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Abstract Cryptococcosis, caused by Cryptococcus gattii
sensu lato, is an emerging disease that was initially found in
(sub)tropical regions but recently expanded to temperate re-
gions. Cryptococcus gattii s.l. infections are mostly encoun-
tered in healthy individuals, frequently affecting both lungs
and the central nervous system (CNS). Usually, C. gattii s.l.
is less susceptible to antifungal compounds than its counter-
part, C. neoformans s.l. We studied 18 clinical C. gattii s.l.
isolates with amplified fragment length polymorphism
(AFLP) fingerprinting, mating-typing, multi-locus sequence
typing (MLST) and antifungal susceptibility testing. All

isolates were C. deuterogattii (genotype AFLP6/VGII), 14
were mating-type α and four were type a. Amphotericin B,
itraconazole, voriconazole, posaconazole and isavuconazole
showed high activity, with minimum inhibitory concentration
(MIC) ranges of 0.063–0.25, 0.031–0.25, 0.031–0.25, 0.031–
0.25 and <0.016–0.25μgmL−1, respectively. Fluconazole and
flucytosine had high geometric mean MICs of 2.07 and
3.7 μg mL−1, respectively. Most cases occurred in immuno-
competent patients (n = 10; 55.6 %) and CNS involvement
was the most common clinical presentation (n = 14; 77.8 %).
Three patients (16.7 %) showed sequelae, hyperreflexia, dys-
arthria, diadochokinesia, anosmia and upper limb weakness.
In conclusion, all infections were caused by C. deuterogattii
(AFLP6/VGII) and the majority of patients were immuno-
competent, with the CNS as the most affected site. All anti-
fungal drugs had high in vitro activity against C. deuterogattii
isolates, except fluconazole and flucytosine.

Introduction

Cryptococcosis is caused by basidiomycetous yeast species that
belong to the Cryptococcus gattii/Cryptococcus neoformans
species complexes, mainly affecting lungs and the central ner-
vous system (CNS) [1]. The taxonomy of the polyphyletic ge-
nus Cryptococcus has been thoroughly revised [2–4]. The two
varieties of C. neoformans were recognised as species, with
C. neoformans (=formerly C. neoformans variety grubii) and
C. deneoformans (=formerly C. neoformans variety
neoformans) [2]. The five C. gattii species complex genotypes
were raised to the species level as C. gattii sensu stricto
(AFLP4/VGI) , C. baci l l i sporus (AFLP5/VGIII) ,
C. deuterogattii (AFLP6/VGII), C. tetragattii (AFLP7/VGIV)
and C. decagattii (AFLP10/VGIV) [2]. Cryptococcus gattii s.s.

* F. Hagen
f.hagen@cwz.nl

1 Postgraduate Program in Microbiology, Parasitology and Pathology,
Biological Sciences, Department of Basic Pathology, Federal
University of Parana, Curitiba, PR, Brazil

2 Department of Medical Microbiology and Infectious Diseases,
Canisius-Wilhelmina Hospital, Weg door Jonkerbos 100, 6532
SZ Nijmegen, The Netherlands

3 Department of Internal Medicine, Federal University of Parana,
Curitiba, PR, Brazil

4 Department of Biological Science, State University of Parana/
Campus Paranagua, Paranagua, PR, Brazil

5 Federal University of Uberlandia, Uberlândia, MG, Brazil
6 Conselho Nacional de Desenvolvimento Científico e Tecnológico

(CNPq), Brasília, DF, Brazil
7 Laboratory of Mycology, Hospital de Clínicas, Federal University of

Parana, Curitiba, PR, Brazil
8 Department of Medical Microbiology, Radboudumc,

Nijmegen, The Netherlands
9 Communitarian Health Department, Hospital de Clínicas, Federal

University of Parana, Curitiba, PR, Brazil

Eur J Clin Microbiol Infect Dis (2016) 35:1803–1810
DOI 10.1007/s10096-016-2731-8

http://orcid.org/0000-0002-5622-1916
http://crossmark.crossref.org/dialog/?doi=10.1007/s10096-016-2731-8&domain=pdf


and C. deuterogattii are the main culprits of infections in im-
munocompetent hosts [2, 5], whereas C. bacillisporus,
C. tetragattii and C. decagattii are commonly associated with
immunocompromised hosts [2, 6–8].

