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Abstract The research on host–pathogen interactions is an
ever-emerging and evolving field. Every other day a new
pathogen gets discovered, along with comes the challenge
of its prevention and cure. As the intelligent human always
vies for prevention, which is better than cure, understand-
ing the mechanisms of host–pathogen interactions gets prior
importance. There are many mechanisms involved from the
pathogen as well as the host sides while an interaction hap-
pens. It is a vis-a-vis fight of the counter genes and proteins
from both sides. Who wins depends on whether a host gets
an infection or not. Moreover, a higher level of complex-
ity arises when the pathogens evolve and become resistant
to a host’s defense mechanisms. Such pathogens pose seri-
ous challenges for treatment. The entire human population
is in danger of such long-lasting persistent infections. Some
of these infections even increase the rate of mortality.
Hence there is an immediate emergency to understand how
the pathogens interact with their host for successful inva-
sion. It may lead to discovery of appropriate preventive
measures, and the development of rational therapeutic mea-
sures and medication against such infections and diseases.
This review, a state-of-the-art updated scenario of host–
pathogen interaction research, has been done by keeping in
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mind this urgency. It covers the biological and computa-
tional aspects of host–pathogen interactions, classification
of the methods by which the pathogens interact with their
hosts, different machine learning techniques for prediction
of host–pathogen interactions, and future scopes of this
research field.
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Introduction

The term ‘host–pathogen interaction’ refers to the ways in
which a pathogen (virus, bacteria, prion, fungus, and viroid)
interacts with its host. Pathogens adapt to the changes, and
find alternative ways to survive and infect a host. They
are infectious agents that cause diseases in a host body,
when the host immune system fails against them. Ques-
tions like how the pathogens function, how their entry point
into the host is facilitated through the biological barriers,
and how they survive inside a host that is often under
treatment or immunized for the same pathogen, can be
answered by exploring host–pathogen interactions. Host–
pathogen interactions can be described on the population
level (virus infections in a human population), on the organ-
ismal level (pathogens infecting host), or on the molecular
level (pathogen protein binding to a receptor on a human
cell). However, before stepping into methodological details
of host–pathogen interaction processes, a brief glimpse into
the history of this research field is included here to sum up
the how(s) and why(s) of recent advancements of this field.

Some of the earliest research works in the domain of
host–pathogen interactions are (i) study of host–pathogen
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interaction in mouse typhoid caused by Salmonella
typhimurium [141], (ii) genetic study of physiology of par-
asitism of the corn rust pathogen Puccinia sorghi [31],
(iii) a correlation study of α-galactosidase production and
host–pathogen interaction between Phaseolus vulgaris and
Colletotrichum lindemuthianurn [42], (iv) study of ultra-
structural aspects of a host–pathogen relationship of a
deuteromycetes fungus, Pyrenochaeta terrestris with two
Allium cepa (onion) varieties with the help of electron
microscopy [56], (v) fine structure study of principal infec-
tion procedure during infection of Barley by Erysiphe
graminis [40], (vi) a study on proteins which obstructs the
action of the polygalacturonases (polygalaicturonide hydro-
lases, EC 3.2.1.15) released by the fungal plant pathogens
Fusarium oxysporum, Colletotrichum lindemuthianum, and
Sclerotium rolfsii. These proteins are extracted from the cell
walls of Red Kidney bean hypocotyls, tomato stems, and
suspension-cultured sycamore cells [1], (vii) a study on pro-
teins secreted by plant pathogens, which impedes enzymes
of the host having the ability to attack the pathogen. The
study is conducted on an interaction system of a fungal
pathogen (Colletotrichum lindemuthianum) and its host, the
French bean (Phaseolus vulgaris) [2], (viii) a study on a
single plant protein that efficiently hinders endopolygalac-
turonases secreted by Aspergillus niger and Colletotrichum
lindemuthianum [46], (ix) a molecular basis study to show-
case mutation of Xanthomonas campestris to overcome
resistance in pepper (Capsicum annuum) [59], (x) a study
on stress and immunological response in host–pathogen
interactions [90].

Some recent research works have focused on (i) the basic
notion of virulence and pathogenicity, which defines and
suggests a classification system for microbial pathogens
based on their capacity to cause damage as a consequence
of the host’s immune response [17], (ii) model organisms
for host–pathogen interactions, i.e., C. elegans [70], D.
melanogaster [91, 131] and zebrafish [53, 127] among oth-
ers, (iii) molecular cross-talk of host–pathogen interactions
where Type III secretion system is mentioned [108], (iv)
novel studies involving epigenetics1 [49], metallobiology
[11], quantitative temporal viromics2 [134], heterogeneity
in same host tissue [14], and computational systems biology
[36] of host–pathogen interactions.

All these investigations indirectly show us the trend
of development of the host–pathogen interactions research
field. The field has started with sporadic research works

1A procedure through which genotypes give rise to phenotypes during
development due to changes in underlying DNA sequences, i.e., his-
tone modifications, DNA methylation, DNA silencing via noncoding
RNAs and chromatin remodeling proteins.
2Temporal alterations in host and viral proteins throughout the course
of a productive infection.

of a pathogen and its interaction with a host. The earli-
est research has been done on host–pathogen interactions
with respect to environmental factors, like light, tempera-
ture, season, and pathogen/host population among others.
Later some organisms, like C. elegans and D. melanogaster
have been found as model organisms to study the pathogen
behavior of other complex hosts (human beings) due to
their easy body plan, known genome structure and short life
cycle. Gradually, certain proteins and then protein clusters
have been marked for taking part in host–pathogen interac-
tions. Moreover, definite classification has been found for
the mechanism of host–pathogen interactions at the advent
of recent developments in imaging and molecular biology
techniques.

Moreover, some research works have defined and have
given direction to the host–pathogen interactions research
field. Discovery of distinct secretion systems [30, 47, 68,
100, 101, 135] has provided the basic background of host–
pathogen interaction research. The concerned studies have
spanned from genome locus [68] to biochemical and genetic
evidence [88]. With discovery of PPI prediction methods
[10], the chance of finding host–pathogen protein pairs and
their interactions has become more prominent and such
studies have given a different direction to the research field.
Then methods have been developed for the machine learn-
ing based in silico prediction of secretion system associated
proteins [4]. There are also a couple of newly proposed
methods [54, 84], which provide new glimmer of hope to
the research field in controlling pathogenesis in a host as
described below.

– Secretion systems Type I [135], Type II [30], Type
III [47] and Type V [100] have been discovered in
1980s, which have defined the base for host–pathogen
interaction research.

– Kuldau et al. [68] have predicted 11 ORFs from virB
locus in 1990. Based on a hydropathy plot, they have
analyzed that nine of them encode proteins which may
interact with membranes and may form a membrane
pore or channel to mediate exit of the T-DNA copy.
This is the first indirect indication of a distinct secre-
tion system, later known as Type IV Secretion system
(T4SS).

– Pukatzki et al. have functionally defined T6SS in 2006
[101].

– Mougous et al. in 2006 have provided biochemical
and genetic evidence that a virulence-associated genetic
locus of P. aeruginosa, termed as HSI-I, encodes a
protein secretion apparatus (T6SS) [88].

– Machine learning-based prediction of PPIs have been
done by Bock et al. in 2001 [10]. They have used
Support Vector Machine (SVM) to train and predict
interactions based on primary structure and related
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physicochemical properties. This work has provided a
shift in research direction from genes to their protein
counter parts and their nature of interaction.

– First ever machine learning-based prediction of Type
III secretion system associated proteins have been done
by Arnold et al. in 2009 by analyzing the amino
acid composition and secondary structure composition
of a few experimentally verified effector proteins at
N-terminal [4].

