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Abstract Autophagy has been demonstrated to play an
important role in the immunity against intracellular
pathogens, but very little is known about its role in the host
defense against fungal pathogens such as Candida
albicans . Therefore, the role of autophagy for the host
de fense aga ins t C . alb icans was assessed by
complementary approaches using mice defective in
autophagy, as well as immunological and genetic studies
in humans. Although C . albicans induced LC3-II
formation in macrophages, myeloid cell-specific ATG7−/−

mice with defects in autophagy did not display an increased
susceptibility to disseminated candidiasis. In in vitro
experiments in human blood mononuclear cells, blocking

autophagy modulated cytokine production induced by
lipopolysaccharide, but not by C . albicans . Furthermore,
autophagy modulation in human monocytes did not
influence the phagocytosis and killing of C . albicans .
Finally, 18 single-nucleotide polymorphisms in 13
autophagy genes were not associated with susceptibility to
candidemia or clinical outcome of disease in a large cohort
of patients, and there was no correlation between these
genetic variants and cytokine production in either
candidemia patients or healthy controls. Based on these
complementary in vitro and in vivo studies, it can be
concluded that autophagy is redundant for the host response
against systemic infections with C . albicans .
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Introduction

Candida albicans is a commensal fungus that colonizes the
gastrointestinal tract, skin, and mucosa of more than 50 % of
healthy individuals. Candida colonization does not cause
disease in healthy individuals, but in patients in whom the
immune system is compromised, Candida can cause both
mucosal and systemic disease, the latter with a mortality rate
reaching up to 30–40 % [1]. C . albicans is recognized by the
innate immune system through pathogen recognition
receptors (PRRs) such as C-type lectin receptors or Toll-like
receptors (TLRs) that interact with pathogen-associated
molecular patterns on the Candida cell wall. Candida
mannans are recognized by the macrophage mannose receptor
and Dectin-2 [2, 3], Dectin-1 recognizes β-glucan [4], while
DC-SIGN (CD209) recognizes fucose and mannose/mannan
residues [5]. Furthermore, TLRs such as TLR2 [6] and TLR4
[7] also play an important role in the recognition of C .
albicans . These interactions between C . albicans and the
immune system lead to phagocytosis of the fungus [8] and
the induction of proinflammatory cytokines, further
promoting clearance of the infection [9].

In addition to these well-known effects of PRR engagement,
recent studies have shown that TLRs can also engage
autophagy proteins [10], and this, in turn, modulates the
inflammatory reaction against pathogens [11–13]. Autophagy
is an essential process for cell survival that allows the cell to
efficiently regulate its biomass via the degradation of individual
proteins (chaperone-mediated autophagy), cytosolic content,
and whole-cell organelles (macroautophagy) [14]. Autophagy
is characterized by the formation of a double-membrane
vesicle, the autophagosome, which engulfs the cytosolic
content to be degraded [15]. Subsequent fusion of the
autophagosome with the lysosome and the breakdown of the
inner membrane expose the content to hydrolases.

In addition to its role in cell homeostasis, autophagy has also
been linked to the host defense against viruses [16] and to the
processing of invading pathogens (xenophagy) [17, 18].
Inactivation of autophagy genes increases the replication
of intracellular pathogens: Singh et al. demonstrated that, in
mice, IRGM induces autophagy to eliminate intracellular
Mycobacterium tuberculosis [19]; Zhao et al. demonstrated
that ATG5−/−mice have decreased resistance to the intracellular
bacterium Listeria monocytogenes and the protozoan
Toxoplasma gondii [20]. Interestingly, ATG5 and ATG10 have
been implicated in the defense against fungi in plants [21].

Little is known about whether autophagy is also involved
in the immune response against fungal infections in mammals.
Since several of the PRRs involved in the recognition of C .
albicans have been demonstrated to induce autophagy, such
as recruitment of the autophagosome marker LC3-II by TLR2
and TLR4 [10, 22], it is rational to hypothesize that autophagy
might play an important role in the anti-Candida host immune

response. In this study, the role of autophagy in the immune
response against C . albicans was investigated using mouse
knockout models, as well as human genetic association
studies and in vitro experiments. We could not identify a
major role for autophagy in anti-Candida host defense.