Members of the C. gattii species complex have increasing-
ly been reported from temperate climate regions [5, 9–11].
Trading of tree products, transport of propagules through wa-
ter currents and via animals, insects and humans may be re-
sponsible for the world-wide spread [12, 13]. The first envi-
ronmental isolation of C. gattii s.l. was reported from
Eucalyptus camaldulensis [14]. Globally, C. gattii s.l. has
been found on a plethora of other species of trees [13, 15–19].

In Europe, C. gattii s.s. is the most frequently encoun-
tered species, while few cases of C. deuterogattii infection
are travel-related [20–22]. In Asia and Australia, C. gattii
s. s. and C. deuterogatti i are predominant [23].
Cryptococcus bacillisporus is rarely encountered outside
North and South America [21, 23, 24], while C. tetragattii
has mainly been isolated from Africa and India [8, 23].
On the American continent, C. deuterogattii is the pre-
dominant species among clinical and environmental iso-
la tes [23] . In Nor th America , C. deuterogat t i i
subgenotypes (AFLP6A/VGIIa, AFLP6B/VGIIb and
AFLP6C/VGIIc) were reported as the cause of expanding
outbreaks [5, 9, 10, 25]. A recent study showed that, by
using coalescence gene genealogy analysis, the ancestral
lineage of C. deuterogattii originated from South
America, specifically from the Brazilian Amazon
Rainforest, where mating-types a and α were reported in
nearly equal rates, providing evidence of recombination
within the Brazilian C. deuterogattii population [25].

Cryptococcus gattii s.l. is less susceptible to common anti-
fungal compounds than C. neoformans; fluconazole and
flucytosine show lower in vi t ro act ivi ty against
C. deuterogattii strains [26–28]. In addition, heteroresistance
to azoles in the C. neoformans/C. gattii species complexes is
an intrinsic mechanism that may contribute to relapse of cryp-
tococcosis during maintenance therapy [29, 30].

In the present study, our aim was to compare the clinical
outcome with molecular and antifungal susceptibility data of
Brazilian C. gattii s.l. isolates.

Materials and methods

Isolates and clinical data

Eighteen clinical C. gattii s.l. isolates were isolated at the
Hospital de Clínicas, Curitiba, PR, Brazil between 1999 and
2015. A single colony was taken for further microbiological
and molecular characterisation. Medical records were
accessed to collect clinical information.

Molecular characterisation

Extraction of genomic DNA, mating-type determination, am-
plified fragment length polymorphism (AFLP) fingerprinting
and multi-locus sequence typing (MLST) were performed as
described previously [20–22, 31].

Sequences were compared with those deposited in the
MLST database (http://mlst.mycologylab.org). The
alignment was performed with the online MAFFT alignment
module [32] and visual inspection by MEGA version 7 [33],
followed by a 1000× bootstrapped maximum likelihood
analysis on an MLST dataset that comprises all known C.
deuterogattii sequence types [8].