– A few new studies and methods have proposed new
avenues of future host–pathogen interaction research,
i.e., a new way of studying host–pathogen interaction
by dendritic cell subtypes [84] and chemoproteomic
profiling of host and pathogen enzymes for finding can-
didates (proteases) to disrupt pathogenic mechanisms
which have often boosted the host’s defense mecha-
nisms directly or indirectly [54].

The present review tries to encompass the in silico predic-
tion of host–pathogen interactions by machine learning and
the related aspects. It has been organized into dedicated
sections of classification of host–pathogen interactions,
availability of host–pathogen interaction data, prediction
of host–pathogen interaction domains, image processing-
based research techniques, and conclusive remarks. There
are several substrates and pathways whereby pathogens can
invade a host. The human body has its own natural defense
mechanism against some of the common pathogens in the
form of an immune system that acts against these pathogens.
Pathogens have the capability to adhere to host tissues, to
evade host defenses, and to invade host cells. However,
deeper understanding has revealed that each pathogen has its
own variation of these themes [107]. Host–pathogen interac-
tions take place between a host and a pathogen through the
protein(s) and gene(s), and by disrupting normal functioning
of pathway(s), forming biofilm(s), inhibiting macrophage
activity and by other methods. In this review, we have
briefly discussed the various probable factors that directly
or indirectly contribute to host–pathogen interactions.
Pathogens can either attack a host at the gene level by
emitting RNA, or they can release proteins that could lead
to pathogenicity, or they can inhibit the mechanism of
macrophage. Some pathogens utilize the components of
a host system to survive in the host. These components
are called host factors. In a few cases, some factors of a
pathogen can initiate the autophagy mechanism, which acts
in favor of the host. The classification of the host–pathogen
interactions is based on traditional pathogen invasion into
host.

The review starts with categorization (Fig. 1) of
pathogens, and makes a comprehensive list of diseases
caused by them. The following section discusses the clas-
sification of host–pathogen interactions based on different

VIRUS:

Hepatitis, SARS, Herpes, 
Mono, AIDS, HIV, Warts, 
Influenza, Chicken pox, 
Cold sores, Small pox, 
Gold germs, Bird flu 
H5N1, Measles, 
Norovirus, Tetanus, 
Yellow fever, Typhoid, 
Ebola, Hemorrhagic fever

BACTERIA:

Tuberculosis, 
Pneumonia, Anthrax, 
Urinary tract, Infection, 
Peritonitis, E. Coli, Strep 
throat, Typhoid, 
Stomach ulcers, 
Salmonella, Tularemia, 
Morgellons, Lyme 
disease

FUNGI:

Ringworm, Yeast 
infection, Advanced 
pneumonia, 
Histoplasmosis, 
Candidiasis, 
Cryptococcus

PROTOZOA:

Malaria, Giardiasis, Changas 
disease, Cryptosporidiosis

PARASITES:

Round worm, Tape worm, 
Morgellons,Triginosis 

PATHOGENS 

Fig. 1 Classification of some common pathogens and a list of diseases
caused by them

biology-based reasoning. Then, the widely used in silico
prediction methods in the domain of host–pathogen inter-
actions are described. Moreover, an extensive list of the
online repositories is given. The review concludes with a
brief discussion that includes the merits and demerits of this
research field in general, a few scopes for future research
and concluding remarks.

Classification of host–pathogen interactions

The components of a host–pathogen interaction can be
broadly classified into four stages, i.e., invasion of host
through primary barriers, evasion of host defenses by
pathogens, pathogen replication in host, and a host’s
immunological capability to control/eliminate the pathogen.
A pathogen can invade a host only after breaching the pri-
mary host defenses. Pathogens contain virulence factors
that promote and cause disease. The greater the virulence,
the more likely the disease will occur. We have classified
the host–pathogen interactions according to these stages. A
summary of the methods discussed in this review has been

Invasion of host 
through breach of 
primary barriers

Evasion of host 
defenses by 
pathogens

Pathogen 
replication in 
host

A host’s 
Immunological 
capability to 
control/elimin
ate the 
pathogen

Fig. 2 Classification of host–pathogen interactions



1584 Eur J Clin Microbiol Infect Dis (2016) 35:1581–1599

diagrammatically represented in Fig. 2. However, in silico
prediction methods used for detection of such interactions
have been described in the Section “Methods for predic-
tion of host–pathogen interactions”. The stages mentioned
below are overlapping in nature. They do not have a clear
boundary between them. The in silico prediction methods
described later cannot be uniquely associated to only one
of the stages. Their applicability spans over many or all the
stages of host–pathogen interactions.

Invasion of host through breach of primary barriers

One of the main ways in which pathogens invade the host is
via protein secretion. Pathogens, particularly Gram-negative
bacteria, which cause pathogenesis in host, consist of secre-
tion systems. These secretion systems release proteins,
called effectors, into the body of the host when they come
in contact with the host. There are at least six specialized
secretion systems in Gram-negative bacteria. Type I, Type
II, Type III, Type IV, Type V, and Type VI are the prominent
ones based on their mechanisms of host infection. Details
of these mechanisms can be obtained from Costa et al. [27].
Numerous secreted proteins are crucial in bacterial patho-
genesis. We have described a few of them here, i.e., toxins,
urease, and multivalent adhesion molecules.

Toxins are substances created by plants and animals that
are poisonous to humans. Most toxins that cause problems
in humans come from germs such as bacteria. Toxins can
be small molecules, peptides, or proteins that are capable
of causing disease on contact with or absorption by body
tissues interacting with biological macromolecules such as
enzymes or cellular receptors. These toxins, once in the
body of the host, intervene with the normal functioning of
the metabolism of host. Minimized toxin expression in a
pathogen has a lesser effect on the stimulation of host’s
TCR signaling pathway at the time of attack than that
with higher toxin expression. It has been observed that
viruses interact with different proteins of individual path-
ways temporally [117]. The molecules that are secreted by
Gram-negative pathogens lead to damage of the host cells.
The vesicle released from the enclosure of the growing bac-
teria serves as a container for the proteins and lipids of
the Gram-negative bacteria. This suggests the importance of
vesicle-mediated toxin delivery for the onset of infection in
the host.

Effector proteins are secreted by pathogenic bacteria for
their entry into the host. Effector proteins help a pathogen
for invading host tissue, suppressing the host’s immune
system, and often help the pathogen in its survival. Effec-
tor proteins are crucial for virulence. For example, in
Yersinia pestis (the causative agent of plague), loss of the
T3SS has rendered the bacteria completely avirulent [80].
Naive Bayes classifier and support vector machine have

already been applied to detect effector proteins of T3SS
[4, 132]. More details regarding the methodology are given
in the Section “Methods for prediction of host–pathogen
interactions”.

Urease (an enzyme) plays an important role in Mtb–
host interaction [23]. Urease is present in many species
of mycobacterium, and its presence/absence is frequently
used in the speciation of mycobacteria. Urease has been
considered to be a virulence factor for several pathogenic
microorganisms. Generation of ammonia by urease of uri-
nary pathogens, such as P. mirabilis, has contributed to its
pathogenesis due to its toxicity to renal epithelium, partici-
pation in complement inactivation, and promotion of urinary
stone formation [13]. Urease of H. pylori alkalinizes the
bacterial micro-environment in the stomach and is toxic to
stomach epithelium [119]. In the case of Mtb, urea is read-
ily available to the bacteria in both its intracellular and
extracellular locations within the host.

The multivalent adhesion molecule (MAM) is responsi-
ble for establishing high-affinity binding to host cells during
early stages of infection [63]. MAM7 connects to a host
via protein–lipid (phosphatidic acid) and protein–protein
(fibronectin) interactions. MAM7 has been found on the
outer membrane of the Gram-negative pathogens, which
contributes to its virulence.

