prophage DNA sequence) present in its stx-positive counter-
part (Fig. 2b). cgMLST using 2513 targets detected illustrated
0 and 1 allelic differences between the stx-negative and stx-
positive E. coliO145:H28 (patient 5) and stx-negative and stx-
positive E. albertii (patient 7), respectively (Fig. 3). Whole
genome sequences of the isolates have been submitted to the
European Nucleotide Archive Study ID PRJEB27634
(ERP109742).

Samples from patient 1 also contained a co-existence of
stx2-positive/eae-positive and stx-negative/eae-positive E.
coli. In these samples, the isolates were found to be of differ-
ent serotypes. Of 24 colonies tested from lactose agar, six were
STECO26:H11, seven were Enteropathogenic E. coli (EPEC)
O21, eight were EPEC of unknown serotype, and three were
Enteoaggregative E. coli (EAEC) O104:H4. On CHROMagar
STEC, only EPEC O21 and EAEC O104:H4 were detected
(Fig. 1).

Loss of stx across stages of infection and after in vitro
culture

The general pattern for all patients was a decrease in both stx
and O/H/lysP from time point 1 to time point 4, and hence a
reduction of STEC over time. In two patients (patients 5 and

8), neither stx nor the O serogroup target gene was detected in
the follow-up samples. In five patients (patients 1, 6, 8, 10,
and 11), the relative quantities of stx were stable or higher in
the follow-up samples (Fig. 4). Samples from patient 7 di-
verged from this pattern. Here, stx was not detected at time
points 2, 3, and 4, while lysP (E. albertii specific target) was
detected at every time point, indicating the presence of stx-
negative E. albertii and in vivo stx loss (Fig. 4). Subsequent to
agar culture, decreased stx quantities relative to the O
serogroup target gene were observed for three of the samples
(patients 1, 5, and 7, log2-fold change > 2.5). This suggests
in vitro loss of stx (Fig. 5).

Discussion

The aim of the present study was to provide new insight into
in vivo and in vitro stx loss in order to improve diagnostic
procedures. A proposed theory for loss of Stx-encoding
phages from STEC is that this offers a selective advantage
for the cell and favors bacterial survival [11]. Both strain-
related and patient-related factors, as well as environmental
factors, may influence this process. Most available informa-
tion at the present time supports the theory that stx loss is
related to serotype or stx subtype. Mellmann and colleagues

Fig. 1 Recovery of STEC on CHROMagar STEC and lactose agar. In particular, STEC O157 and STEC O103 were recovered on CHROMagar STEC.
Lactose agar was necessary for growth of STEC O26:H11 and several other serotypes

2366 Eur J Clin Microbiol Infect Dis (2018) 37:2361–2370



[11] documented progressive stx loss in seven different pa-
tients infected with STEC O26:H11 and O157:NM. Another
study from the same group found that 5% of HUS patients had
shed STEC-LST O26:H11, O103:H2, O145:H28, and
O157:H7 by the time of testing [10]. stx loss was identified
in STEC O145:H28 also in the present study and indicated,
but not verified in STEC O26:H11. Two different STEC iso-
lates were identified in one of the patient samples. These were
STEC O145:H28 containing stx2a and STEC O103:H2 con-
taining stx1. Only STECO145:H28 existed as stx-positive and
stx-negative variants, providing support for the hypothesis that
stx loss is related to strain or stx type, and not induced by
patient factors. In our work, stx loss was also detected in a
patient infected with stx2a-positive E. albertii. This isolate
was obtained from a patient suffering from bloody diarrhea
[27]. To our knowledge, this study is the first to illustrate that
stx2 may be lost from E. albertii. Several studies have shown
that stx genes are more stably maintained in STEC O157:H7
strains than in non-O157 strains [11, 28]. This applies also to
the STEC O157 isolates in the present study. Loss of stx1 is
less well known, and our data support the idea that stx is lost
only in certain serotypes and stx-subtypes.

STX2A STX2BQ anti-
terminator

Phage structural genes Regulatory genes 

I I

capsid tail lom

9000 bp

stx-postive E. coli O145:H28

stx-negative E. coli O145:H28

Lysis
genes

yecE

integrase

yecE

integrase

Phage structural genes Regulatory genes 

STX2A STX2BQ anti-
terminator

Phage structural genes Regulatory genes 

I I

capsid tail lom

62 000 bp

stx-positive E. albertii

stx-negative E. albertii

Lysis
genes

wrbA

integrase

wrbA

a

b

Fig. 2 a Graphical presentation of the integrated Stx encoding
bacteriophage sequence in stx-positive and stx-negative isolates of the
same serotype. The stx-negative E. coli O145:H28 isolate is missing a
stretch of approximately 9000 basepairs of the Stx encoding

bacteriophage compared to the stx-positive E. coli O145:H28. b The
stx-negative E. albertii is missing the complete Stx prohage DNA
sequence compared to its stx-positive counterpart (62,000 bp)