Antifungal susceptibility testing

Broth microdilution testing [34] included amphotericin B
(Bristol Myers Squibb, Munich, Germany), fluconazole
(Pfizer, Sandwich, United Kingdom), itraconazole (Janssen
Pharmaceutica, Beerse, Belgium), voriconazole (Pfizer),
posaconazole (Merck, Kenilworth, NJ, USA), isavuconazole
(Basilea Pharmaceutica, Basel, Switzerland) and flucytosine
(ICN Pharmaceuticals, Zoetermeer, The Netherlands). The
concentration ranges were 0.016–16 μg mL−1 for
amphotericin B, itraconazole, voriconazole, posaconazole
and isavuconazole, and 0.062–64 μg mL−1 for fluconazole
and flucytosine. Cryptococcus isolates were cultured onto
Sabouraud dextrose agar for 48 h at 30 °C and the inocula
were adjusted to 1 × 103 CFU/mL in 0.9 % NaCl to perform
the test. The microdilution plates were incubated at 35 °C for
72 h and the minimal inhibitory concentrations (MICs) were
defined as the lowest concentration that produced complete
growth inhibition for amphotericin B and prominent decrease
of growth (50 %) for other antifungal agents when compared
with the drug-free growth control. Candida parapsilosis
ATCC22019 and C. krusei ATCC6258 were used as quality
controls [34]. The interpretation of MIC values was based on
the epidemiological cut-off value (ECV) [26–28]. MIC50 and
MIC90 values were obtained by ordering the data for each
antifungal in ascending order and selecting the median and
90th quantile, respectively. Geometric mean MICs were cal-
culated using Microsoft Office Excel 2010 software
(Microsoft, Redmond, WA, USA). When the MIC was higher
or less than the dilutions tested, 1 log2 dilution higher or 1 log2
dilution lower was used to calculate the geometric mean.

Results

Molecular characterisation

Mating-type analysis showed that 14 isolates were mating-type
α and four were type a. MLST analysis showed that all 18
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isolates clustered with the C. deuterogattii AFLP6/VGII refer-
ence strain WM178 (Fig. 1). Maximum likelihood analysis
showed that most isolates were related with other Brazilian
isolates, while isolate UFU986 was genetically indistinguish-
able from the outbreak genotype AFLP6A/VGIIa (Fig. 1).
MLST sequences were deposited in GenBank with the acces-
sion numbers KU642658–KU642671, KU642673–KU642676
(CAP59), KU642703–KU642716, KU642718–KU642721
(GPD1), KU642748–KU642761, KU642763–KU642766

(IGS1), KU642793–KU642806, KU642808–KU642811
(LAC1), KU642838–KU642851, KU642853–KU642856
(PLB1), KU642883–KU642896, KU642898–KU642901
(SOD1) and KU642928–KU642938, KU642940–KU652944,
KU642946, KU642966 (URA5). By AFLP genotyping analy-
sis, four isolates clustered together with the C. deuterogattii
AFLP6/VGII reference strain WM178, while the remaining
isolates clustered in two distinct clades due to the presence of
several dominant markers (Fig. 2).

Fig. 1 Phylogenetic 1000× bootstrapped maximum likelihood analysis
of Cryptococcus deuterogattii isolates based on the ISHAM consensus
MLST dataset. Cryptococcus gattii sensu stricto (WM179),
C. bacillisporus (WM161), C. tetragattii (WM779) and C. decagattii

(IHEM14941) were used as an outgroup. Bold red, isolates from the
present study; orange, other Brazilian isolates; blue, other Latin
American isolates; black, global isolates; *, reference strains
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Antifungal susceptibility profiles

The MIC values are presented in Table 1. Itraconazole,
vor iconazole , posaconazole , i savuconazole and
ampho t e r i c i n B showed h igh ac t i v i t y aga ins t
C. deuterogattii. Fluconazole and flucytosine had the
highest geometric mean MICs of 2.07 and 3.7 μg mL−1,
respectively.

Clinical data

The majority of isolates were recovered from immunocompe-
tent patients (n = 10; 55.6 %). Fourteen (77.8 %) had CNS
involvement and four (22.2 %) of them were HIV-positive.
Furthermore, six patients (33.3 %) had lung infection, including
five (27.7 %) with associated CNS symptoms, while two pa-
tients (11.1 %) had cutaneous cryptococcosis. Three (16.7 %)

Table 1 Minimal inhibitory
concentrations (MICs) of all the
Cryptococcus deuterogattii iso-
lates studied

Isolate code Minimal inhibitory concentration (μg mL−1)