Evasion of host defenses by pathogens

In order to survive inside the host, the pathogens need to
avoid the host defense mechanism. Mycobacterium tubercu-
losis (Mtb) showcases that it actively transcribes a number
of genes involved in fortification and evasion from a host
system [103]. Assessment of the genome of 58 strains of
Staphylococcus aureus reveals that all the immune evasive
proteins are present in all the strains but not all the surface
proteins [81]. Remarkably, four strains have surface and
immune evasion genes similar to human strain. On the other
hand, the putative targets of these proteins vary in different
hosts, which proposes that these proteins are not crucial for
virulence. Signaling for anti-inflammation by glycolipids
and host–system interaction may be considered a method of
Mycobacteria to evade the host or may be playing a vital
role in preventing extreme inflammatory response [128].

Pathogens often affect the essential pathways of their
hosts with the aim of evading the host defenses. The NF-κB
family of transcription factors help in the development of
APCs (antigen-presenting cells) and the lymphocyte [124].
Once the host is compromised, the NF-κB pathway gets
activated. HIV-1 mostly depends on its host for survival, as
it has a few genes of its own. An integrated study of HIV-1
and human signal transduction pathways have been carried
out to infer that most of these pathways may get effected
by HIV virus during its life cycle [7]. It has assessed and
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analyzed all possible paths (perturbed and unperturbed)
starting from one protein (start point) terminating into
another (end point).

Human proteins potentially targeted by EBV (Epstein–
Barr virus) tend to be hubs in the human interactome.
This is consistent with the hypothesis that hub protein tar-
geting is an effective mechanism for viruses to convert
pathways for their use [16]. Bacterial and viral pathogens
are more inclined to interact with hub proteins, and the pro-
teins that are central to multiple pathways in the network
[38]. Certain cellular mechanisms, like cell cycle regulation
and nuclear transport, participate in these interactions with
a different set of pathogens. A study has identified 3073
human-B. anthracis, 1383 human-F. tularensis, and 4059
human-Y. pestis PPIs (protein–protein interactions) [39]. As
suggested by Dyer et al. [38], these PPIs have occurred
among those hub and bottleneck proteins. The extracellu-
lar hydrolytic enzymes, especially the aspartyl proteinases
(Saps) secreted by C. albicans, are major factors of its
pathogenicity [92]. Protein Chaperon 60 and 60.1 have a
higher impact on activation of the cytokines than the pro-
tein Chaperon 60.2 [75]. In Staphylococcus aureus, proteins
EsxA and EsxB act as virulent factors to enforce pathogene-
sis [15]. Mutants that do not secrete these proteins have been
observed for failing to enforce strong pathogenesis. Among
two closely related families of proteins, PE and PE PGRS,
PE PGRS of Mtb activates a considerable humoral immune
response but not PE [29]. Further study suggests that unlike
PE, certain PE PGRS genes are expressed during infection
and antibody response. In case of Enterovirus, 71 genes
out of 699 get differentially expressed significantly dur-
ing infection [77]. Lack of the flagella gene in Salmonella
typhimurium contributes to its virulence. Addition of flag-
ella gene increases the cytotoxicity. However, it does not
increase the production of IL-6 (interleuken-6) [96].

One of the crucial host defenses is the macrophage.
Hence, macrophage inhibition is a factor using which the
pathogen evades the host immune mechanism. Macrophage
activation happens due to multiple components, i.e., gene(s)
encoding receptor(s), signal transduction molecule(s), tran-
scription factor(s), and bacterial component(s) that activate
Toll-like receptor(s) (lipopolysaccharide, muramyl dipep-
tide, lipoteichoic acid, and heat shock proteins) [94] among
others. Pathogens attempt to survive in the host by pre-
venting the macrophages from acting on them. It has
been found that pathogens disrupt the enzymatic activity
in activated macrophages by disrupting the actin filament
network [50].

It has been identified that falsatin is an endogenous
protease inhibitor of Plasmodium falciparum. Analysis
of inhibition of normal functionality of macrophages to
engulf pathogens and ingest killed parasites due to the
functioning of ornithine decarboxylase has been done by

Nairz et al. [93]. Due to pathogen-specific responses,
interleuken-12 production is inhibited for Mtb, hence allow-
ing the host to fight against the pathogen. It has been found
that 26 to 37 proteins of HIV-1 are associated with MDM
(monocyte-derived macrophages) derived from HIV [22].
Inhibition by Mtb can be avoided with the help of IFN-γ
and transfection of LRG-47 [52]. It has been found that Mtb
residing in macrophage switches to anaerobic growth [114]
to evade host defense for a longer period of time.

The crosstalk of host–pathogen interactions is often gov-
erned by miRNAs [48, 111, 112]. The small RNAs, like
siRNAs and shRNAs, also play a vital role in host–pathogen
interactions. Konig et al. [62] have studied the associ-
ation of siRNAs with host–pathogen interactions. They
have explored it by combining genome-wide siRNA anal-
ysis along with the knowledge from human interactome
databases. Pathogens have short linear motifs (SLiM) that
have high similarity with host SLiMs. Motif mimicry is
used by pathogens to rewire host signaling pathways by co-
opting SLiM-mediated protein interactions to affect the host
systems [130].

Pneumolysin (an enzyme) is a key virulence factor [78].
It activates multiple genes and signal transduction pathways
in eukaryotes. Cytolytic effect of Pneumolysin contributes
to lung injury and neural damage. It sometimes induces
apoptosis in neurons and other cells. It can also trigger
host-mediated apoptosis in macrophages, thus magnifying
extermination of pathogens.

Pathogen replication in host

For surviving inside a host, pathogens have multiple ways to
facilitate their growth by speedy replication. First of all, they
need a few genes and proteins to survive effectively in the
host, while many more genes and proteins are required for
their survival outside the host. A study on the metabolic net-
work of the pathogen Salmonella typhimurium has revealed
1083 genes catalyzing 1087 metabolic and transport reac-
tions. This suggests that a minimal set of potent metabolic
pathways within Salmonella typhimurium is required for its
favorable replication of Salmonella typhimurium within the
host [104]. Erythrocytic malaria parasites need proteases for
a number of their cellular processes [98] in order to survive
in the host.

Pathogens have evolved strategies to promote their sur-
vival by performing hijacking of the host cells they infect.
Viruses implant their DNA sequence into the normal
sequence of these hosts in the hope of their better sur-
vival [105] inside the hosts. A genome of the strain of Mtb,
H37Rv, made up of 4000 genes comprising 4,411,529 base
pairs, has a high guanine and cytosine content [24]. In this
genome, 194 genes are required for the growth of Mtb [110].
A large number of these genes is unique to mycobacteria
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and its closely related species. This leads to the fact that
the mechanism of infection of Mtb is different from other
pathogenic species.

Some pathogens even respond to more than one micro-
environment for their replication and survival. The genes
responsible for Snm (secretion in mycobacterium) protein
secretion in a mutation of Mtb, which is Mycobacterium
smegmatis, are homologs of their Mtb counterpart [26].
This suggests that some strains may have similar secre-
tion mechanisms. Four essential gene products (Sm3866,
Sm3869, Sm3882c, and Sm3883c) are needed for Snm
secretion. Mtb exists in various metabolic states. This fact
indicates that it may be responsive to more than one
micro-environment [45].

The genome of Mycobacterium tuberculosis possesses a
large family of Ser/Thr protein kinases (STPKs). STPKs
have been found to play an important role in cell divi-
sion and cell envelope biosynthesis [87]. The outer mem-
brane of the bacteria facilitates the interaction between a
host and a pathogen [67]. C. albicans have the capabil-
ity to colonize and infect the majority of the tissues of
the human host, which indicates that it can have function-
ally distinct proteinases (enzymes performing proteolysis)
so as to have enough flexibility to multiply and survive in
the host.

