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Abstract The identification and/or prediction of the an-
timicrobial resistance of microorganisms in clinical
materials solely by molecular means in the diagnostic
microbiology laboratory is not novel. However, the abil-
ity to sequence multitudes of bacterial genomes and
deliver and interpret the resultant sequence information
in near “real-time” is the basis of next-generation se-
quencing (NGS) technologies. There have been numer-
ous applications and successes of NGS applications in
the clinical and public health domain. However, none
have, as yet, delivered perhaps the most sought after
application, i.e., the generation of microbial sequence
data for “real-time” patient management. In this review,
we discuss the use of NGS and whole-genome sequenc-
ing (WGS) of microorganisms as a logical next step for
the routine diagnosis of infection and the prediction of
antimicrobial susceptibility in the clinical microbiology
laboratory.

Introduction

The detection of the antimicrobial resistance and/or identi-
fication of microorganisms by molecular means is nothing
new to the field of clinical microbiology and continues to
evolve, albeit less rapidly than some might have predicted
[1]. As an example of this evolution, a protocol for the
detection of methicillin resistance among staphylococci us-
ing a polymerase chain reaction (PCR) assay combined with
agarose gel electrophoresis of amplified nucleic acid prod-
uct was reported in 1991 by Murakami et al. [2]. In this
study, the absence of an amplifiable mecA gene product
among Staphylococcus aureus isolates had 100 % correla-
tion with methicillin susceptibility by phenotypic testing.
The clinical utility of this approach soon became obvious
and was transformed 10 years later into a rapid “real-time”
PCR assay for the simultaneous determination of mecA
status and S. aureus species identification [3]. A commercial
version of this genotypic screening approach was cleared by
the U.S. Food and Drug Administration (FDA) shortly
thereafter [4] and within a second 10-year period, eight
automated or semi-automated assays were released for the
detection of methicillin-resistant S. aureus (MRSA) coloni-
zation of at-risk patients and/or direct identification from
positive blood cultures ([5], plus NucliSENS EasyQ®
MRSA in May of 2011). Despite improvements in process-
ing and speed, the information generated by some of these
targeted molecular assays was, at times, misleading. Desjar-
dins et al. [5] noticed a high percentage of false-positive
results after the implementation of one MRSA screening
assay that were likely due to the “kick-out” of the mecA
gene, but the retention of the target amplification site at the
orfX gene–staphylococcal cassette chromosome mec
(SCCmec) element intersection. An additional demonstra-
tion of the limitation of such targeted molecular testing was
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provided by Shore et al. [6], who identified two clonal
complex (CC) 130 MRSA isolates that were falsely negative
by an MRSA screening assay, owing to a novel SCCmec XI
element with a highly divergent mecA gene. These authors
utilized whole-genome sequencing (WGS) to elucidate the
root cause of the false-negative results.

Next-generation sequencing

Similar to the progression of single-target or multiplex am-
plification assays described above, the technological where-
withal to sequence large stretches of DNA/RNA and to
patch those sequences together into complete genomes or
transcriptomes of prokaryotic and eukaryotic organisms has
advanced rapidly following the publication of the drafts of
the first microbial [7] and human genomes [8]. The term
“next-generation sequencing” (NGS) refers to those strate-
gies that have supplemented or supplanted the Sanger
dideoxy chain termination sequencing method used nearly
exclusively through 2004 [9, 10]. While a detailed review of
the technology that comprises NGS methods is beyond the
scope of this review, a comparison of the salient character-
istics that differ between methods is shown in Table 1. In
addition, several excellent reviews of this topic are provided
within and are highly recommended [10–13].

The massive sequence output, cost per base, size of
microbial genomes, and the ability to generate large quanti-
ties of microbial DNA/RNA starting material makes NGS
an attractive option to current single-target or multiplex
amplification methods for the detection of multiple resis-
tance determinants, virulence factors, or epidemiological
markers in a single sequencing run. But is this the proverbial
use of an elephant gun to kill a mouse?