AMB FLC ITC VOR POS ISA 5FC

G3 0.063 0.5 0.063 0.063 0.063 0.031 4

G4 0.125 8 0.25 0.25 0.25 0.25 8

G6 0.031 8 0.125 0.125 0.125 0.063 2

G8 0.031 2 0.125 0.063 0.063 0.063 4

G10 0.125 4 0.125 0.125 0.125 0.125 8

G11 0.063 0.5 0.031 0.031 0.031 <0.016 1

G12 0.063 0.5 0.063 0.063 0.063 0.063 4

G13 0.031 4 0.063 0.063 0.063 0.063 2

G14 0.063 4 0.125 0.125 0.125 0.125 4

G15 0.125 4 0.125 0.125 0.125 0.125 4

G18 0.125 2 0.125 0.063 0.063 0.063 4

G19 0.125 16 0.25 0.25 0.25 0.25 4

N377 0.125 0.5 0.063 0.063 0.063 0.031 8

UFU303 0.125 8 0.125 0.125 0.125 0.063 4

UFU489 0.063 0.5 0.063 0.063 0.063 0.031 2

UFU675 0.125 0.5 0.063 0.063 0.063 0.063 4

UFU986 0.063 4 0.25 0.125 0.125 0.125 4

UFU993 0.125 1 0.063 0.063 0.063 0.063 4

MIC range 0.063–
0.25

0.5–16 0.031–
0.25

0.031–
0.25

0.031–
0.25

<0.016–
0.25

1–8

MIC50 0.063 2 0.125 0.063 0.063 0.063 4

MIC90 0.125 8 0.25 0.125 0.125 0.125 8

Geometric
mean

0.0788 2.0785 0.0994 0.0853 0.0853 0.0651 3.7034

AMB, amphotericin B; FLC, fluconazole; ITC, itraconazole; VOR, voriconazole; POS, posaconazole; ISA,
isavuconazole; 5FC, flucytosine

Fig. 2 Amplified fragment length polymorphism (AFLP) fingerprint
patterns of 18 Brazilian C. deuterogattii (AFLP6/VGII) isolates, includ-
ing clinical and epidemiological characteristics of the patients. WM178
(C. deuterogattii AFLP6/VGII) serves as a reference strain; AMB,

amphotericin B; FLC, fluconazole; ITC, itraconazole; ISA,
isavuconazole; treatment doses, AMB (mg/kg/day) and FLC, ITC and
ISA (mg/day); –, data not available; F, female; M, male; CNS, central
nervous system. PR, Paraná State; MG, Minas Gerais State
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developed neurological sequelae after the cryptococcal infec-
tion, one left-sided hyperreflexia, dysarthria and
diadochokinesia, one had motor sequelae in the upper limbs
and one developed anosmia. Nine patients (50 %) were treated
with a combination of amphotericin B and fluconazole, one
received amphotericin B and itraconazole, one amphotericin B
and two were treated with isavuconazole. Two patients received
liposomal amphotericin B after development of nephrotoxicity.
Treatment dosing and outcome data are summarised in Fig. 2.

Discussion

Infections caused bymembers of theC. gattii species complex
have a wide spectrum of clinical presentations, including
pneumonia, meningoencephalitis, skin lesions and pulmonary
and cerebral cryptococcoma formation, and surgical interven-
tion may be necessary in certain cases [6, 35–38]. CNS dis-
ease is associated with neurological sequelae such as visual
impairment, deafness, limb weakness and dysphasia [39]. We
observed hyperreflexia, dysarthria, diadochokinesia, anosmia
and upper limb weakness. Some studies reported that 60–
90% of patients withC. gattii species complex cryptococcosis
have pulmonary symptoms with or without CNS involvement
[10, 39, 40]. These data differ from this study, where the
majority of patients (n = 14; 77.8 %) had CNS disease, five
(27.7 %) also had lung involvement and a solitary patient
(5.5 %) had only a lung infection.