Materials and methods

Study population

To investigate the correlation between autophagy and
candidemia, 338 adult candidemia patients (positive blood
culture) and 351 healthy controls were enrolled in a study
between January 2003 and January 2009 [23]. The
candidemia study was approved by the Institutional
Review Boards from the Duke University Hospital
(Durham, NC, USA) and the Radboud university medical
center (Nijmegen, The Netherlands). Participants were
included after giving written informed consent, with the
exception of patients who were no longer hospitalized or
died before a positive blood culture report was made. To
investigate the link between autophagy and cytokine
production, 67 healthy individuals donated blood. The
age of the patients ranged from 23 to 73 years and 77 %
was male. Blood was collected by venipuncture into 10-ml
EDTA syringes (Monoject, ’s-Hertogenbosch, The
Netherlands). The study with the healthy blood donors
was approved by the Ethical Committee of the Radboud
university medical center (Nijmegen, The Netherlands).
Participants were included after giving written informed
consent. The studies were performed in accordance with
the Declaration of Helsinki.

Mice

The LysM-Cre+ or LysM-Cre−ATG7flox/flox GFP-LC3+

(the conditional ATG7flox/flox mice is a kind gift fromMasaaki
Komatsu, Tokyo Metropolitan Institute of Medical Science,
Tokyo, Japan) was described previously (kindly provided by
Douglas R. Green, St. Jude Children’s Research Hospital,
Memphis, TN, USA). All mice were housed in a pathogen-
free facility. The animal study was approved by the Animal
Care and Use Committee from the St. Jude Children’s
Research Hospital (protocol 482-100097-10/11). The study
was performed in accordance with the guidelines set by the
National Institutes of Health (NIH Publication No. 85-23,
revised 1996).

Microorganism

Candida yeast [American Type Culture Collection (ATCC)
MYA-3573 (UC820)], a strain well described elsewhere [24],
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were grown overnight in Sabouraud broth at 37 °C. Cells were
harvested by centrifugation, washed twice, and resuspended
in culture medium. C . albicans yeasts or hyphae were heat-
killed for 1 h at 100 °C.

Macrophage differentiation, stimulation, and Western blotting

Bone marrow-derived macrophages (BMDMs) were
differentiated from the total cells isolated from the femurs of
6–10-week-old mice by using supernatant from L929 cells as
the differentiation medium. BMDM cells in 12-well tissue
culture plates (5×105/well) were infected or treated with various
Candida ligands [live Candida yeast form (moi 5), heat-killed
Candida yeast form (moi 5), live Candida hyphae form, and
heat-killed Candida hyphae form) for 8 h. The cells were lysed
in RIPA lysis buffer supplemented with complete protease
inhibitor mixture (Roche) and PhosSTOP (Roche). The whole-
cell lysates were separated on 15 % SDS-PAGE and transferred
to PVDF membranes. Membranes were blocked in 5 % non-fat
milk and incubated overnight with primary antibody at 4 °C and
for 45 min with secondary HRP-tagged antibody at room
temperature. The membranes were developed with SuperSignal
West Femto Chemiluminescent Substrate (Pierce).

Candida albicans infection model

The WT (LysM-Cre− ATG7f/f GFP-LC3+) and ATG7−/−

(LysM-Cre+ ATG7f/f GFP-LC3+) mice were injected
intravenously with the inoculum of C . albicans blastoconidia
[1×106 colony-forming units (CFU)/mouse] in a 100-μl
volume of sterile pyrogen-free phosphate-buffered saline
(PBS). Survival was assessed daily for 30 days. For assessing
fungal burden, subgroups of 5–10 mice were humanely
terminated on days 3 or 7 of infection. To measure the fungal
burden, the kidneys of the sacrificed animals were removed
aseptically and homogenized in sterile PBS using a tissue
grinder. The CFU values of the viable Candida from the
kidney homogenates were measured by plating serial dilutions
on Sabouraud dextrose agar plates (50 μg/ml of gentamicin),
as described previously.

Fluorescence microscopy

HeLa cells were transfected with a plasmid containing GFP-
LC3 (kindly provided by Dr. T Yoshimori, Osaka, Japan) using
the transfection medium Fugene 6 (Roche), according to the
manufacturer’s instructions. GFP-LC3+ HeLa cells were grown
and stimulated on coverslips (19-mm diameter) in 12-well
plates. Cells were fixed with 2 % paraformaldehyde for
15 min at room temperature and permeabilized for 10 min with
cold methanol (100 %). After washing with PBS (three times),
the coverslips weremounted onto glass slideswith Vectashield+
DAPI and analyzed on a fluorescence microscope.