Sometimes a host itself unknowingly facilitates/inhibits
the survival of its pathogens. These facilities are referred
to as the host factors. These factors help in pathogen repli-
cation, transcription, integration, growth, 198 propagation,
pathogen entry, and host–pathogen interactions among oth-
ers. A set of 295 cellular cofactors (of host) are essential for
replication of influenza virus in the early stage [61]. Among
these cofactors, 181 are highly significant in host–pathogen
interactions, 219 help in efficient influenza virus growth, 23
have role in vital entry, and ten are required for post-entry
steps of virus replication. Small molecule inhibitors of mul-
tiple factors, including vATPase and CAMK2B, go against
influenza virus replication. A set of 116 Dengue Virus Host
Factors (DVHF) are needed for the propagation of DENV-2
(dengue virus type 2) [115]. Among 82 human homologs of
dipteran DVHF, 42 have been identified to be human DVHF.
A set of 311 host factors have been found to be responsible
for the growth of HIV-1 [143]. Considering HIV depen-
dency factors obtained previously in [12, 143], it is observed
that the cardinality of the set of intersection is 311 host fac-
tors. Six newly identified host factors are AKT1, PRKAA1,
CD97, NEIL3, BMP2k, and SERPINB6 [143]. A set of
250 such factors in HIV has been identified [12]. Rab6 and
Vps53 play a role in viral entry, and TNPO3 is important
for viral integration and Med28 for viral transcription. HDF
genes show a stronger presence in the immune cell, thus
allowing the viruses to evolve in the host cells that perform
the life-cycle functions needed for them to survive. A set

of 213 host factors and 11 HIV-encoded proteins have been
found to be responsible for HIV-1 replication [12]. Among
them, a few proteins help in regulation of ubiquitin conjuga-
tion, DNA damage response, proteolysis, and RNA splicing.
Forty new factors play a vital role in the process of initiation
and/or kinetics of DNA synthesis. Fifteen proteins with dif-
ferent functions have been found to play a significant role in
nuclear import or viral DNA integration.

Pathogens like M. laprae cannot survive independently.
Hence, they convert the glial cells of a host into progeni-
tor cells and using these progenitor cells, it can survive and
spread infection inside the host [55]. It alters the genetic
structure of the adult Schwann cells to form the progenitor
cells. However, it is still unknown how long M. laprae can
survive in the de-differentiated Schwann cells, as they will
eventually differentiate back into adult Schwann cells.

Often apoptosis of host factors has been found to be
involved in bacterial growth and sustenance inside host
[144]. Apoptosis contributes to the processes of the host-cell
deletion method, triggering the inflammation and defense
mechanism. Apoptosis by the pathogen Bordetella pertus-
sis allows Bordetella to survive in the introductory stages
of infection. After the pathogen has successfully colonized
the tissue of the host, it stops producing the toxin adenylate
cyclase hemolysin.

Biofilm formation plays a major role in host–pathogen
interactions. This is a mechanism of pathogens by which
they form a biofilm for their survival in the host, often uti-
lizing degraded host proteins. Leucobacter chromiireducens
subsp. solipictus strain TAN 31504 forms biofilm. Exposure
to TAN 31504 leads to change in a few innate immunity-
related genes in C. elegans [89]. Esp (a serine protease
secreted by S. epidermidis) degrades 75 proteins of Staphy-
lococcus aureus by proteolytic activity, which include 11
proteins essential for the formation of biofilm [121]. Esp
also degrades several human receptor proteins involved in
colonization and infection by the pathogen for the benefit of
the host.

A host’s immunological capability to control/eliminate
the pathogen

In order to prevent occurrence of infection/disease, the
host body launches immune response with respect to the
pathogenic invasion, i.e., high expression of certain genes
[122], autophagy [118, 129], role of dendritic cells [84,
106], glycoconjugates [86, 87], and iron [32, 93] in activa-
tion/alteration of host immune system.

Host genes play an important role in its (hosts) immune
response. Mutated β-catenin homolog bar 1 or homeobox
gene egl-5 of C. elegans has resulted in defective response
and hypersensitivity to Staphylococcus aureus [57]. Bar-1
and the fgl-5 genes function parallel to the immune response
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pathway taken up by C. elegans. Over-expression of egl-
5 resulted in the modification of NF-κB-dependent TLR2
(Toll-like receptor 2) signaling in epithelial cells, suggesting
the role played by these two genes in immune defense of a
host. Pro-16 in E cadherin is responsible for host specificity
towards the human pathogen Listeria monocytogenes [73].
E-cadherin of mouse, which is 85 % similar to E-cadherin
of human, denotes the entry of bacterial pathogen, Listeria
monocytogenes, by not allowing E-cadherin to interact with
bacterial surface protein internalin. If Proline (Pro) in the
position 16 of amino acid in human is replaced by Glutamic
acid (Glu), then interaction with internalin is disabled. How-
ever, in mouse, if Glu is substituted by Pro, then interaction
with internalin is enabled. On Mtb interaction with mice, a
group of 67 genes in an immuno-competent host has shown
a higher level of expression than the immuno-deficient host
often in 21 days. This shows that 67 genes are responsible
for immunity of mice (host) [122].

Autophagy is another mechanism of the hosts defense
against pathogen. Autophagy can be used in the elimina-
tion of Mtb [129]. LRG-47 initiates autophagy according
to the study carried out by Singh et al. [118]. IRGM
(immunity-related GTPase family M protein) also plays role
in autophagy and degradation of intracellular bacillary load.

Dendritic cells (DCs) play a vital role in the activation
of the immune system on encountering a pathogen [106].
DCs are summoned to the lamina propria of the small
intestine after bacterial infection. The number of DCs sum-
moned depends on the pathogenicity of microorganisms
confronted. Infection stimulates the release of a variety of
soluble factors, including chemokines, which facilitate the
summoning of DCs, and cytokines that are strong arbitrators
of DC activation. Pathogens, viruses, and their components
can activate DCs directly. One of the important charac-
teristics of DCs is their ability to migrate. During some
infections, this property may have a harmful as well as a
favorable side. Relocation of pathogen-laden DCs from the
periphery into lymph nodes leads to the activation of T cells.
On the other hand, this contributes to the spread of infection
within the host.

Glycoconjugates can alter the immune system of the
human body. Immunomodulatory components of Mtb are
phosphatidyl-myo-inositol (PMI), lipomannan (LM), and
lipoarabinomannan (LAM). Apart from LM and LAM,
mannose also contributes to the synthesis of multiple gly-
cosylated proteins and also polymethylated polysaccharides
in Mycobacteria [86]. These molecules are synthesized by
both pathogenic and non-pathogenic species. Many of the
genes involved in biosynthesis of these glycoconjugates are
important for survival of Mycobacteria [109, 110]. Only
serine-threonine kinases have been predicted to take part
in the regulation process of Mycobacterial glycosyltrans-
ferases [3, 87]. The interaction of Mycobacteria with the

pattern recognition receptors may be an influencing fac-
tor for the functioning of the inflammatory signals, hence
determining the way in which the immune system reacts
[3, 87].

Iron plays a crucial role in the secretion of cytokines
and in the activity of the transcription factors, affecting the
immune response [32, 93]. Iron homeostasis is controlled
by immune cell-derived mediators and acute-phase proteins.
An effective method of host defense is to restrict the supply
of iron to the pathogens. Pathogens have evolved to utilize
iron, as it is found abundant in the host. The control of iron
homeostasis is one of the main issues, as it can be controlled
by the host or the pathogen for their benefit.

