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Abstract Clustered regularly interspaced short palindromic
repeats (CRISPR) coupled with CRISPR-associated (Cas)
proteins (CRISPR/Cas) are the adaptive immune system of
eubacteria and archaebacteria. This system provides protec-
tion of bacteria against invading foreign DNA, such as trans-
posons, bacteriophages and plasmids. Three-stage processes
in this system for immunity against foreign DNAs are defined
as adaptation, expression and interference. Recent studies sug-
gested a correlation between the interfering of the CRISPR/
Cas locus, acquisition of antibiotic resistance and pathogenic-
ity island. In this review article, we demonstrate and discuss
the CRISPR/Cas system’s roles in interference with acquisi-
tion of antibiotic resistance and pathogenicity island in some
eubacteria. Totally, these systems function as the adaptive im-
mune system of bacteria against invading foreign DNA,
blocking the acquisition of antibiotic resistance and virulence
factor, detecting serotypes, indirect effects of CRISPR self-
targeting, associating with physiological functions, associat-
ing with infections in humans at the transmission stage, inter-
fering with natural transformation, a tool for genome editing

in genome engineering, monitoring foodborne pathogens etc.
These results showed that the CRISPR/Cas system might pre-
vent the emergence of virulence both in vitro and in vivo.
Moreover, this system was shown to be a strong selective
pressure for the acquisition of antibiotic resistance and viru-
lence factor in bacterial pathogens.

Introduction

CRISPR/Cas systems are the adaptive immune system of
eubacteria and archaebacteria known as clustered regularly
interspaced short palindromic repeats (CRISPR) coupled with
CRISPR-associated (Cas) proteins [1–6]. Cas proteins play a
key role in the CRISPR/Cas immune system function and
indicate the system activity [7]. The CRISPR/Cas systems
protect these organisms against potentially dangerous foreign
DNAs, such as transposable elements, phages and plasmids
[1, 2]. The mechanism in these systems is similar to that of
RNA interference (RNAi) in eukaryotes since they use small
RNAs (sRNA) to detect a specific foreign sequence and neu-
tralise the invading DNA genomes [4, 8]. However, the
CRISPR/Cas system integrates a small segment of DNA de-
rived from foreign nucleic acid into the CRISPR locus of the
host genome that leads to immunity against the invader [8].
Three-stage processes of CRISPR/Cas systems (types I, II and
III) have been defined for immunity against invading foreign
DNAs: adaptation, expression and interference (Fig. 1) [6,
10–12].

(1) During the adaptation stage, a short segment of homol-
ogous to plasmid or phage is integrated into the leader side of
the CRISPR locus (approximately 30 bp) [1, 13, 14].
Protospacer adjacent motifs (PAMs) have selected spacer pre-
cursors of invading DNAs. PAMs differ between variants of
the CRISPR/Cas systems and are usually several nucleotides
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sequences [15, 16]. In this stage, Cas 1 and Cas 2 are the initial
candidates of proteins, which play a key role in this process [1,
4].

(2) In the expression stage, a long primary transcript of a
CRISPR containing the spacer is expressed (pre-crRNA) and
processed into short crRNAs [4, 17]. During the process of
this stage, endoribonuclease have catalysed crRNAs that op-
erate as a subunit of a large complex in Escherichia coli
known as a CRISPR-associated complex for antiviral defence

cascade (type I CRISPR/Cas system) [4, 17], a trans-encoded
small RNA (tracrRNA) in Streptococcus pyogenes (type II
CRISPR/Cas system) [18] and a single enzyme archaea in
Pyrococcus fusiosus (Cas 6) (type III CRISPR/Cas system)
[19–21]. In S. pyogenes, tracrRNA is catalysed by RNase III
in the presence of Cas 9 (also known as Csn1) [18]. Cas 9
plays a key role in CRISPR encoded interference and muta-
tion analysis, showing that interference by Cas 9 is based on
Ruvc/RNaseH- and McrA/HNH-motifs [8, 22, 23].