Phagocytosis and killing assays

Phagocytosis and killing was performed as described
previously [24, 25]. In short, 5×105 peripheral blood
mononuclear cells (PBMCs) (in a volume of 100 μl) were
put in a flat-bottom well. The plate was incubated at 37 °C for
1 h, to allow the monocytes to adhere to the plastic surface, in
the absence or presence of 3MA (10 mM). Thereafter, the
supernatant was removed, and the monolayer was rinsed with
modified Eagle’s medium (MEM). 200 μl of live C . albicans
(5×104/ml) in MEM, 2.5 % serum was added, and the plate
was incubated for 15 min to allow phagocytosis of the yeast.
The supernatant was removed, and the monolayer was rinsed
with MEM. 200 μl of MEM/Sabouraud was added to the
monolayer, after which the plate was incubated at 37 °C for
2 h and 45 min to allow intracellular killing of the yeast. After
this incubation period, the monocytes were lysed. Both the
supernatants with non-phagocytosed Candida and the lysed
monocyte suspension with non-killed Candida were directly
plated in duplicate in two different dilutions on agar plates.
These plates were cultured for 24 h, after which the number of
colonies was counted. The percentage of phagocytosed and
killed Candida was calculated.

PBMCs isolation

The separation and stimulation of PBMCs was performed as
described previously [26]. Briefly, the PBMC fraction was
obtained by density centrifugation of diluted blood (one part
blood to one part pyrogen-free saline) over Ficoll-Paque
(Pharmacia Biotech, Uppsala, Sweden). PBMCs were washed
twice in saline and suspended in culture medium. The cells
were counted in a Coulter counter (Coulter Electronics,
Buckinghamshire, England) and their number was adjusted
to 5×106/ml.

Cell stimulation

A total of 5×105 human PBMCs in a 100-ml volume of RPMI
was added to round-bottom 96-well plates (Greiner). Cells
were stimulated with live C . albicans UC820 (1×104/ml) or
E . coli -derived lipopolysaccharide (LPS) (E . coli O55 :B5
LPS, Sigma Chemical Co.), in the absence or presence
of 3MA (Sigma). After 24 h, supernatants were stored
at −20 °C. IL-1β, IL-8, and IL-10 was measured in cell
culture supernatants using an enzyme-linked immunosorbent
assay (ELISA) (R&D Systems, MN, USA and Sanquin,
Amsterdam, The Netherlands).

Autophagy gene SNP genotyping

Genomic DNA was isolated from EDTA blood of patients,
matched controls, and a cohort of healthy volunteers using
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standard methods, and 5 ng of DNAwas used for genotyping.
We selected 18 single-nucleotide polymorphisms (SNPs)

from 13 autophagy-related genes (Table 1). Multiplex assays
were designed using Mass ARRAY Designer Software

Table 1 Single-nucleotide polymorphisms (SNPs) in autophagy genes are not correlated with susceptibility to candidemia

Gene SNP (AA change) Genotype Matched controls, n (%) Patients, n (%) χ2 p-Value

ATG10 rs1864183 GG 92 (39) 109 (40) 0.561 0.755

(Thr→Met) GA 103 (43) 111 (41)

AA 42 (18) 54 (20)

rs3734114 TT 156 (66) 191 (69) 1.521 0.467

(Pro→Ser) TC 71 (30) 79 (29)

CC 8 (3) 5 (2)

ATG16L1 rs2241880 TT 77 (32) 86 (31) 0.743 0.690

(Thr→Ala) TC 107 (45) 134 (49)

CC 53 (22) 55 (20)

ATG16L2 rs11235604 (Arg→Trp) CC 237 (100) 275 (100) – –

ATG2A rs77228473 (Glu→Asp) CC 237 (100) 275 (100) – –

rs77833427 CC 234 (99) 273 (99) 0.024 0.878

(Arg→His) CT 2 (1) 2 (1)

ATG2B rs3759601 CC 93 (39) 127 (46) 2.795 0.247

(Gin→Glu) CG 105 (44) 112 (41)