With such diverse mechanisms involved at each step of
pathogen infection, predicting host–pathogen interactions
are extremely crucial. However, prediction of interactions
among the huge number of host and pathogen proteins do
pose a real-time experimental problem. Hence, many in sil-
ico prediction methods have been devised to abate such
issues. They effectively provide the primary screening of the
possible interactions and provide a list of highly probable
interactions, which can then be experimentally verified. In
the following section, we have listed and described a few of
these.

Methods for prediction of host–pathogen
interactions

Predictions in the domain of host–pathogen interactions
play a vital role in designing rational-therapeutic measures
including drugs. Sometimes, experimental procedures can
be cumbersome, time-consuming, and expensive. Experi-
menting with all possibilities takes a lot of time. Prediction
methods with the help of machine learning can overcome
such problems. They can be used to predict the putative data
first, which satisfies certain conditions. Then the predicted
set can be verified experimentally, which will engage far
less time and resources. The respective subsections describe
some of the widely used techniques for in silico predic-
tion of host–pathogen interactions. One or more of these
methods can be used for prediction of genes, proteins, fac-
tors, and pathways among others of both the host and
pathogen. Experimental- and data-related aspects of these
techniques have been covered in Section “Classification of
host–pathogen interactions”.

Biological reasoning based prediction of host–pathogen
interactions

The most extensively explored way by which a pathogen
interacts with the host is by PPIs. Pathogen proteins inter-
act with host proteins for invading the host. Proteins of a
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pathogen can affect a host and its environment in multi-
ple ways. They can directly bind with host protein(s) and
affect downward cascades of reactions preventing normal
function(s) of host. They can even compromise a host’s
immunological defenses by misguiding and weakening it.
They can even utilize the components of a crumbling harsh
anaerobic environment of a immune-compromised host.
Hence, predicting the putative PPIs between a pathogen and
its host(s) is of paramount importance. In order to foretell
whether a host protein can interact with a pathogen protein
or vice-versa, the following categories of methods can be
used.

Homology-based prediction

An interaction between a pair of proteins in one species is
anticipated to be conserved in its related species [79]. Pre-
diction of host–pathogen PPIs in Homo sapiens (as host)
and Plasmodium falciparum (as pathogen) [64] considers
interaction templates of human and P. falciparum genomic
sequences to bring out the probable set of PPIs. Then a
homology detection algorithm as shown in Fig. 3 is applied
to these PPIs to filter out non-homologous ones. The new
set thus formed is made to pass through the filter of stage-
specific and tissue-specific expression data of P. falciparum
and Homo sapiens respectively, and further filtered using
the concept of predicted localized data. A study by Lee et al.
[74] has considered orthologous pair of genes from 18 dif-
ferent species to predict PPIs. Further analyzing them, 81
genes are found to be conserved in all the 18 species and
243 genes are missing in P. falciparum but found in the rest
of the 17 species. Hence, these 81 genes and their related
PPIs are probably conserved.

Homology-based approaches to host–pathogen PPI pre-
diction are widely used for their sheer simplicity and
biological background support. Since the data needed for
implementing the prediction are only the template PPIs and

Host Proteins Pathogen Proteins

Extraction of Homologs 
of Host Proteins

Extraction of Homologs of 
Pathogen Proteins

Probable PPIs 
between Host and 
Pathogen Proteins

Predicted filtered PPIs between 
Host and Pathogen Proteins

Filtering based 
on stage and 

tissue specific 
expression

Experimental verification 
of the Predicted PPIs 

Fig. 3 Homology-based predictions of host–pathogen interactions

protein sequences, these approaches are adaptable and can
be applied to multiple different host–pathogen systems.

Similar is the case of molecular interaction between
GBP (galactose-binding protein) and LPS (Gram-negative
bacterial lipopolysaccharide). GBP from Carcinoscorpius
rotundicauda performs as an anti-microbial defense [76].
Most importantly, GBP shares architectural and functional
homology to human proteins. Therefore, there is a probabil-
ity of some human protein and LPS interactions. Moreover,
there are 6 Tectonic domains containing LPS binding sites
in GBP. GBP acts as a bridge between LPS and CRP
(C-reactive protein) by indulging in GBP-LPS and GBP-
CRP interactions with the aim at forming a stable pathogen
recognition molecule. These interactions have indicated
that Tectonin domains can differentiate between host and
pathogen proteins.

Homology-based approaches have their own set of weak-
nesses. In an infection, two proteins in a predicted PPI may
actually have very low probability to be present together.
Therefore, host–pathogen PPIs predicted completely on the
homology basis, without taking into consideration other
biological properties of the proteins involved, may not be
very dependable. Further information is needed to increase
the accuracy of the prediction. An investigation by Wuchty
and Stefan [138] has described filtering of the PPIs pre-
dicted by the homology-based approach using a Random
Forest classifier. Then the result has been filtered according
to expression and molecular characteristics. It has led to a
potent subset of proteins that indeed interact.

Structure-based prediction

When a pair of proteins has structures that are similar to
a known interacting pair of proteins, it is justifiable to
believe that the former are likely to interact in a way sim-
ilar to the latter. Likewise, several investigations have used
structural information to recognize the similarity between
query proteins (i.e., proteins in the host and pathogen) and
template PPIs (i.e., known interacting protein pairs), and
conclude that host–pathogen protein pairs, which match
some template PPIs, indeed interact. The method is depicted
in Fig. 4.

A computational method for prediction of PPIs represent-
ing host–pathogen interactions has been devised by Davis
et al. [28]. Their proposed method has first scanned the host
and pathogen genome, searched for structural similarity to
the already known protein complexes, and then analyzed
their probable interactions, using the physical structures
of the proteins. The result finally has undergone a filter-
ing by tissue-specific expression data of host proteins and
stage-specific expression data of pathogen proteins, leading
to a potent set of proteins that have a high probability to
interact.
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Experimentally verified 
Host Pathogen PPIs

Host template Protein Pathogen template Protein

Highly structurally similar 
Host Proteins
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Pathogen Proteins

Predicted set of PPIs in Query 
Host-Pathogen protein pairs

Query Host Proteins
Query Pathogen 

Proteins

Structural similarity 
Calculation of query Host

Structural similarity 
calculation of query Pathogen

Fig. 4 Structure-based predictions of host–pathogen interactions

Mapping of PPIs between the dengue virus and its human
and insect host has been carried out by Doolittle et al.
[34]. They have also predicted the interactions depending
on structural similarity of the host and the pathogen pro-
teins. It has also focused on predictions relevant to stress,
unfolded protein response and interferon pathways. Another
work by Dolittle et al. [33] has predicted PPIs between
HIV-1 and Homo sapiens based on structural similarity.
It has modeled a network of interactions between HIV-
I and human proteins. Structurally similar proteins from
host and HIV-1 have been retrieved and from this struc-
turally similar set of proteins, the known interactions have
been mapped. The resultant subset has again been screened
with factors like cellular co-localization and RNAi screen
to get a more determined set that has higher probability to
interact. The result has highlighted a more potent set of pro-
teins with higher chances of forming PPIs, representing the
interactions among human and HIV-1.

Domain/motif interaction-based prediction

Here, the methodology for prediction of host–pathogen PPIs
involves integration of known intra-species PPIs with pro-
tein domain profiles, and thereby predicting PPIs between a
host and a pathogen [37]. For a set of intra-species PPIs, the
functional domains are identified for each interacting pro-
tein. For each pair of functional domains, Bayesian statistics
is used to compute the possibility of two proteins contain-
ing that pair of domain will interact. The method is shown
in Fig. 5. It has been applied to Homo sapiens-Plasmodium
falciparum host–pathogen system, and has successfully pre-
dicted 516 PPIs. Human proteins anticipated to interact with
the same Plasmodium protein are close to each other in
the human PPI network, and Plasmodium pairs predicted to
interact with the same human protein are co-expressed in
DNA micro-array datasets measured during various stages
of the Plasmodium life cycle.