Fig. 1 Three types of the CRISPR/Cas system’s mechanism against
invading genetic elements [9]. All three types are summarised as
adaptation, expression and interference stages. During the adaptation
stage, short segment of homologous to plasmid or phage are integrated
into the leader side of the CRISPR locus (approximately 30 bp).
Protospacer adjacent motifs (PAMs) have selected spacer precursors of
invading DNA by Cas 1 and Cas 2. During expression, long primary

transcript of a CRISPR containing the spacer is expressed (pre-crRNA)
and is processed into short crRNAs (cascade in Escherichia coli as type I,
tracr RNA in Streptococcus pyogenes as type II and Cas6 in Pyrococcus
fusiosus as type III). During the interference step, foreign DNAor RNA is
cleaved into the protospacer sequence. The crRNA guides the complexes
of Cas proteins to the plasmid or phage sequences that match the spacers
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(3) During the interference stage, foreign DNAs or RNAs
are cleaved into the protospacer sequence [11, 13, 14]. RuvC/
RNaseH-motif is a characteristic protein that exhibits wide
spectra of nucleolytic function and acts on both DNAs and
RNAs [24]. McrA/HNH-motif includes many nucleases. This
motif acts on double-stranded DNAs, including restriction
enzymes, colistin, homing endonucleases, transposes and
DNA packaging factors [25]. The crRNA guides the com-
plexes of Cas proteins to the plasmid or phage sequences that
match the spacers [4]. Moreover, PAMs seem to play a key
role in the interference process and are required for efficient
interference [16, 26].

There are several Cas proteins that possess DNase and/or
RNase activity. Diverse Cas proteins could take part in either
one or multiple stages of the CRISPR/Cas system action, and
most of these proteins probably act as protein complexes [11].
Two universal core Cas proteins are Cas 1 and Cas 2 [27, 28].
Cas 1 is a metal-dependent DNase with no specificity, which
integrates the spacer DNA within the CRISPR cassette [27].
Also, Cas 2 is a metal-dependent endoribonuclease [28]. The
role of Cas 2 in the CRISPR/Cas system’s mechanism has
remained unclear [28]. Various classifications of CRISPR/
Cas systems are defined in different studies. In Haft et al.’s
and Makarova et al.’s studies, CRISPR/Cas systems are clas-
sified into CASS1–CASS8 on the basis of Cas 1 phylogeny
and on the composition and architecture of the Cas operons [8,
22]. Makarova et al. suggested that CRISPR/Cas systems are
classified into three types on the basis of the constitution of
Cas 1 and Cas 2 genes into the core of CRISPR/Cas systems
[9]. The type 1 CRISPR/Cas system contains Cas 3 genes and
other genes encoding proteins that probably produce cascade-
like complexes with various compositions [9]. Cas 3 is a large
protein with separate DNase and ATP-dependent helicase ac-
tivity [9]. Type 2 contains cas 9 genes [9]. Cas 9 is a very
large, single protein that generates crRNA and cleaves the
target DNA [29, 30]. Type 3 contains polymerase and
repeat-associated mysterious proteins (RAMP) modules [9].
RAMP generates a large superfamily of Cas proteins. RAMP
contains a characteristic glycine-rich loop and at least one
RRM (RNA recognition motif; also known as a ferredoxin-
fold domain [8].

The transfer of antimicrobial resistance and virulence genes
by the foreign DNA is the main reason for the emergence of
increased resistant and pathogenic bacterial strains [31, 32].
The ability of CRISPR/Cas systems to trigger virulence and
antibiotic resistance genes in plasmids or in phages has been
demonstrated [13]. Sequence analysis of pathogenic bacteria
demonstrated a correlation between the accumulation of anti-
biotic resistance genes and the absence of the CRISPR/Cas
locus. These results suggest that the CRISPR locus presents a
barrier to the transfer of traits under selective pressure during
infection [32, 33]. This review evaluates the role of CRISPR/
Cas systems in bacterial pathogens. To this end, we tend to

investigate CRISPR/Cas, targeted bacteria, pathogenicity and
antibiotic resistance. Further, articles on the role of CRISPR/
Cas in pathogenicity and interference with the acquisition of
antibiotic resistance in these targeted bacteria were studied
from 1997 to 2017.

Streptococcus spp.