GG 39 (16) 36 (13)

rs74719094 TT 237 (100) 272 (99) 2.601 0.107

(Arg→Ser) TG 0 (0) 3 (1)

rs9323945 CC 228 (98) 270 (99) 0.886 0.347

(Asn→Asp) CT 5 (2) 3 (1)

ATG5 rs2245214 GG 39 (18) 40 (19) 0.740 0.691

(Intron) GC 104 (49) 93 (45)

CC 70 (33) 75 (36)

ATG9B rs61733329 CC 237 (100) 273 (99) 1.730 0.188

(Gly→Ser) CT 0 (0) 2 (1)

EREG rs34477425 (Arg→Gly) AA 237 (100) 275 (100) – –

IRGM rs4958847 AA 15 (6) 24 (9) 1.334 0.513

(Intron) AG 77 (32) 81 (30)

GG 145 (61) 168 (61)

rs72553867 CC 221 (93) 257 (93) 1.170 0.557

(Thr→Lys) CA 15 (6) 18 (7)

AA 1 (0) 0 (0)

LAMP1 rs9577229 CC 215 (96) 241 (91) 4.911 0.086

(Ala→Val) CT 9 (4) 24 (9)

TT 1 (0) 1 (0)

LAMP3 rs482912 AA 43 (18) 54 (20) 0.670 0.715

(Ile→Val) AG 94 (40) 114 (42)

GG 100 (42) 106 (39)

P2RX7 rs2393799 TT 48 (20) 48 (17) 0.664 0.717

(Upstream) TC 90 (38) 107 (39)

CC 99 (42) 120 (44)

WIPI1 rs883541 AA 153 (65) 176 (64) 0.004 0.998

(Thr→Ile) AG 76 (32) 88 (32)

GG 8 (3) 9 (3)

The association between autophagy SNPs and candidemia susceptibility was assessed using the Chi-squared test or Fisher’s exact test, as appropriate
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(Sequenom) and genotypes were determined using Sequenom
matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF MS) according to the
manufacturer’s instructions (Sequenom Inc., San Diego, CA,
USA). Briefly, the SNP region was amplified by a locus-
specific polymerase chain reaction (PCR) assay. After
amplification, a single base extension from a primer adjacent
to the SNP was performed to introduce mass differences
between alleles. This was followed by salt removal and
product spotting onto a target chip with 384 patches
containing matrix. MALDI-TOF MS was then used to
detect mass differences and genotypes were assigned in
real-time using Typer 4 software (Sequenom Inc., San
Diego, CA, USA). As quality control, 5 % of samples
were genotyped in duplicate and each 384-well plate also
contained at least eight positive and eight negative controls;
no inconsistencies were observed. DNA samples of which
SNPs failed were excluded from the analyses. Variants with
call rates below 90 % were also excluded from further
analyses (n =0).

Statistics

Data were analyzed using SPSS version 20.0 (SPSS Inc.,
Chicago, IL, USA) and SAS (version 9.3, SAS Institute,
Cary, NC, USA). All statistical analyses were two-sided
and p <0.05 was considered to be statistically significant
(*). The survival was analyzed using the log-rank Mantel–
Cox test, and the CFUs were analyzed with the Student’s t -
test. Differences in cytokine production were analyzed
using the Wilcoxon signed-rank test. The Hardy–Weinberg
equilibrium (HWE) was checked for each SNP using the
program HWE Version 1.10 (Rockefeller University, New
York, NY, USA). The associations between autophagy
SNPs and candidemia susceptibility and clinical outcome
of disease (30-day survival, persistent disease, and
disseminated disease) were assessed using the Chi-
squared test or Fisher’s exact test, as appropriate. With
the application of the Bonferroni correction for multiple
testing, p <0.003 and p <0.001 were considered to be
statistically significant, respectively.

Results

Candida albicans induces LC3-II shift in mouse BMDMs

Two forms of LC3 exist; LC3-I is located in the cytoplasm,
while LC3-II is a processed form of LC3, which is associated
with the (auto)phagosome membrane. Mouse BMDMs were
stimulated with live and heat-killed C . albicans yeasts and
hyphae. LC3-I and LC3-II were measured using Western blot.