Experimentally verified intra-species PPIs

Functional Domain pair extraction of each protein pairs from the 
verified PPIs

Finding protein pairs containing the highly 
probable functionally interacting domains

Query Host 
Protein

Query Pathogen Protein

Protein Set 1 Protein Set 2

Calculating probability of a protein pair containing a functionally 
interacting domain pair and discarding low probability protein pairs

Creating Host Pathogen protein pair set

Fig. 5 Domain/motif-based prediction of host–pathogen interactions

Prediction of PPIs, based on motifs conserved in HIV-
1, has been performed by Evans et al. [43] and Bertoletti
et al. [8]. The similarity between the binding motifs shared
by virus and host proteins plays an important part in the
crosstalk between virus and host. Similarly, the study by
Bertoletti et al. [8] has attempted to predict PPIs based on
motifs conserved in HIV-1. It has also highlighted the role
of chemokines as a factor for liver inflammation.

Machine learning-based predictions of host–pathogen
interactions

Machine learning-based prediction methods are extensively
used for detecting host–pathogen interactions, as shown in
Table 1. This table lists a few machine learning methods
used for the prediction of various aspects of host–pathogen
interactions in different species. Moreover, the particular
domain knowledge is also included in this table. The sub-
area of research in some cases is referred to as “pathogen
informatics”. Supervised learning has been used for the
prediction of PPIs in the host–pathogen domain by Tastan
et al. [123]. The work has considered 35 features, including
tissue distribution, gene expression profile, gene ontology,
graph properties of human interactome, sequence similar-
ity, post-translational modification similarity to neighbor,
and HIV-1 protein-type features among others. Then, the
authors have selected the top three and top six features that
are of maximum importance to classify the given data set
into interacting and non-interacting classes. The Random
Forest classifier has been used as a tool for supervised learn-
ing with these feature set for training and resulting in MAP
(maximum a posteriori) of 23 %. From this computation,
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g it has been concluded that graph and neighbor similarity
features contribute to a better classification.

Prediction of proteins secreted by Type III (T3) secre-
tion system has been carried out by Arnold et al. [4]. The
authors have examined the amino acid composition and the
secondary structure of the N-terminal of 100 experimentally
verified effector proteins, and used them for identification
of T3 secretion signal. They have used Naive Bayes algo-
rithm for classification. The training samples have been
grouped depending on how similar they are, and this sim-
ilarity has been measured by the Smith–Waterman local
alignment algorithm. The input feature set has included fre-
quencies of amino acid, amino acid properties, and short
combinations of them. Finally, the feature-selection strate-
gies have been applied to identify the most important fea-
ture to do away with computational complexity. In another
attempt for prediction, the authors have used derived fea-
tures from the secondary structure elements. They have used
PSIpred software [82] to predict the structure. From the pre-
dicted structures, the features of the input vector have been
formulated.

In another attempt to predict bacterial Type III secreted
(T3S) effectors, a distinct N terminal position-specific
amino acid composition feature has been found in more
than 50 % of T3S proteins [132]. Bi-profile Bayes method
has been used in this particular work for feature extrac-
tion. Then, the entire dataset along with the new feature
has been analyzed with a new SVM-based classifier. The
new classifier has classified T3S and non-T3S proteins
successfully.

In order to establish a relation among a host and multiple
pathogens, Kshirsagar et al. [66] have developed a method
taking the similarity in infection initiated by four differ-
ent pathogens in human host. The authors have used the
machine-learning technique in the form of multi-task classi-
fication frameworks. The host–bacteria PPIs have been used
as the input to the multi-task classifier, which has then clas-
sified the PPIs into interacting and non-interacting classes.
Considering the biological hypothesis of similar pathogens
targeting the same critical biological processes in a host, the
classifier has minimized the empirical error on the training
set and favored models that are biased towards the biolog-
ical hypothesis. A bias term has been incorporated into the
classifier in the form of a regularizer to overcome it.

A semi-supervised multi-task method has been used on
Homo sapiens-HIV 1 dataset [102] to predict host–pathogen
PPIs. The method has involved both supervised and semi-
supervised learning. The supervised classifier has worked
on labeled PPIs data. The semi-supervised classifier has
shared network layers of the supervised classifier and got
trained with partially labeled PPIs. This entire framework
has been used to improve the recognition of interacting
pairs. The supervised classifier has done multi-tasking with
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a semi-supervised classifier so that weak positive labels
could ameliorate the supervised classification.

For prediction of PPIs between Homo sapiens and
Plasmodium falciparum, a Random Forest classifier has
assessed a set of PPIs and then filtered the result accord-
ing to expression and molecular characteristics, leading to
a subset of proteins, which indeed interact among them-
selves [138]. It has been observed here that the separate sets
and a combined set of predicted and experimentally verified
interactions have shared similar characteristics. In another
investigation, Kshirsagar et al. [65] have tried to improve
the supervised learning-based prediction of PPIs between
Salmonella-human and Yersinia-human. This has been done
by replacing the missing values of the dataset by the val-
ues generated by cross species information along with group
lasso technique with regularization (obtained 77.6 % preci-
sion). In order to impute values, localized nearest-neighbor
approach (which uses sequence similarity) has been used as
the basis to compute locality.

Data mining also forms an integral part of machine learn-
ing. Retrieved data about host–pathogen interactions in a
few cases reflects information in two different ways, i.e.,
feature-based (SVM) [126] and language-based [19]. The
investigation by Chaussabel et al. [19] used the hierarchi-
cal clustering algorithm by taking the literature available
to identify a functionally and transcriptionally homolo-
gous pair of genes as input. Removal of noise from the

PPI databases was done by removing PPIs that have less
probability of taking place. Each such PPI has then been
given a score. Then, these PPIs have been hierarchically
clustered to obtain the PPIs likeliness of occurrence. In
this way, it has been found that out of 12,122 binary PPIs
obtained from BioGRID, 7504 PPIs are less likely to take
place.

Online repositories for host–pathogen interactions

Host–pathogen interactions data can be obtained from sev-
eral databases and repositories. We have summarized some
of these repositories in Table 2. Some of these databases are
referred to purely for their data content, i.e., genome, pro-
teome, and metabolic pathway data [133], virus–virus, host–
virus, and host–host interaction networks [95], PPIs of hosts
and pathogens [69], literature-based viral–human protein
interactions [18], experimentally verified pathogenic, viru-
lence and effector genes of fungal pathogens [136], human
signaling and regulatory pathways [113], information on
specific biodefense and public health pathogens [120], 3D
viral proteins [116], information on invertebrate vectors of
human pathogens [71], and a collection of genus-specific
databases [6] among others. Some of these databases even
have integrated in-house tools, i.e., BLAST interface [35]
and browser [142] for host–pathogen interactions data

Table 2 List of online
repositories storing data related
to host–pathogen interactions

