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Abstract
Pneumocystis pneumonia is a serious complication that may affect immunosuppressed patients. The absence of reliable
and safe therapeutic alternatives to trimethoprim–sulfamethoxazole (TMP/SMX) justifies the search for more effective
and less toxic agents. In this study, the in vitro and in vivo anti-Pneumocystis jirovecii activity of iclaprim, a
diaminopyrimidine compound that exerts its antimicrobial activity through the inhibition of dihydrofolate reductase
(DHFR), as does TMP, was evaluated alone or in combination with SMX. The antimicrobial activity of iclaprim was
tested in vitro using an efficient axenic culture system, and in vivo using P. carinii endotracheally inoculated
corticosteroid-treated rats. Animals were orally administered iclaprim (5, 25, 50 mg/kg/day), iclaprim/SMX (5/25, 25/
125, 50/250 mg/kg/day), TMP (50 mg/kg/day), or TMP/SMX (50/250 mg/kg/day) once a day for ten consecutive days.
The in vitro maximum effect (Emax) and the drug concentrations needed to reach 50% of Emax (EC50) were determined,
and the slope of the dose–response curve was estimated by the Hill equation (Emax sigmoid model). The iclaprim EC50

value was 20.3 μg/mL. This effect was enhanced when iclaprim was combined with SMX (EC50: 13.2/66 μg/mL) (p =
0.002). The TMP/SMX EC50 value was 51.4/257 μg/mL. In vivo, the iclaprim/SMX combination resulted in 98.1% of
inhibition compared to TMP/SMX, which resulted in 86.6% of inhibition (p = 0.048). Thus, overall, the iclaprim/SMX
combination was more effective than TMP/SMX both in vitro and in vivo, suggesting that it could be an alternative
therapy to the TMP/SMX combination for the treatment of Pneumocystis pneumonia.

Introduction

Pneumocystis pneumonia (PcP) is an opportunistic infection
caused by Pneumocystis jirovecii, which occurs when cellular
immunity is depressed because of AIDS [1], malignancies [2],
prolonged immunosuppressing drugs [3], IgA nephropathy [4],
organ transplantation [5], or corticosteroid therapy [6]. The PcP
mortality rate is high among patients with delayed diagnosis [2]
and treatment, and death is due to severe respiratory failure [7].

Serological data indicate that Pneumocystis primary infec-
tion occurs in 70–90% of immunocompetent 2–4-year-old
children from temperate or tropical regions [8, 9], and could
be associated with upper respiratory infection in infants, pre-
dominantly those 1.5–4 months of age [9]. PCR survey of
healthy people in Spain has revealed P. jirovecii in 20% of
the population [10]. In addition, Pneumocystis organisms
were detected frequently in neonatal or young children [11,
12], pregnant women [13], and patients with chronic underly-
ing diseases [14–17]. Thus, Pneumocystis organisms could
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behave as a comorbidity factor [11, 15]. For instance, pulmo-
nary carriage ofP. jirovecii in patients with chronic obstructive
pulmonary disease (COPD) could worsen the progression of
this illness [15], which is the fifth most common cause of
death in high-income countries [18].

Available drugs that are effective against PcP are limited. The
first-line treatment and prophylaxis for P. jirovecii infection is
trimethoprim–sulfamethoxazole (TMP/SMX) [19]; however, nu-
merous side effects have been associated with this therapy
[20–23]. Moreover, reports suggest an emergence of P. jirovecii
resistance to sulfa drugs [24–29]. Unfortunately, the lack of cul-
tures ofP. jirovecii from these cases has not allowed confirmation
of the cases of clinically suspected drug resistance [24]. No in-
formation about P. jirovecii resistane to the combination of
iclaprim plus sulfa drugs is known. Efforts have been made to
study putative drug resistance against TMP/SMX by sequencing
the Pneumocystis dihydropteroate synthase (DHPS) gene from
clinical P. jirovecii isolates. This gene is highly conserved in
many organisms, and similar DHPS mutations can confer resis-
tance to sulfa drugs in either prokaryotic (Escherichia coli,
Streptococcus pneumoniae) or eukaryotic (Plasmodium
falciparum) pathogens [30–33]. The widespread use of TMP/
SMX for PcP prophylaxis could, therefore, select P. jirovecii
strains with DHPS mutations. Consistently, DHPS mutations
have been associated with both the use of sulfa drugs (TMP/
SMX or dapsone, a sulfone) [29] and the duration of SMX or
sulfone prophylaxis [34]. The American Thoracic Society (ATS)
recommended P. jirovecii drug resistance as a topic of clinical
research, including the association of DHPS mutations with
TMP/SMX treatment failure or death [35].