All forms, except heat-killed C . albicans yeasts, induced a
strong upregulation of LC3-II expression (Fig. 1).

ATG7 is redundant for host defense against systemic Candida
albicans infection

Because C . albicans induced autophagy in murine
macrophages, we studied the effects of autophagy deficiency
in myeloid cells on the outcome of systemic candidiasis.
Although ATG7−/−KOmice appeared to have a slightly lower
survival rate compared to WT mice, the difference was small
and did not reach statistical significance (Fig. 2a).
Furthermore, there were no differences in the fungal burdens
in the kidneys, the target organ of disseminated candidiasis, 3
or 7 days after C . albicans infection of wild-type or
autophagy-defective mice (Fig. 2b).

Candida albicans induces LC3-II shift in HeLa cells

Although autophagy does not seem to have a major impact
on the outcome of murine candidiasis, different effects may
be seen in humans. To investigate whether autophagy is
induced upon Candida stimulation in human cells, we
transfected HeLa cells with GFP-LC3 and stimulated them
with heat-killed C . albicans yeast. LC3-II was analyzed
using immunofluorescence microscopy. Heat-killed C .
albicans yeasts induced a strong upregulation of LC3-II
expression, demonstrating the induction of autophagy
(Fig. 3a). The induction of LC3-II was reverted in the
presence of the autophagy inhibitors 3MA and wortmannin
(Fig. 3b, c).

Fig. 1 Candida albicans induces LC3-II in mouse bone marrow-derived
macrophages (BMDMs). Mouse BMDMs were stimulated with live and
heat-killed (HK) C . albicans yeasts and hyphae. LC3-II was measured
using Western blot (UT=unstimulated, +ve control=positive control)
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Inhibition of autophagy does not influence the phagocytosis
and killing capacity of monocytes, or their cytokine
production upon stimulation with C . albicans

In the next set of experiments, we investigated the importance
of autophagy for the human anti-Candida host response.
Firstly, we investigated whether autophagy is important for
the phagocytosis and killing of live C . albicans by human
monocytes. Freshly isolated human primary monocytes were
stimulated with live C . albicans in the absence or presence of
3MA. Blocking autophagy with 3MA did not affect the
capacity of human monocytes to phagocytose and kill C .
albicans (Fig. 4a).

In a subsequent set of experiments, human PBMCs were
stimulated with liveC . albicans orE . coli-derived LPS, in the
absence or presence of the autophagy inhibitor 3MA. While
3MA strongly increased LPS-induced IL-1β production, the
increase in IL-1β production in C . albicans-stimulated cells
was more modest and did not reach statistical significance
(Fig. 4b). Stimulation of other proinflammatory cytokines
such as TNF and IL-6 by C . albicans was not influenced by
the modulation of autophagy (not shown).

SNPs in autophagy genes are not associated with candidemia

In order to further assess the importance of autophagy in the
anti-Candida host defense in humans, we investigated
whether polymorphisms in autophagy genes were correlated
to susceptibility with systemic candidiasis. Although 18 SNPs
in 13 different autophagy genes were studied, chosen based on
their likelihood to influence the autophagy process, none of
them were significantly associated with susceptibility to
disseminated candidiasis (Table 1). Furthermore, none of the
18 SNPs studied were correlated with circulating cytokine
concentrations in patients with candidemia or clinical outcome
of disease (data not shown).

Fig. 2 No difference in survival between wild-type (WT) and ATG7−/−

mice. a 13 WT (open circles) and 14 ATG7−/− (filled circles) mice were
injected with live Candida albicans at day 1. Survival was monitored for
30 days. The survival was analyzed using the log-rank Mantel–Cox test.
b After 3 and 7 days of infection, colony-forming units (CFUs) were
counted in the kidneys (n=7 mice/group on day 3 and n=9 mice/group
on day 7). The CFUs were analyzed with the Student’s t-test

Fig. 3 Candida-induced LC3-II in GFP-LC3 transfected HeLa cells. a
Fluorescence microscopy image (40×) showing LC3-II induction upon
heat-killed C . albicans stimulation in GFP-LC3 transfected HeLa cells.
In the presence of the autophagy inhibitors 3MA (b) and wortmannin (c),
LC3-II is no longer induced, demonstrating the specificity of the assay
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SNPs in autophagy genes do not correlate
with Candida -induced cytokine production

Finally, we investigated whether the same SNPs in autophagy
genes influenced Candida-induced cytokine production in
PBMCs isolated from healthy volunteers. There were no
statistically significant associations between the autophagy
genotypes and Candida -induced cytokine production. A
small number of these SNPs showed a tendency to influence
cytokine production, but the associations were not statistically
significant (Fig. 5).