Potential for the routine use of NGS technologies
in the clinical microbiology laboratory

If we assume that NGS will become increasingly affordable,
rapid, and simple to use (i.e., DNA/RNA in; aligned, as-
sembled, annotated, and interpreted genome/transcriptome
out), and that technologies and databases will evolve to the
extent that WGS will be highly reproducible and reliable,
how could this technology be put to its best use in the
clinical microbiology laboratory? Before we speculate, let’s
try to estimate the cost of WGS in the current market.
Bacterial genomes range in size from 0.5 to 10 Mb, but
the genomes that most interest clinical microbiologists at the
moment (e.g., common human pathogens such as Escher-
ichia coli, Pseudomonas aeruginosa, and S. aureus) reside
somewhere in the 2–5-Mb range [14]. It has been estimated
that the cost of sequencing using second-generation tech-
nology ranges from $1 to $60/Mb [9–13]. Using these
figures, one could estimate the cost of sequencing a single
bacterial genome to range from $2 to $300, depending on
the technology employed. This does not include capital
outlay (which, ranging from $100 K to $1,350 K, is not
trivial) and overhead costs including labor, whereas service
agreements vary greatly. In reality, using second-generation
sequencing instrumentation and 100× coverage of a 4-Mb-
sized genome, the output of an eight-lane, two flow cell
Illumina HiSeq2000 instrument is around 1,600 genomes
over a 10-day period at a cost of around $25.00 per genome;
however, that is only the sequencing costs. When the sample
preparation steps are added, e.g., DNA/RNA extraction,
fragment preparation, library construction, ligation of bar-
coded adapters to allow for the pooling of DNA fragments,
multiplex sequencing, repeat runs, sequence quality assess-
ment, deconvoluting, eliminating bad sequences, and con-
struction of high-quality genomes (which might require re-

Table 1 Macroscopic comparison of next-generation technologies (data extrapolated from [9–12, 68])

Generationa Chemistry Platform Throughput per run
(bases)

Error rate (expressed
as a Phred score)

Read length
(bp)

Second Pyrosequencing Life Sciences 454, e.g.,
GS FLX Titanium XLR70

450 Mb Q30b 450

Second Dye termination/synthesis Illumina/Solexa, e.g., HiSeq 2500 120,000 Mb Q15b 2×150 paired

Second Ligation AB SOLiD, e.g., 5500xl 20,000 Mb Q27b 50

Third Semiconductor Ion Torrent, e.g., Ion PGM 10–100 Mb Q15–Q20 est. 100

Third Direct detection Pacific Biosciences RS 75 Mb, estimate Unknown 1,500 est.

aWith “first generation” single-chain sequencing (Sanger dideoxy chain termination sequencing) as reference, “second generation” sequencing
analyzes an ensemble of DNA molecules simultaneously by wash and scan techniques, and “third generation” sequencing interrogates molecules
without the need to halt between read steps [12]
b Phred score, Q0−10 log10(P(≥n/s), where s is the observed signal and n is the length of the homopolymer that produced the signal [69, 70], serves
here as a common-denominator indicator of sequence quality that is familiar from low-throughput dideoxy or Sanger sequencing. A score of 20 is
equivalent to an error rate of 1 in 100 bases. Scores for the Roche, Illumina, and Applied Biosystems platforms can, therefore, be estimated from
data published by Suzuki et al. [68], but this estimate should be considered as approximate
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sequencing or complicated gap-closing procedures), the es-
timate is in the range of $200 to $400 per genome (George
Weinstock, Washington University School of Medicine, St.
Louis, MO, USA, personal communication). The cost will
undoubtedly continue to drop due to improved techniques
and competition among sequencer manufacturers, so it is
reasonable to assume that, in the very near future, WGS of
microorganisms will be affordable and reasonably rapid.
Now, back to the original question: how can we put this
technology to work for improved patient care and clinical
outcomes?

Virtual resistance testing

One of the prime uses of WGS would undoubtedly include
the virtual resistance testing of bacteria and viruses [15],
both on primary patient encounters and throughout the du-
ration of antimicrobial therapy. As output and cost continue
to drop, fungi and parasites of clinical importance might be
added to the list. The clinical interpretation of potential
antimicrobial resistance secondary to the identification of
fully characterized resistance-associated sequences (point
mutations, indels, or putative open reading frames [ORFs])
would need to be extremely conservative at first. For exam-
ple, an organism would be reported as “potentially resistant”
to a specific antimicrobial agent based solely on a “hit” for a
verified resistance sequence. The beauty of this lies in the
ability to distinguish among hundreds of different antibiotic-
modifying enzymes (e.g., β-lactamases or aminoglycoside-
modifying enzymes), each of which might have subtle or
distinct substrate profiles that could be used to fine-tune
appropriate antimicrobial therapy [16]. Obviously, this ap-
proach in the absence of any phenotypic support for the
functionality of a resistance gene or mutation could lead to
major errors (reported as resistant, actually susceptible) and
preclude the use of potentially useful therapies, as would be
the case with mecA-positive strains of S. aureus that are
susceptible to oxacillin secondary to mutations in the fem
gene family [17]. Conversely, and perhaps more impor-
tantly, as it would lead to the generation of very major
errors, the absence of an identifiable gene or mutation se-
quence does not guarantee susceptibility. This potential
failure stems from NGS’ dependence on annotation and
interpretation using prior knowledge about how genetic
sequences translate to resistance phenotypes. Indeed, novel
resistance mechanisms or combinatorial factors that require
two or more separate genetic alterations for the expression
of resistance could be very difficult to predict a priori by
sequence alone without performing comparisons of an iso-
late’s genome “before” and “after” therapy. Such a compar-
ative WGS approach was used to identify the resistance
determinants associated with a strain of Acinetobacter