The absence of suitable therapeutic alternatives to the
TMP/SMX drug combination constitutes an unmet medical
need; pentamidine exhibits significant toxicity [36, 37] and
atovaquone is used only against mild forms of PcP [38].
Thus, deleterious side effects, limited efficacies, and emerging
resistance justify the search for more effective and less toxic
anti-Pneumocystis agents.

Iclaprim, a diaminopyrimidine compound that exerts its
antimicrobial activity through the inhibition of dihydrofolate
reductase (DHFR) [39, 40], may represent a new option for
responding to this medical need. For these reasons, the activity
of iclaprim against Pneumocystis was tested both in vitro,
using an efficient axenic culture system [41], and in vivo,
using P. carinii endotracheally inoculated corticosteroid-
treated rats [42–45].

Materials and methods

Drugs

Iclaprim, TMP, and SMX were dissolved in 100% dimethyl
sulfoxide (DMSO, Sigma-Aldrich, France). TMP and SMX

solutions were mixed appropriately to obtain a final 1:5 com-
bination. Then, for evaluating the in vitro anti-Pneumocystis
activity, the drug stock solutions were diluted in Dulbecco’s
Modified Eagle’s Medium (DMEM, BioWhittaker, France)
supplemented with 10% heat-inactivated fetal calf serum
(FCS, Gibco BRL, France) to produce the required drug
concentrations. To evaluate the in vivo anti-Pneumocystis
activity, iclaprim, TMP, or SMX stock solutions were used.
Drug solutions of 100 mg/mL were used for iclaprim and
TMP, whereas a solution of 500 mg/mL was used for SMX.
Then, the drug stock solutions were diluted in sterile water
before gavage. Compound solutions were prepared just
before use.

Source of P. carinii

Corticosteroid-treated conventional laboratory rats were used
as the animal model to obtain P. carinii organisms. Ten-week-
old female Wistar rats (Harlan, France) were immunosup-
pressed for 3 weeks with dexamethasone (Merck, France)
administered in the drinking water (2 mg/L) [44]. Then, rats
were inoculated with 2 × 107 of cryopreserved parasites using
a non-surgical endotracheal method [46]. Dexamethasone
treatment was maintained until the end of the experiment.
Six to 8 weeks post-inoculation, rats were infected. Animals
were allowed sterile standard food (UAR, France) and water
ad libitum. The research complied with national legislation
and with company policy on the care and use of animals and
with the related code of practice (accreditation number:
A59107, agreement number: B 59-35000). The study has
been approved by the ethical committee for experiments on
animals (approval number 02789.02).

Extraction, purification, and quantitation of P. carinii

Six to 8 weeks following inoculation, rats were euthanized
and parasite extraction was performed [44]. Briefly, parasites
were extracted in DMEM (BioWhittaker, France) by agitation
of lung pieces with a magnetic stirrer. The resulting homoge-
nate was poured successively through 250- and 63-μm stain-
less steel filters. After centrifugation, the pellet was resuspend-
ed in a hemolytic buffered solution (BioWhittaker, France).
Pneumocystis carinii organisms were collected by centrifuga-
tion and then purified on a polysucrose gradient (Histopaque-
1077, Sigma-Aldrich, France). Blood and Sabouraud dextrose
agar (Difco, France) media were inoculated with purified par-
asites to check for the presence of eventual contaminating
pathogens. Pneumocystis carinii was quantitated on air-dried
smears stained with RAL 555 (Réactifs RAL, France), a rapid
panoptic methanol Giemsa stain, which stains trophic forms,
sporocytes, and cysts of P. carinii [41]. Pneumocystis was
then cryopreserved by placing parasites in FCS with 10%
DMSO at − 80 °C in a Nalgene 1 °C cryo-freezing container
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(cooling rate about 1 °C/min) for 4 h [41]. The parasite sam-
ples were then stored in liquid nitrogen. Cryopreserved
P. carinii were used for in vitro or in vivo studies.