Discussion

In this study, we investigated the role of autophagy in the anti-
Candida host immune response. Using complementary
immunological and genetic approaches in both mice and
humans, we show that autophagy is redundant for the
systemic host defense against C . albicans .

C . albicans is recognized by PRRs on the surface of the
innate immune cells, and recent studies have shown that the

engagement of PRR receptors can induce autophagy. Huang
and Brumell demonstrated that LC3-II is recruited to the
phagosome upon zymosan stimulation, through a Dectin-1-
dependent pathway [27]. Indeed, both C . albicans and
the Dectin-1 ligand β-glucan induce LC3 lipidation [28].
Furthermore, Nicola et al. also demonstrated thatCryptococcus
neoformans can induce LC3 recruitment to the phagosome,
although to a lesser extent than C . albicans [29]. LC3
lipidation does not necessarily implicate autophagy activation,
but could also be a sign of LC3-associated phagocytosis (LAP)
[30]. Here, we confirm the LC3-inducing activity of C .
albicans by demonstrating that Candida stimulation was able
to induce LC3-II in mouse BMDMs. Altogether, these data
demonstrate that fungi could induce the process of autophagy,
and this prompted us to investigate its role in host defense
against disseminated candidiasis.

Surprisingly, however, mice with a specific deletion of the
autophagy geneATG7 in their myeloid cells did not display an
increased mortality due to disseminated candidiasis.
Furthermore, there was no difference in the fungal burden in
the kidneys between wild-type and ATG7−/− mice. These data
are paralleled by those of Nicola and colleagues, who also
failed to find any difference in the survival between wild-type
and conditional ATG5−/− mice infected with C . neoformans
[29]. Although the authors reported that ATG5−/− mice die
slightly sooner compared to wild-type mice upon infection
with C . albicans , this difference was small (2 days), and they
did not replicate this finding. Furthermore, the effect on
Candida burdens in the kidneys was not reported [29]. In
short, although both Nicola et al. and our group show that
LC3-II can be induced upon fungal stimulation, the absence of
autophagy has no major effect in in vivo infection models.

Because the immune system of mice can differ
substantially from that of humans [31], we next investigated
the potential role of autophagy in the immune response against
C . albicans in humans. Similarly to what we have seen in
mouse cells, we observed that LC3-II activation was induced
upon Candida stimulation in the human HeLa cell line. Due
to the fact that autophagy modulates inflammation induced by
TLR ligands in human cells [32–34], we also tested whether
anti-Candida immune responses are modulated by autophagy.
Firstly, blocking autophagy with pharmacological inhibitors
did not affect important aspects of the Candida -induced
immune response, such as phagocytosis and killing of the
fungus, or Candida -induced cytokine production. Of note,
the inhibitors we used here are not completely specific.
3MA has been demonstrated to also be able to actually induce
autophagy in some specific situations, and to influence cell
survival through AKT1 [35]. Fortunately, similar results were
obtained with 3MA and wortmannin. More importantly, Ma
et al. previously demonstrated that the phagocytosis and
killing of C . albicans is unaffected in LC3β-deficient mouse
bone marrow-derived cells (BMDCs) [28]. The same is true

Fig. 4 Blocking autophagy does not inhibit the phagocytosis and killing
capacity of human monocytes, nor the C . albicans-induced cytokine
response. a Freshly isolated monocytes were stimulated with live C .
albicans . The amount of phagocytosed and killed Candida was
determined after 15 min and 3 h, respectively. The bars represent the
mean±standard error of the mean (SEM) of four healthy volunteers. b
Human peripheral blood mononuclear cells (PBMCs) were stimulated for
24 h with liveC . albicans orEscherichia coli-derived lipopolysaccharide
(LPS), in the absence or presence of 3MA. The concentration of IL-1β
was measured in cell culture supernatants using enzyme-linked
immunosorbent assay (ELISA). The bars represent the mean±SEM of
19 healthy volunteers. Differences in cytokine production were analyzed
using the Wilcoxon signed-rank test (***p <0.001)
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for Salmonella enterica , which can be recognized by
autophagy machinery in the absence of LC3 recruitment [36].