Fig. 3 Minimum-spanning tree based on cgMLST allelci profiles of two
E. coli and two E. albertii isolates (stx-positive and stx-negative pairs).
Each circle represents an allelic profile based on sequence analysis of
2513 targets. The numbers of the connecting lines illustrate the
numbers of target genes with differing alleles. Both E. coli isolates had
98.4% good cgMLST targets, whereas the E. albertii isolates had 92.8
and 94.6% good cgMLST targets, respectively. Only, one core genome
gene showed allelic difference between the E. albertii isolates, whereas
none differences were observed between the E. coli isolates
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The median length of STEC carriage was in a recent study
measured to 24 days [29]. The present work detected stx after
3 or 4 weeks in samples from seven patients, but for all pa-
tients, a progressive reduction of STEC was observed. For the
patient withE. albertii, stxwas not found 7 days after the onset
of disease, whereas lysP (E. albertii-specific target) was de-
tected at 7 and 12 days. This finding suggests stx loss in vivo.
Following laboratory culture of primary samples on agar
plates, the sample with E. albertii displayed decreased quan-
tities of stx relative to lysP, indicating stx loss also in vitro.
Several studies have shown that STEC is prone to loss of stx
after in vitro manipulation [12, 30]. Joris et al. [28] showed
that stx genes may be lost already during the first
subcultivation step; the present study illustrates that not only
subcultivation, but primary cultivation may have the same
effect. We cannot exclude that in vivo coexistence of stx-pos-
itive and stx-negative cells may have resulted in bias during
the culture stage, as preexisting stx-negative variants may be
more easily cultured than stx-positive variants. A progressive
stx loss in this strain in a plausible explanation.

Whole genome sequencing demonstrated that different ge-
nomic rearrangements may lead to stx loss. Isolates of stx2-
positive E. albertii and stx2-negative E. albertii were

sequenced and bioinformatics analysis showed that these were
the same strain, with only one allelic difference using
wgMLST. The stx2-negative isolate had lost the entire stx2
encoding phage. In this strain, free bacteriophages may have
co-existed with E. albertii in vivo and bidirectional conver-
sion of the Stx phage between stx-positive and stx-negative
variants may have occurred [9]. Results from the present study
also suggest in vitro loss of stx in samples from the patient
with stx-positive and stx-negative E. coli O145:H28. Whole
genome sequencing revealed that these were the same strain,
but that one of them was missing some of the stx prophage,
including the stx genes. Remnants of the prophage, including
the late gene regulator Q and the genes encoding the phage
structural proteins, were still present in the stx-negative iso-
late. This would be in line with a different genomic rearrange-
ment rather than loss of the complete prophage. Since the
prophages are not intact when the phage DNA is excised,
these are not likely to be transferred to new cells. The reason
for only partial loss of the Stx prophage is not clear.
Theoretically, it could be related to bacterial survival and ad-
aptation and lower virulence expression. The patient from
which this isolate was identified suffered from bloody diar-
rhea and was hospitalized for 4 days. He was co-infected with
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STEC O103:H2. Of diagnostic interest, the results illustrate
that sequence analysis of more STEC-LST isolates may reveal
new diagnostic targets. For example, a PCR assay for the late
gene regulator Q could be used to detect remnants of Stx
prophages and identify stx loss in some E. coli isolates.

Culture on selective agars

STEC diagnostics is often based on detection of stx in E. coli
isolates or directly in stool samples using PCR. An indication
of the presence of STEC in a patient sample may be the pa-
tient’s clinical presentation or a positive stx PCR-result from
stool samples. A routine procedure for STEC detection used at
many hospital laboratories is to test 2–8 colonies isolated from
stool samples for the presence of stx [13, 31].

It can be technically challenging to culture low quantities
of STEC in samples with co-occurring STEC-LST and other
E. coli. In this study, analysis of the two patient samples with
pairs of stx-positive and stx-negative E. coli showed that only
a minority of the colonies growing on lactose agar and
CHROMagar STEC were STEC. The majority of colonies
growing from these samples were STEC-LST, competing mi-
croflora or commensal E. coli. Therefore, detection of 2–8
stx-negative colonies in a stx-positive stool sample should
not lead to termination of the STEC Bsearch^. STEC isolates
are likely to be present in samples where stx loss has occurred,
although they will probably exist in small numbers.
Furthermore, it would be unwise to assume that stx-negative,
eae-positive colonies are possible STEC-LST without further
analysis. In this study, one patient was co-infected with STEC
O26:H11, EPEC O21, an EPEC of unknown serotype, and
EAEC O104:H4. Only EPEC O21 and EAEC O104:H4 grew
on CHROMagar STEC. If CHROMagar STEC were to be
used as the only culture medium, the eae-positive EPEC
O21 could bemistaken for STEC-LST. Although several stud-
ies have shown that CHROMagar STEC is a suitable medium
for STEC O26 [32–34], it is clear that the commonly used
selective culture media for STEC do not support growth of
all STEC variants. Conversely, the less selective lactose agar
also supports growth of commensal E. coli. In the present
study, commensal E. coli suppressed STEC O157:H7 from
one sample at the primary cultivation stage. Dual plating on
lesser and more selective agars should be performed if STEC
isolates are not recovered after a positive stx PCR result from
stool or mixed culture. Our data illustrate that a high number
of colonies need to be screened for stx if the patient’s clinical
presentation suggests the presence of STEC.

The present work also showed that STEC may not be re-
covered if lytic induction occurs during cultivation. In two of
the samples (patients 3 and 9), a positive stx-PCR was obtain-
ed directly from stool and from a culture swipe from lactose
agar. Representative samples of the colonies on the plate were
tested for stx; however, no STEC isolates were identified. It

has previously been shown that free Stx phages may exist in
patient stool samples and lead to positive stx-PCR results [35].
Since stx was detected in mixed culture on agar and not only
from stool samples in patients 3 and 9, the results are in line
with lytic induction upon subculture, rather than the presence
of free Stx phages in the sample. In such cases, DNA from
culture swipes could be used to search for common STEC
serotypes or other genetic STEC markers. Although single
isolates cannot be characterized using this approach, a possi-
ble STEC infection may be identified and the STEC serotype
recorded for infection control purposes. If stx is not detected in
culture swipes, free Stx phages are more likely to have caused
the stx-positive PCR result.

The present study has some limitations which should be
considered. The fecal samples had been frozen prior to anal-
ysis, which may have influenced stx loss. The small sample
size of the study is also a limiting factor.
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