All isolates were found to be C. deuterogattii, which is in
concordance with the literature data, as it is predominant
among clinical, veterinary and environmental isolates in
Brazil [18, 41–50]. Cryptococcus gattii s.s. is more often re-
ported in southern Brazil [51, 52] and the southeastern region
[52, 53], and C. bacillisporus in the southeastern and north-
eastern part [52]. Despite increasing epidemiological surveys
in Brazil, information about the species distribution are
fragmented and underrepresented from several Brazilian
states. This is mainly due to the lack of proper diagnosis and
the absence of an efficient reporting system [43].

We found that four out of 18 C. deuterogattii were mating-
type a. The presence of both mating types within the South
American C. deuterogattii population demonstrates that recom-
bination events are a common phenomenon, causing high ge-
netic diversity compared to other localities [25]. Globally, the
majority of clinical isolates were found to be mating-type α,
and with respect to C. deuterogattii, this is also the case for the
ongoing outbreaks in North America [6, 25]. Recently, the first
Australian C. deuterogattii mating-type a isolate was reported
[54]. The absence or low number of mating-type a isolates
within study populations suggests that C. deuterogattii is either
clonal or reproduces by same-sex mating [55].

Antifungal susceptibility testing showed that amphotericin
B had high activity, which is in concordance with other studies

[27, 48, 56–58]. Fluconazole had the lowest activity among
the triazoles tested, with an MIC range of 0.5–16 μg mL−1.
Nevertheless, all MIC values were in the susceptible range
[26, 59]. Hagen et al. [58] observed lower fluconazole activity
against all C. gattii species complex members, with European
and North American isolates showing higher MIC values
(0.125 to >64 μg mL−1 and 0.5–64 μg mL−1, respectively).
A recent Brazilian study reported highMICs (2–64 μg mL−1),
with a geometric mean of 6.08 μg mL−1 for C. deuterogattii
[60]. We also observed low MICs of itraconazole and new
triazoles [26, 27, 56, 58].

Isavuconazole is a second-generation triazole antifungal,
with a broad spectrum of activity against many important fun-
gal pathogens [61]. Antifungal susceptibility tests have shown
potent in vitro activity against members of C. neoformans/
C. gattii species complexes, even for those that are less suscep-
tible to fluconazole [28, 62, 63]. We observed that
isavuconazole had excellent activity against C. deuterogattii,
showing the lowest geometric mean MIC (0.065 μg mL−1)
among the antifungal compounds tested. Two immunocompe-
tent female patients were included in a multi-centre internation-
al clinical trial with isavuconazole (ClinicalTrials.gov,
NCT00634049) [64]. The first was 20 years old and working
in a supermarket, where she had continuous contact with wood,
fruits and vegetables. After the diagnosis, she received
amphotericin B deoxycholate therapy for 16 days, but without
response. The therapy was switched to isavuconazole, resulting
in a complete clinical, radiological and microbiological re-
sponse after 6 months of treatment. Anosmia was observed as
a sequel. The second patient was a pharmacist, who received
isavuconazole as primary therapy for a total of 176 days,
resulting in a complete response without any sequelae.

Flucytosine had the lowest in vitro activity, showing the
highest geometric mean MIC (3.7 μg mL−1) among the anti-
fungals tested, but the MICs for all isolates were within the
wild-type range. It is known that resistance to flucytosine is
rare [58, 65], but the use as monotherapy could lead to ac-
quired resistance [66]. There are studies showing less suscep-
tibility to flucytosine in Cryptococcus [58, 67, 68], but since
flucytosine is not registered in Brazil, we supposed that the
patients did not receive previous treatment with this drug.
Higher MICs of flucytosine were also reported in other
Brazilian studies [45, 48, 53, 60].

In conclusion, the majority of cases occurred in immuno-
competent patients, with the CNS as the most affected site. All
infections were caused byC. deuterogattii (AFLP6/VGII) and
all antifungal drugs had in vitro activity against this species,
except fluconazole and flucytosine.
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