Secondly, the (mostly) non-synonymous SNPs in
autophagy genes (ATG10 , ATG16L1 , ATG16L2 , ATG2A ,
ATG2B , ATG5 , ATG9B , EREG , IRGM , LAMP1 , LAMP3 ,
P2RX7 , and WIPI1 ) did not influence susceptibility to
candidemia, nor did they influence serum cytokine levels in
the patients or the clinical outcome of disease. However,
several of these SNPs have been demonstrated to be
associated with immune function. For example, rs2241880
in ATG16L1 influences IL-1β and IL-6 production upon
NOD2 stimulation [34], and rs72553867 in IRGM has been
associated with inflammatory bowel disease [37]. The lack of
association here could be explained by the fact that systemic
candidiasis is a relatively rare disease, with a population
frequency of 6:100,000 [38]. However, the genetic association
study presented here has been performed in the largest cohort
available to date. With the current sample size, we should be
able to detect differences in proportions from 9 % and higher
with a power of 80 % [39]. So, although we cannot fully
exclude that these polymorphisms do influence the
susceptibility to candidiasis, at least we can conclude that
these effects, if existent, are very small. While several PRR
and cytokine polymorphisms have been shown to be
associated with susceptibility to candidemia [40, 41], the fact
that none of the autophagy SNPs is associated with an
increased susceptibility or severity of candidemia is another
argument for a redundant role of autophagy for the systemic
anti-Candida host defense in humans. Thirdly, we have
identified no correlation between genetic variants in
autophagy genes and ex vivo cytokine production by PBMCs
of healthy controls. In line with this, Ma et al. demonstrated

that cytokine production was normal in LC3β-deficient cells
that completely lack functional autophagy [28].

Despite these complementary data demonstrating that
autophagy does not play a central role for the systemic host
defense against Candida spp., we cannot exclude a role of
autophagy in other anti-Candida host defense mechanisms,
e.g., mucosal antifungal defense. In order to prevent
lysosomal degradation, Candida actively stimulates the
recycling of LAMP-1 from the phagosome [42], an important
protein involved in chaperone-mediated autophagy [43]. The
C-type lectin receptor Dectin-1 is crucial for the recognition of
β-glucans from Candida [44, 45], and defects in Dectin-1
have been previously shown to be associated with mucosal
and skinCandida infections, but not systemic candidiasis [23,
46, 47]. While Dectin-1-dependent mechanisms induce
autophagy [27], interestingly, it has also been demonstrated
that the autophagy protein Rubicon can bind CARD9,
dampening the signaling downstream of Dectin-1 [48].
Furthermore, Ma et al. showed that the recruitment of MHCII
to the phagosome was reduced in LC3β-deficient cells,
demonstrating that autophagy-related proteins may play a role
in enhancing antigen presentation and adaptive immune
responses [28]. Indeed, adaptive Th17 and Th1 responses
are known to play an important role, especially for mucosal
antifungal infections, as demonstrated in STAT1 mutations
and STAT3 deficiency syndromes characterized by defective
Th17 responses and chronic mucocutaneous candidiasis
[49–51]. Taking into consideration this entire body of
information, autophagy induction by Candida through
Dectin-1-dependent mechanisms may play a role in the
modulation of adaptive Th17 responses andmucosal antifungal
defense, but this hypothesis remains to be demonstrated.

Fig. 5 No significant correlation
between cytokine production and
genotype in healthy volunteers.
PBMCs of healthy volunteers
were stimulated with heat-killed
C . albicans conidia for 24 h.
Cytokines were measured in
cell culture supernatants using
ELISA. Data are presented as
the mean±95 % confidence
interval (CI)
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In conclusion, although C . albicans can induce LC3-II
in both mice and human cells, the consequences at the level
of phagocytosis, killing, and cytokine induction are limited,
and autophagy is redundant for the host defense against
systemic candidiasis. However, this does not exclude that
autophagy could play a role in the mucosal anti-Candida
immune response through antigen presentation and/or T-
helper cell activation, and future studies are warranted to
assess this possibility.
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