Streptococcus pneumoniae displays the ability to insert new
genetic materials via horizontal gene transfer and for direct
uptake of exogenous DNA or DNA transformation [32, 34,
35]. In response to the immune system attack, S. pneumoniae
can alter their surface polysaccharide capsule and avoid
capsule-specific antibodies, and, also, acquire new capsule-
encoding genes and establish a successful infection [32, 35].
Capsule switching in S. pneumoniae is a main mechanism for
the rapid evolution in this organism [36]. Bikard et al. dem-
onstrated that, at low frequencies, S. pneumoniae can lose
CRISPR/Cas function and acquire capsule genes [32]. The
presence of capsule in S. pneumoniae is necessary for a suc-
cessful infection [32]. The results of Bikard et al.’s study
showed that CRISPR/Cas interference can prevent the appear-
ance of novel pathogenic strains, because it is a strong selec-
tive pressure for antibiotic resistance or virulence factor [32].
They transferred the CRISPR1 locus from S. pyogenes to
S. pneumoniae [32] and illustrated that the CRISPR loci can
prevent transformation in bacteria that possess natural trans-
formation between competent bacteria [32]. Bikard et al.,
Edgar and Qimron, and Gudbergsdottir et al. suggested that
CRISPR/Cas systems and genetic materials cannot simulta-
neously coexist in the same bacterial cells [32, 37, 38].
Bikard et al. demonstrated that the capsule gene of
S. pneumoniae is the target of the CRISPR1 locus and these
loci can prevent the transfer of these genes to non-capsulated
S. pneumoniae and mice can survive the infection [32].
Marraffini and Sontheimer demonstrated that CRISPR loci
can prevent plasmid transformation and conjugation in
Staphylococcus epidermidis [2].

spc1 is homologous with the nickase gene that is present in
staphylococcal conjugation plasmids, including MRSA
(methicillin-resistant S. aureus) and VRSA (vancomycin-re-
sistant S. aureus) [39, 40]. Staphylococcus epidermidisRb62a
strains contain a CRISPR locus that contains spacer 1 (spc1)
[41]. Marraffini and Sontheimer demonstrated that insertion
of a self-splicing intron into plasmid that possesses the nickase
gene interferes with the target plasmid directly [2]. These re-
sults showed that CRISPR interference would limit the spread
of antibiotic resistance plasmid genes such as MRSA and
VRSA and virulence factor between staphylococcal strains,
if the system interference could be manipulated in clinical
treatment. In another study, Barrangou et al. demonstrated a
correlation between the CRISPR locus and phage resistance in
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S. thermophilus [1]. Their results showed that plaque forma-
tion was reduced and, also, some phages were unable to infect
the phage-resistant mutants of S. thermophilus [1]. They ob-
served that the addition of two spacers causes this mutant [1].
Also, the two spacers, S1 and S2, were reported to be respon-
sible for virulent phage variants and, also, two distinct small
nucleotide proteins were identified in the spacer 1 sequence
[1]. The results of this study demonstrated that cas 5 inactiva-
tion causes the phage susceptibility, because it contains an
HNH type nuclease motif (McrA/HNH-motif) that acts as a
nuclease [1]. Also, Cas 7 acts as an enzyme that synthesises
and/or inserts new spacers and is unable to generate phage-
resistant mutants [1].

Escherichia coli

In E. coli species, CRISPR’s map has been observed in two
loci: CRISPR 1 and 2 determined at 62 min (including sub-
type I-E of cas genes) and CRISPR 3 and 4 determined at
20 min (including subtype I-F of cas genes) on the chromo-
some [42, 43]. CRISPR 1 and 2 are large numbers of CRISPR
repeats in E. coli strains [44]. Yosef et al. demonstrated that
CRISPR activity against lambda prophage is associated with
the high-temperature protein G (HtpG) in E. coli and is essen-
tial for CRISPR activity in E. coli [45]. Inactivity of CRISPR
related to HtpG deficiency can be suppressed by the Cas 3
protein [45]. The steady-state level of Cas 3 overexpression is
enhanced following HtpG expression [45]. The results of
Touchon et al.’s study demonstrated that the activity of
CRISPR and the presence or absence of cas genes are not
associated with the presence of integrons and plasmids, as
well as antibiotic resistance in E. coli [44]. Their results are
inconsistent with phage resistance and other reports that con-
cern other species [7, 33, 37, 46]. The results showed that
subtype I-E cas genes were present in both susceptible and
resistant strains or in both producing and non-producing beta-
lactamases strains, and the subtype I-E did not differ between
these strains [44]. However, subtype I-F cas genes were more
prevalent among susceptible strains and, also, these strains
were almost devoid of CRISPR systems [44]. This study sug-
gested that, if such activity inhibits transfer, plasmids and
integrons acquisition followed by multi-resistant acquisition
should be higher for strains that do not possess active CRISPR
[44].