No. Name URL

1 PATRIC [133] http://patricbrc.org/portal/portal/patric/Home

2 PIG [35] http://patricbrc.org/portal/portal/patric/HPITool

3 VirHostNet [95] http://virhostnet.prabi.fr/

5 HPIDB [69] http://agbase.msstate.edu/hpi/main.html

6 GPS-Prot [44] http://gpsprot.org/

7 VirusMint [18] http://mint.bio.uniroma2.it/virusmint/Welcome.do

8 PHIDIAS [139] http://www.phidias.us/introduction.php

9 MvirDB [142] http://mvirdb.llnl.gov/

10 PHI-base [136, 137] http://www.phi-base.org/

11 PID [113] http://pid.nci.nih.gov/

12 BioHealthBase [120] http://www.biohealthbase.org/

13 VPDB [116] http://www.vpdb.bicpu.edu.in/

14 VectorBase [71] https://www.vectorbase.org/

15 EuPathDB [6] http://eupathdb.org/eupathdb/

16 PHISTO [125] http://www.phisto.org/

17 ViPR [99] http://www.viprbrc.org/brc/home.spg?decorator=vipr

18 EDWIP [97] http://cricket.inhs.uiuc.edu/edwipweb/edwipabout.htm

19 HoPaCI-db [9] http://mips.helmholtz-muenchen.de/HoPaCI

20 VFDB [21] http://www.mgc.ac.cn/VFs/main.htm

21 AquaPathogen X [41] http://pubs.usgs.gov/fs/2012/3015/

http://patricbrc.org/portal/portal/patric/Home
http://patricbrc.org/portal/portal/patric/HPITool
http://virhostnet.prabi.fr/
http://agbase.msstate.edu/hpi/main.html
http://gpsprot.org/
http://mint.bio.uniroma2.it/virusmint/Welcome.do
http://www.phidias.us/introduction.php
http://mvirdb.llnl.gov/
http://www.phi-base.org/
http://pid.nci.nih.gov/
http://www.biohealthbase.org/
http://www.vpdb.bicpu.edu.in/
https://www.vectorbase.org/
http://eupathdb.org/eupathdb/
http://www.phisto.org/
http://www.viprbrc.org/brc/home.spg?decorator=vipr
http://cricket.inhs.uiuc.edu/edwipweb/edwipabout.htm
http://mips.helmholtz-muenchen.de/HoPaCI
http://www.mgc.ac.cn/VFs/main.htm
http://pubs.usgs.gov/fs/2012/3015/
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analysis. Moreover, we have described some tools [44] used
in analysis and visualization of these kinds of data.

The PAThosystems Resource Integration Center
(PATRIC) [133] includes a relational database, analytical
pipelines, and a website that supports querying, browsing,
data visualization, and allowing the download of raw and
curated data in standard formats. Currently, the database
houses complete sequences for viral and bacterial genomes,
hence providing an all-inclusive bioinformatics resource
for pathogens.

The Pathway Interaction Gateway (PIG) provides a text-
based search and a BLAST interface for searching the host–
pathogen PPIs. Each entry in PIG incorporates information
on the functional annotations and the domains present in the
interacting proteins [35].

VirHostNet (Virus-Host Network) [51, 95] is a pub-
lic knowledge base specialized in the management and
analysis of integrated virus–virus, host–host, and virus–
host interaction networks coupled with their functional
annotations. VirHostNet contains data of virus–host and
virus–virus interactions constituting more than 180 distinct
viral species. The VirHostNet Web interface provides suit-
able tools which allow effective query and visualization of
infected cellular networks.

HPIDB (Host–Pathogen Interaction Database) [69] basi-
cally contains experimentally confirmed and predicted PPIs
of hosts and pathogens.

GPS-Prot [44] is a software tool that permits users to eas-
ily create an all-inclusive and integrated HIV–host networks.
Its web-based format, which requires no software installa-
tion or data downloads, gives it an extra edge over other
visualization tools. GPS-Prot enables users to quickly gen-
erate networks that amalgamate both genetic and protein–
protein interactions between HIV and its human host into a
single representation.

VirusMint [18] contains protein interactions between
viral (papilloma viruses, HIV-1, Epstein–Barr, hepati-
tis B, hepatitis C, herpes, and Simian virus 40) and
human proteins reported in the literature. VirusMINT
presently stores interactions constituting more than 490
unique viral proteins from more than 110 different viral
strains.

PHIDIAS (a Pathogen Host Interaction Data Integration
and Analysis System) [139] is a database and analysis sys-
tem to curate, analyze, and address different scientific issues
in the areas of host–pathogen interactions (PHI, or called
host–pathogen interactions or HPI).

MvirDB [142] integrates DNA and protein sequence
information from multiple databases. Entries in MvirDB
are hyper-linked back to their original sources. A blast
tool enables the user to blast against all DNA or pro-
tein sequences in MvirDB, and a browser tool enables the
user to explore the database to retrieve virulence factor

descriptions, sequences, and classifications, and to down-
load sequences of interest.

PHI-base [136], a web-accessible database currently cat-
alogs experimentally verified virulence and effector genes
from fungal and oomycete pathogens. These pathogens
interact with animal, plant, and fungi as hosts.

PID [113] is a freely available collection of curated and
peer-reviewed pathways composed of human molecular sig-
naling and regulatory events and key cellular processes.
PID offers a range of search features to facilitate pathway
exploration.

BioHealthBase [120] is a public bioinformatics
database and analysis resource for study of spe-
cific biodefense and public health pathogens like
Francisella tularensis, Mycobacterium tuberculosis,
Influenza virus, Microsporidia species and ricin toxin.
It serves as a substantial integrated repository of
data imported from public databases and data derived
from various computational algorithms and infor-
mation curated from the scientific literature. Its 3D
visualization capacity allows researchers to view pro-
teins with their key structural and functional features
highlighted.

VPDB (Viral Protein Structural Database) [116] is an
interactive database for three-dimensional viral proteins. It
provides an all-inclusive resource, with an emphasis on
the description of derived data from structural biology. At
present, VPDB includes viral protein structures from more
than 277 viruses with more than 465 virus strains.

VectorBase [71, 72, 85] is a web-accessible data
repository storing information about invertebrate vectors
of human pathogens. It annotates and maintains vec-
tor genomes, providing an integrated resource for the
research community. It hosts data related to nine genomes,
i.e., mosquitoes (3 Anopheles gambiae genome), Aedes
aegypti and Culex quinquefasciatus, body louse (Pedicu-
lus humanus), tick (Ixodes scapularis), tsetse fly (Glossina
morsitans) and kissing bugs (Rhodnius prolixus). The data
spans across genomic features, expression data, population
genetics, and ontologies.

EuPathDB [5, 6] is an integrated database covering the
eukaryotic pathogens of the genera Giardia, Cryptosporid-
ium, Neospora, Leishmania, Toxoplasma, Plasmodium, Try-
panosoma and Trichomonas. These groups are supported
by a taxon-specific database built upon the same infrastruc-
ture. EuPathDB portal provides an entry point to all these
resources, and the opportunity to leverage orthology for
searches across genera.

Similarly, a number of other databases, like PHISTO
[125], ViPR [99], HoPaCI-DB [9], VFDB [21, 140]
[20], EDWIP [97], AquaPathogen X [41], are available,
which help in the host–pathogen interactions domain
research.
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Discussions and future scopes

In this section, we discuss multiple faucets of host–pathogen
interactions research, the shortcoming of the previously
defined methodologies as discussed in Sections “Classi-
fication of host–pathogen interactions” and “Methods for
prediction of host–pathogen interactions”, and the future
scopes associated with the aforesaid methodologies, which
takes both the host and pathogen points of view into
account. We discuss the ways in which a pathogen can
attack its host, the proteins emitted by a pathogen respon-
sible for perturbing normal functionality of host, the
genes responsible for such proteins, silencing and hijack-
ing gene mechanism of pathogens, inhibiting the functions
of macrophages, along with genes and proteins needed for
their survival inside a host. From the host’s point of view, we
also discuss the factors of pathogen that activates immune
response. Salient features of the discussion are given in
Table 3.