In vitro susceptibility study

In vitro pharmacodynamic properties were determined
using the Hill equation (Emax sigmoid model). This ap-
proach offers three parameters which can be used to de-
scribe the in vitro activity of new therapeutic compounds:
the maximum effect (Emax) as a measure for efficacy, the
50% effective concentration (EC50) as a parameter of in-
trinsic activity, and the slope (S) of the concentration–
effect relationship. In vitro susceptibility studies were per-
formed using the broth microdilution technique. Final
drug concentrations ranged from 5 to 100 μg/mL for
iclaprim, 5/25 to 100/500 μg/mL for the combination
iclaprim/SMX, and 1/5 to 150/750 μg/mL for the combi-
nation TMP/SMX. All the experiments were carried out in
24-well plates with a final volume of 2 mL of DMEM
supplemented with 10% FCS containing a final inoculum
of 0.5 × 106 organisms per mL. Then, plates were incubat-
ed for 4 days in an atmosphere of 5% CO2 at 37 °C. One
drug-free control was included in each assay. Parasite

quantitation was performed on homogenate smears as de-
scribed above. All susceptibility assays were set up in
triplicate.

Analysis of in vitro results

The in vitro activity of tested compounds against P. carinii
was expressed as a percentage of inhibition, defined as the
total parasite number found in drug-treated wells in compari-
son with parasite counts in control wells without drug. Once
all the differences between drug-treated and untreated wells
were calculated, the concentration–effect relationship was
established by using the Hill equation:

ER ¼ ER;max⋅CS

EC50ð ÞS þ CS
h i

where ER is the effect of each drug concentration (C) on the
percentage of inhibition estimated from experimental results;
S is a parameter reflecting the steepness of the concentration–
effect relationship curve; and EC50 is the concentration of the
compound at which 50% of the maximum effect (ER,max) is
obtained. The parameters of this pharmacodynamic model
were calculated by nonlinear least-squares regression tech-
niques using commercial software (SigmaPlot, Systat
Software, Inc.).

In vivo susceptibility study

An in vivo experiment with corticosteroid-treated Wistar
rats endotracheally inoculated with P. carinii was per-
formed in order to explore whether in vitro results reflect
in vivo efficacy. Six to 8 weeks post-inoculation, animals
were highly infected with P. carinii, as assessed by the
number of P. carinii cysts in lung homogenates, as previ-
ously described [44]. Animals were divided into groups of
three and then randomized to one of the following oral
interventions: (1) iclaprim dosed at 5, 25, or 50 mg/kg;
(2) TMP dosed at 50 mg/kg; (3) the combination TMP/
SMX dosed at 50/250 mg/kg (diluted in DMSO); and (4)
the combination iclaprim/SMX dosed at 5/25, 25/125, or
50/250 mg/kg. The drugs were given once a day for ten
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Fig. 1 Concentration–in vitro activity relationships of trimethoprim–
sulfamethoxazole (TMP/SMX), iclaprim, and iclaprim/SMX
combinations

Table 1 In vitro
pharmacodynamic parameters of
trimethoprim–sulfamethoxazole
(TMP/SMX), iclaprim, and
iclaprim/SMX