Toro et al.’s study investigated 194 strains of Shiga toxin-
producing E. coli (STEC) and identified CRISPR 1 and
CRISPR 2 in all the strains; however, in their study, both
CRISPR 3 and CRISPR 4 were only identified in one isolate
and 193 strains exhibited a short, combined array, and identi-
fied 3353 spacers [47]. Their results demonstrated that there
was no correlation between virulence genes and the presence
of subtype I-E cas genes, but the presence of spacers causes

negative reduction of potential pathogenicity [47]. The results
of their study also demonstrated that strains with only one stx
gene had higher spacers than those having multiple stx genes
[47]. These results were consistent with the described role of
the CRISPR/Cas system in limiting the genetic material ac-
quisition [7, 33, 37, 46].

In another study, Sapranauskas et al. demonstrated that the
CRISPR/Cas system of S. thermophilus can be transferred
intoE. coli and protects this organism against invasive phages,
plasmid transformation and makes a safer organism [23].
Also, their study demonstrated that mutations within the
PAM and its vicinity authorise plasmids to evade the
CRISPR-encoded immunity [23].

Another application of CRISPR is the detection of E. coli
serotypes. Studies demonstrated that specific CRISPR poly-
morphisms can be distinguished in the O:H serotypes of
STEC, such as O157:H7, O145:H8, O104:H4, O103:H2,
O45:H2, O26:H11 etc. by real-time polymerase chain reaction
(PCR) [47–50]. But there are numerous cross-reactions be-
tween primers of some of the same H antigen serotypes, such
as cross-reactions between primers of O145:H28 and
O28:H28 or between O103:H2, O45:H2, O128:H2 and
O145:H2 [47, 48, 50].

Pseudomonas spp.

Lysogenic conversion promotes the continued persistence of
the bacteriophage genome within the host bacteria population.
Lysogenic conversion mediates secretion of virulence factors
in some bacteria, such as improved adhesion to epithelial cells
in Pseudomonas aeruginosa PAO1 infected with bacterio-
phage FIZ15 [51], altered lipopolysaccharide profile in
P. aeruginosa infected with phage D3 [52] and production
of cholera toxin in Vibrio cholera infected with phage
CTXφ [53]. Zegans et al. in their study demonstrated that
infection of P. aeruginosa by bacteriophage DMS3 causes
lysogenic strains that do not form biofilm or are unable to
undergo swarming motility [54]. Also, they showed that
CRISPRs play a necessary role for restored biofilm formation
and swarming motility, and five of six cas genes are required
for the restoration of biofilm formation and swarming motility
in these strains [54]. In another study, Heussler et al. showed
that the PAM and DMS3 protospacer plays an important role
in CRISPR-dependent loss of both biofilm formation and
swarming motility in P. aeruginosa, and do not require addi-
tion of DMS3 phage sequences [55]. Also, their results re-
vealed that the interaction between the DMS3 protospacer
and the CRISPR system induces expression of SOS-
regulated phage-related genes, such as pyocin operon, via
RecA activation after the activity of nuclease Cas 3 [55].
These results demonstrated that loss of both biofilm formation
and swarming motility has indirect effects of CRISPR self-
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targeting [55] and may be useful for the reduction of inflam-
mation of P. aeruginosa by DMS3 impression, if it can inhibit
the CRISPR/Cas activity.

Nine distinct families of phage proteins have been de-
scribed to possess anti-CRISPR/Cas activity [56–60]. These
proteins are classified into nine groups and are termed as A–I
[58]. Homologs of these anti-CRISPR proteins were detected
only within the Pseudomonas genus [57]. Pawluk et al. re-
vealed that four anti-CRISPR/Cas genes are present in differ-
ent types of Pseudomonas prophages [57]. Studies demon-
strated that five families of anti-CRISPR/Cas proteins found
in phages and other mobile genetic elements inhibit the type I-
F CRISPR/Cas systems of both Pectobacterium atrosepticum
and P. aeruginosa, and a specific dual anti-CRISPR/Cas pro-
tein (AcrF6Pae) inactivates both type I-E and I-F CRISPR/Cas
systems [56–58].