The genes of multiple strains of an organism have been
studied in several investigations [58, 81, 96] to understand
the infection mechanism of these strains on the host and to
locate the difference between them. In order to survive in a
host, a pathogen can either perform hijacking [105] or it can
use the existing environment to survive [12]. The effect of
the genes in different strains of a pathogen has been studied.
There is still uncertainty in the generalization/specialization
of interactions in different strains of pathogens. A study
has suggested that different strains of the same pathogen
have different methods of invasion [81]. On the contrary, a
counter example has also been provided in [26], which indi-
cates that two strains of Mycobacterium have homologous
genes required for Snm.

Influenza, DENV-2, and HIV have been in the limelight
for identification of the host factors. Other pathogens too
need to be taken into account. Inhibition of macrophage is a
prospective aspect of research in bioinformatics. The inhibi-
tion mechanism needs to be studied in more pathogens apart
from the mostly studied ones to find similarity between the
inhibition mechanisms among these organisms.

Machine learning-based prediction methods have been
applied mainly to PPIs. However, protein–ligand interac-
tions, and hence prediction of pathways (excluding signal
transduction pathways) via machine learning methods, have
not been attempted much. Different pathogens become drug
resistant and form new pathways, and these newly formed
pathways can perturb the present host pathways in an
unknown way. Similarly, machine learning algorithms in
the field of pathway predictions are needed, which would
mainly consider protein-ligand binding. Along with reaction
dynamics are needed to be known too, as pathways are noth-
ing but chain of reactions. Prediction of Type III secreted
bacterial proteins by machine learning techniques is also a
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challenging task. However, a major drawback in the area of
prediction of host–pathogen PPIs, are the unavailability of
data sets for different pathogens. Moreover, there is always
this lurking issue of biological validation of the predicted
PPIs.

Some of the organisms studied for the exploration of
host–pathogen PPIs are Homo sapiens-Plasmodium falci-
parum [37, 64, 74, 138], Homo sapiens-Dengue virus [34],
Homo sapiens-HIV 1 [8, 33, 43]. However, there are many
more host–pathogen pairs waiting in the line for these
kinds of studies. In addition, homology-based approaches
have their own inherent weaknesses. In a real scenario, two
proteins in a predicted PPI may actually have little oppor-
tunity to be present close enough to interact with each
other. Therefore, host–pathogen PPIs predicted entirely on
the basis of homology, without considering other biological
characteristics of the proteins involved, may not be reliable.
Additional information must be used to increase the accu-
racy of the prediction and make the predictions biologically
sound. Keeping this in mind, the study by Wuchty [138] has
filtered the predicted PPIs based on homology using gene
expression and molecular characteristics. It has led to the
formation of a concrete set of PPIs closer to the biological
scenario. The prediction of PPIs by comparative modeling
[28] has very stringent filters leading to the formation of a
smaller and robust set of PPIs.

Supervised, unsupervised and semi supervised learning
have been mostly used for prediction of host–pathogen
PPIs. The organisms for which these predictions have been
made are mainly Homo sapiens-HIV1 [102, 123], Homo
sapiens-Plasmodium falciparum [138], and Homo sapiens-
Saccharomyces cerevisiae [25]. Both Tastan et al. and
Yanjun et al. [102, 123] have applied their respective algo-
rithms on the same dataset, which basically restricts the
contribution of the articles. The performance of the Ran-
dom Forest-based classifier is negligibly better than the
Multi-Layer Perceptron classifier [102]. Some research arti-
cles have selected the top six and top three features among
35 features to predict whether a protein is interacting or
not [123]. This is not a novel way of prediction since
the interaction between proteins depends on all of its fea-
tures even if by a negligible amount, which should not be
ignored.

A flaw is often noticed in the choice of a dataset. In a
semi-supervised based learning approach to identify PPIs
[102], the negative dataset is way more extensive than the
positive one. The negative (non-interacting) data set has
approximately 16,000 pairs of proteins while the experi-
mentally verified positive (interacting) dataset has only 158
pairs of proteins. Training with such a dataset might lead to a
biased classifier, and the classifier would be inclined to pre-
dict most test pairs as non-interacting. Moreover, the logic
used behind selecting a non-interacting dataset is based on

a random list of pairs of proteins that do not fall into the
positive set. It is always a risk, since there is no experimen-
tal evidence that the selected negative pairs will not interact
at all. There may be several interacting pairs present among
the negative set. Another study has been done for predicting
proteins secreted by a Type III secretion system based only
on structural and compositional aspects of the proteins [4].
These studies should include other factors like expression
and molecular characteristics.

One notable thing is that a few attempts have been made
on metabolic pathways. For host–pathogen interactions,
most of the work has been done with signal transduction
pathways. If enzyme(s) from a pathogen is introduced into
a host, they get involved with more than one host pathway.
There is no tool available that would take a list of protein
(enzyme) names and provide the pathway (just one path-
way based on these enzymes) based only on those enzymes
(at least 90 %). Moreover, a pathogen can be associated
with more than one disease. Such diseases, for which a
pathogen is responsible, need to be looked into. The sce-
nario becomes more complex when a host suffers from two
or more diseases simultaneously, which implies the pres-
ence of multiple pathogens responsible for multiple diseases
in a host in real time. Such real-time simulation studies are
hardly done.

An important aspect that needs to be considered is
that some pathogenic proteins prevent the working of
macrophage. This is a serious problem in host–pathogen
domain. Drugs are needed that would facilitate the work-
ing behavior of a macrophage. Drugs are also needed for
the prevention of formation of intracytoplasmic vesicle that
HIV-1 uses [22] to prevent identification by macrophages.
Formation of biofilms [89, 121] is another domain that
needs to be looked into. Breaking the biofilm formed by
pathogens is indeed recommended to avoid the spread of
infection. More attention is needed in this domain, given the
rate at which new infectious pathogens are emerging along
with their variety of degree of infection.

Hardly any research has been done based on the auto-
mated image processing-based techniques available for pre-
dicting host–pathogen interactions. A study by Mech et al.
[83] has come up with a technique of a more robust analysis
of microscopy images of macrophages that is made to coex-
ist with different A. fumigatus strains. Usually, the images
are manually analyzed, which is both time-consuming and
error prone. The authors used the feature set which includes
size, shape, number of cells, and cell–cell contacts. By ana-
lyzing the images, it has been found that different mutants
of A. fumigatus have an impact on the ability of the
macrophages to adhere and phagocytose the conidia. It has
been observed that the rate of phagocytosis is higher in pksP
mutants of A. fumigates, while it is not the same case in the
other strains.
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Conclusions

In this review, we have covered various aspects of host–
pathogen interactions. Interaction of a pathogen with its
host(s) is always a unique mechanism. Each one of the
pathogenic species has specific mechanism(s) to interact
with their host. The different mechanisms of a num-
ber of species have been included in this review along
with the similarities and similar factors in the attacking
mechanism(s) of pathogens. The review has introduced a
brief history and introduction of the host–pathogen inter-
actions research field followed by classification of host–
pathogen interactions based on gene(s), protein(s), host-
factor(s), involved pathway(s), and inhibition mechanism
of macrophage(s). It has listed prediction methods used
in the host–pathogen interactions domain based on bio-
logical reasoning (homology, structure, and motif inter-
action), machine learning (unsupervised, semi-supervised,
and supervised) and sometimes both methods. Various data
sources used for research in this domain have also been
listed. The review concludes with a general discussion of the
topic and future scopes followed by a conclusion. The field
of host–pathogen interactions is emerging as a crucial area
of infectious disease research in the post-genomic era. It is
a budding research field where new discoveries are getting
announced almost each day around the globe. The discov-
ery of dynamics of the host–pathogen interactions will aptly
facilitate further development in the field of discovering new
drugs and new therapies for different diseases.
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