Drug EC50 (μg/mL) Emax (~ 99%) (μg/mL) Slope p-Value

TMP/SMX (1/5) 51.4/257 150/750 2.1 –

Iclaprim 20.3 50 2.8 0.002a

Iclaprim/SMX (1/5) 13.2/66 37/185 2.1 0.002b

a EC50 difference between iclaprim compared to TMP/SMX
aEC50 difference between iclaprim/SMX compared to TMP/SMX
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consecutive days. The final concentration of DMSO in
diluted drug solutions was between 1.5 and 15%.
Control animals were dosed with sterile water with 15%
DMSO. At the end of the experiment, therapeutic efficacy
was assessed by counting P. carinii in lung homogenates
and comparing the counts with those of the untreated con-
trols. Lung histopathology was not analyzed. Twenty-four
hours after the end of the treatment, animals were eutha-
nized and the lung homogenized in a Stomacher 400
blender, as previously described [44]. Parasite quantita-
tion was performed on air-dried smears stained with
RAL 555 stain (trophic forms, sporocytes, and cystic
forms; RAL Diagnostics, France). Therapeutic efficacy
was assessed by counting P. carinii parasites in lung ho-
mogenates and comparing them with those of the untreat-
ed controls at the end of the experiment. For each drug
concentration, the results were expressed as the percent-
age of inhibition versus drug-free animal controls.

Statistical analysis

Statistical analysis was performed using SPSS statistical soft-
ware. Pneumocystis carinii parasites counts were presented as
the mean and standard error. For each drug, the therapeutic
efficacy was assessed by comparing the mean of the total
parasite number for treated animals to that of untreated ani-
mals with a Student’s t-test (the data distributions were found
to be normal by preliminary Shapiro–Wilk tests). The com-
parisons of iclaprim to TMP at 50 mg/kg/day and of the com-
bination iclaprim/SMX to the combination TMP/SMX at 50/
250 mg/kg/day were similarly performed. Two-sided p-values
< 0.05 were deemed to be statistically significant.

Results

In vitro susceptibility study

Figure 1 shows the concentration–response curves ob-
tained after 4 days of incubation of P. carinii with
iclaprim or the combinations iclaprim/SMX or TMP/
SMX. The reduction in the number of microorganisms
was gradual and concentration-dependent. TMP/SMX
demonstrated an EC50 of 51.4/257 μg/mL (Table 1).
The present work revealed a high in vitro anti-
Pneumocystis activity of iclaprim, with an EC50 value
of 20.3 μg/mL. Moreover, the results obtained with the
iclaprim/SMX combination (proportion 1:5) showed sig-
nificantly increased activity, with an EC50 value of 13.2/
66 μg/mL (p = 0.002). At least 99% growth inhibition
was reached with iclaprim at a concentration of 50 μg/
mL and with the combination iclaprim/SMX at a concen-
tration of 37/185 μg/mL (Table 1). Higher concentrations
of TMP/SMX (150/750 μg/mL) were needed for
reaching a ~ 99% inhibition.

In vivo susceptibility study

Untreated animals were highly infected at the end of the
treatment period. The total number of P. carinii organisms
per lung was 2.2 ± 0.4 × 109 (Table 2). Iclaprim and TMP
showed a similar activity at the concentration of 50 mg/kg/
day (p = 0.888). The iclaprim/SMX combination was sig-
nificantly more effective (98.1% growth inhibition) than
TMP/SMX (86.6% growth inhibition) (p = 0.048)
(Table 2).

Table 2 Efficacy of iclaprim and
iclaprim/SMX combination
against experimental
Pneumocystis pneumonia in
Wistar rats infected by the
endotracheal route

Drug Dose
(mg/kg/day)

Total parasites:
mean ± SD (109)

p-Valuea % Reduction of total
parasitesb ± SD

Control – 2.180 ± 0.335 – –

Iclaprim 5 0.721 ± 0.138 0.005 66.9 ± 7.8

25 0.455 ± 0.372 0.008 79.1 ± 20.9

50 0.513 ± 0.236 0.005 76.5 ± 13.3

TMP 50 0.465 ± 0.426 0.005 78.7 ± 22.6

Iclaprim/SMX 5/25 0.572 ± 0.435 0.014 73.8 ± 24.4

25/125 0.034 ± 0.017 0.001 98.5 ± 0.9

50/250 0.040 ± 0.022 0.001 98.1 ± 1.7

TMP/SMX 50/250 0.293 ± 0.126 0.002 86.6 ± 7.1

Rats were endotracheally infected after 2 weeks of dexamethasone administration (2 mg L−1 drinking water) with
20 × 106 P. carinii organisms. Iclaprim, iclaprim/SMX, TMP, and TMP/SMX were administered once a day by
the oral route for ten consecutive days
a Test for equality of means of the total parasite numbers for treated and untreated animals
b Therapeutic efficacy was assessed by counting P. carinii organisms in lung homogenates of treated rats and
comparing them with those of the untreated control animals
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Discussion