Three mechanisms of anti-CRISPR/Cas proteins have been
detected in P. aeruginosa [59]. Two anti-CRISPR/Cas pro-
teins (AcrF1 and AcrF2) interact with various DNA-binding
protein subunits (Csy complex subunits), use non-steric and
steric modes of inhibition and, likewise, barricade the DNA-
binding activity of the CRISP/Cas complex [59, 61, 62].
Binding to the Cas 3 and inhibiting its recruitment to the
DNA-bound CRISPR/Cas system is the third mechanism of
anti-CRISPR/Cas proteins [59]. There are two primary
quorum-sens ing auto- inducer (AI ) recepto rs in
P. aeruginosa, known as LasIR and RhlIR [63–66].
Quorum-sensing activates cas gene expression to increase for-
eign DNA-targeted CRISPR/Cas to promote CRISPR adapta-
tion [67]. The type I-F CRISPR/Cas system provides phage
resistance in P. aeruginosa [68, 69]. Høyland-Kroghsbo et al.
showed that the administration of pro- and anti-QS compo-
nents can regulate CRISPR/Cas activity in P. aeruginosa
PA14 [67], which possesses the type I-F CRISPR/Cas system
[70]. Also, they suggested that quorum-sensing inhibitor
could be used to suppress the CRISPR/Cas system in order
to elevate medical application, such as phage therapies [67].

Other bacteria

Analysis of the chromosome of Legionella pneumophila
strain 130b showed that this organism possesses subtype
II-B CRISPR/Cas locus [71], and a locus similar to it is
found in both the plasmid and chromosome of
L. pneumophila strain Paris [72, 73]. This locus contains
an array with 60 repeats, 58 unique spacers, Cas 9, Cas 1,
Cas 2 and Cas 4 [71]. Analysis by reverse transcriptase
PCR (RT-PCR) revealed that the CRISPR/Cas locus is
expressed during infection of Acanthamoeba and
Hartmannella as aquatic amoeba and macrophages, as
well as during extracellular growth in both minimal and
rich media [71]. Also, levels of Cas 1 and Cas 2,

measured by quantitative RT-PCR, are enhanced during
intracellular growth [71]. Gunderson and Cianciotto dem-
onstrated that Cas mutants were impaired for infection of
Acanthamoeba and Hartmannella species but could grow
normally in macrophages [71]. Also, they revealed that
Cas 2 plays a role in the transmission of Legionnaires’
disease [71]. Their results suggested that CRISPR/Cas lo-
ci may have relevant physiological functions and are not
related to horizontal gene transfer in this organism [71].
Infection of L. pneumophila in amoeba and, subsequently,
in humans may decrease by mutation in Cas 2.

In Neisseria meningitidis, the CRISPR/Cas system
could interfere with natural transformation [74]. Zhang
et al. demonstrated that the type II-C CRISPR/Cas sys-
tem of N. meningitidis requires Cas 9 and not Cas 1 and
Cas 2 for interference of natural transformation [74].
Also, in this type of system, pre-crRNA processing is
not required for interference activity [74]. RNase III-
catalysed pre-crRNA processing occurs within the bacte-
rial cell; however, it is unnecessary for interference. The
tracrRNA cleavage by crRNA-programmed Cas 9 [74]
was observed in vitro in Jinek et al.’s study [75]. In
human genome engineering of pluripotent stem cells,
Hou e t a l . , i n the i r s tudy, demons t ra t ed tha t
N. meningitidis Cas 9 distinguishes a 5′-NNNNGATT-3′
PAM [76]. They observed that the CRISPR/Cas system
of N. meningitidis is able to increase the sequence con-
texts amenable to RNA-directed genome editing [76].
Their results demonstrated homology-directed repair
(HDR) of efficient targeting of an endogenous gene in
three human pluripotent stem cell lines by using a dis-
tinct CRISPR/Cas system from N. meningitidis [76]. Yet,
in another research, Lee et al. demonstrated that the
CRISPR/Cas 9 system of N. meningitidis may represent
a safer alternative than the CRISPR/Cas system of
S. pyogenes for precision genome engineering applica-
tions [77] Table 1.

Vibrio cholerae contains a genomic island with VPI-1
(Vibrio pathogenicity island-1) and possesses the CRISPR/
Cas system and type VI secretion system (T6SS) [82]. Box
et al. showed that the transfer of genomic island-24 to the El
tor biotype of V. cholerae via transformation can enable
CRISPR/Cas-mediated resistance to phage CP-T1 [78].
They also demonstrated that CRISPR targets must be attended
by a 3′ PAM for affective interference [78]. Transferring the
CRISPR/Cas system from the classical biotype to the El tor
biotype is functional in providing resistance to bacteriophage
infection, and this system can be used as an effective gadget
for the editing of lytic phage genomes of V. cholerae [78]. In
V. parahaemolyticus, there are associations between the pres-
ence of virulence factor and the CRISPR/Cas system. The
results of the studies by Sampson et al. and Sun et al. demon-
strated that type II CRISPR/Cas plays a role in virulence [79,
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80]. Sun et al. also demonstrated that the CRISPR/Cas system
provides new methods for monitoring V. parahaemolyticus in
clinical and food samples and, also, is used as a marker for the
detection of virulence factors, such as thermostable direct he-
molysin and clonal complex 3 in V. parahaemolyticus [79].
Sampson et al. demonstrated that the Cas 9 protein of
Francisella novicida can use CRISPR/Cas-associated RNA
(scaRNA) to suppress a bacterial lipoprotein that is encoded
by an endogenous transcript [80]. This lipoprotein is a target
of a proinflammatory innate immune response and is armed in
fighting pathogens [83, 84]. Their results demonstrated that
CRISPR/Cas-mediated gene regulation may contribute during
the interaction of F. novicida with eukaryotic cell hosts [84].