The iclaprim/SMX combination was more active than TMP/
SMX in in vitro and in vivo studies. Iclaprim alone or com-
bined with SMX inhibited the growth of both Pneumocystis
cysts and vegetative forms. This is an important difference
with other anti-Pneumocystis drugs like echinocandin-
derived compounds, inhibitors of β-1,3 glucan synthase,
which selectively eliminates cysts in infected rats at therapeu-
tic doses [47–49], and, thus, have been mainly utilized as
salvage therapy or in combination with other antimicrobial
agents [50–53].

In vitro susceptibility tests are a basic step in current phar-
macological screening for new anti-infective drugs. A stan-
dard method was proposed for pathogenic yeast in 1997
([54], but it could not be applied to Pneumocystis species,
which do not grow well in fungal culture systems. In fact,
Pneumocystis species are atypical fungi [55, 56]. For instance,
they lack ergosterol [57], which is the target for most antifun-
gal molecules [58]. The present results indicate that in vitro
EC50 could be a predictive indicator of the anti-Pneumocystis
in vivo effect, at least for iclaprim/SMX and for sordarin de-
rivatives [43]. Pharmacodynamic parameters were calculated
using the Hill equation, which has been previously used to
assess the in vitro concentration–effect relationships of many
anti-Pneumocystis drugs in the 4-day axenic Pneumocystis
culture system used in the present work [43]. Factors such as
medium composition, inoculum size, and incubation time of
the in vitro susceptibility axenic system used in this work were
defined previously [43, 45]. In this system, the growth of all
Pneumocystis life cycle parasite stages is currently assessed
on dry smears stained by RAL 555, a methanol Giemsa-like
staining [45, 59, 60]. The in vitro strategy used in this work
allows estimating the intrinsic activity against P. carinii of the
tested molecule, and, therefore, it affords an efficient tool to
perform a direct comparison among molecules.

The in vivo results were consistent with the in vitro results,
showing that iclaprim/SMX is more potent than TMP/SMX
against P. carinii. The in vivo model used the Wistar rat, which
was inoculated non-surgically by the endotracheal route [46]
with a suspension of P. carinii organisms [61]. Despite a limi-
tation of not analyzing lung histopathology, this model did not
present the drawbacks of conventional corticosteroid-induced
PcP rodent models [42], which develop spontaneous PcP infec-
tions and, thus, are characterized by a marked variability in
parasite infection rates and unknown origin of Pneumocystis
strains. For these reasons, Pneumocystis endotracheally inocu-
lated animal models of PcP were developed [61], such as the
one used in the present study.

The present work confirmed that the activity of the combi-
nation of a diaminopyrimidine with SMX is enhanced, and
showed that the activity was highest with the iclaprim/SMX
combination. This combination may prevent the emergence of

P. jirovecii resistance to sulfa drugs. Iclaprim exhibits favor-
able lung pharmacokinetics which will influence its utility for
the treatment of pneumonia caused by various pathogens. An
oral formulation of iclaprim is being developed. An iclaprim/
SMX combination may enhance the favorable lung pharma-
cokinetics compared to iclaprim alone. A Phase 1 study inves-
tigated the tissue distribution of a single intravenous dose of
iclaprim in relevant lung compartments [62]. Iclaprim concen-
trations were found in epithelial lung fluid and alveolar mac-
rophages, up to 20- and 40-fold higher, respectively, than in
plasma [62]. In addition, a Phase 2 study comparing the clin-
ical cure rates of two iclaprim dosages with vancomycin in the
treatment of patients with nosocomial pneumonia suspected or
confirmed to be caused by Gram-positive pathogens showed
iclaprim and vancomycin to have comparable clinical cure
rates and safety profiles [63]. In conclusion, collectively, the
current in vitro and in vivo study, and previous Phase 1 and 2
studies, support that iclaprim alone or combined with SMX
could potentially offer an alternative and more potent first-line
therapy to treat PcP in humans.
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