Guillain–Barré syndrome is a severe sub-acute, post-infection
disease occurring after infectionwith pathogenic bacteria, such as
Campylobacter jejuni, in the human peripheral nervous system
[85]. This syndrome has been provoked by molecular mimicry
between C. jejuni sialyltransferase (CstII) and ganglioside epi-
topes in the human peripheral nerves [86, 87]. Mutation in cas
genes (cas1, cas2 and csn1) and CRISPR degeneration of
C. jejuni are correlated with C. jejuni sialyltransferase (CstII)
[81]. Louwen et al. demonstrated that inactivation of the type II
CRISPR/Cas system, particularly csn1, may reduce virulence in
Cst-II-positiveC. jejuni strains [81]. Their results showed a novel

correlation between virulence, viral defence and Guillain–Barré
syndrome in C. jejuni [81].

Conclusion

These results showed that the CRISPR/Cas system may pre-
vent the emergence of virulence both in vitro and in vivo. This
system may be a strong selective pressure for the acquisition
of antibiotic resistance and virulence factor in bacterial path-
ogens. This system is used as an adaptive immune system of
bacteria against invading foreign DNAs and, also, to block the
acquisition of antibiotic resistance and virulence factors, de-
tect serotypes, indirect effects of CRISPR self-targeting, asso-
ciate with physiological functions, associate with infection in
humans at the transmission stage, interfere with natural trans-
formation, edit genomes in genome engineering and monitor
foodborne pathogens. Particularly, there are some issues re-
quired to be investigated, such as the association between the
CRISPR/Cas system and its host, limiting susceptibility to
invasive mobile genetic elements, ability to uptake exogenous
DNA, expression of virulence genes in foreign DNAs and
Cas-9 application for viral immunity in human infection, tran-
scriptional control, genome editing etc.. This system defines

Table 1 The CRISPR/Cas locus
application in different bacteria Organism Applicationa Reference

Streptococcus spp. S. pneumoniae: prevention of the transferring of capsule genes from
capsulated strains to uncapsulated strains

S. thermophilus: reduction of plaque formation against bacteriophages,
nability of phages infection

S. pyogenes: genome engineering

[3]

Staphylococcus
epidermidis

Interference with spread of antibiotic resistance plasmid such as MRSAb

and VRSAc
[2]

Escherichia coli Suppression of lambda phage, reduction of genetic elements acquisition
and follow as multi-resistant acquisition, negative reduction of potential
pathogenicity, detection of serotypes

[44, 45,
47–50]

Pseudomonas
aeruginosa

Loss of biofilm formation, loss of swarming motility, induction of
SOS-regulated phage-related genes expression, Pseudomonas pro-
phages possess anti-CRISPR/Cas proteins, phage resistance

[54, 55,
57]

Legionella
pneumophila

Expression during the infection of amoeba, macrophages and extracellular
growth, transmission of Legionnaires’ disease, physiological function

[71]

Neisseria
meningitidis

Interference with natural transformation, increasing the sequence contexts
amenable to RNA-directed genome editing in human pluripotent stem
cells

[53]

Vibrio cholerae Resistance to phage CP-T1, editing of lytic phage genomes [78]

Vibrio
parahaemolyticus

Monitoring in clinical and food samples, detection of virulence factor as a
marker

[79]

Francisella
novicida

Suppression of bacterial lipoproteins [80]

Campylobacter
jejuni

Reduction of virulence factor, viral defence, reduction of Guillain–Barré
syndrome

[81]

a All introduced applications are current developments for the mentioned pathogens
bMethicillin-resistant Staphylococcus aureus
c Vancomycin-resistant Staphylococcus aureus
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future tools for infection control and bacterial genetic
manipulations.
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