baumannii that had acquired tigecycline resistance during
therapy [18]. The authors determined that resistance was
associated with 18 single nucleotide polymorphisms (SNPs)
and three deletions between susceptible and resistant strains.
Therefore, the reliability of WGS as a means of predicting
antimicrobial susceptibility is critically dependent upon the
availability of a current and curated database of reference
sequences, e.g., http://ardb.cbcb.umd.edu/index.html and
http://img.jgi.doe.gov (see also [19]). While it would be
desirable to have databases such as these openly available,
it is likely that such sequence databanks will require a
licensing or user fee or perhaps be accompanied by promo-
tional advertisements! Until the odds of accurately predict-
ing antimicrobial resistance based upon the identification of
a species-specific sequence are known, confirmation using
conventional phenotypic antimicrobial susceptibility testing
(AST) would be required. In fact, it is likely that phenotypic
methods will continue to be used, at least for the foreseeable
future, to screen microbial isolates for unrecognized resis-
tance patterns, and, thus, their mechanisms of resistance,
before gene-level inquiry is pursued.

Alternatively, the need for phenotypic verification of the
genotype might be partly circumvented by transcriptome
analysis [15], thus, providing direct evidence of functional
resistance rather than using gene identification as a proxy.
An example of this approach was provided by Feng et al.
[20] for linezolid resistance in Streptococcus pneumoniae, a
phenotype which required the overexpression of proteins
and enzymes involved in sugar metabolism rather than a
defined resistance mutation or genetic locus. For second-
generation sequencing systems, this would require the con-
version of mRNA to cDNA with amplification prior to
sequencing, while third-generation systems hold the prom-
ise of direct sequencing of isolated mRNA [9–13]. A novel
protocol for the isolation and enrichment of bacterial mRNA
from total cellular RNA, including the eukaryotic ribosomal
fraction, for this very purpose has been described [21].
Transcriptome analysis would also require exposure of an
organism to subinhibitory concentrations of an antimicrobial
agent and the subsequent sequencing of mRNA transcripts
to identify upregulated resistance determinants and/or SOS
genes to predict or determine drug susceptibility. One pos-
sible pitfall of using SOS transcripts as a congener of drug
susceptibility would be the presence of small heteroresistant
subpopulations that would be undetected by this strategy.
However, heteroresistant populations could be selected up-
on prolonged antibiotic exposure with conventional AST.

Taxonomy and epidemiology

The routine use of WGS would likely open a whole new
door in terms of taxonomic classification and identification
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of novel bacterial species and subspecies. In addition to
resistance prediction, the expanding collection of complete-
ly sequenced genomes could provide for the epidemiologi-
cal typing of microorganisms at the ultimate level of
resolution—essentially generating whole-genome SNP
analysis [15, 22]. The use of WGS for epidemiological
purposes has been demonstrated with clinical isolates of
multidrug-resistant strains of A. baumannii that could not
be differentiated using standard epidemiologic tools, such as
pulsed-field gel electrophoresis and variable number tandem
repeat analyses [18]. Further, WGS would also permit pre-
viously characterized virulence genes to be detected and
identified simultaneously. The expanded use of WGS for
microorganisms has the potential to produce the equivalent
of a HapMap for microbes (http://hapmap.ncbi.nlm.nih.gov/
). When combined with data generated by the human Hap-
Map, the risk for serious sequelae when individuals of a
particular haplotype become infected by specific strains of
an organism carrying characterized virulence factors could
begin to be assessed. This is akin to the scenario described
for Helicobacter pylori virulence genes cagA, vacA, and
babA2 versus human cytokine polymorphisms when evalu-
ating the risk for the development of precancerous gastric
lesions [23]. Another promising application of NGS would
be in urinary tract infection (UTI), where genetically well-
determined bacterial virulence factors define host recogni-
tion and response during infection [24], the probability of
recurrent disease [25], and progression of uncomplicated
UTI to bacteremia [26]. Simultaneous genotyping of host
and microbe in this case could potentially define treatment
tailored to the patient’s potential for severe and recurrent
disease versus the likelihood of experiencing a single epi-
sode of uncomplicated cystitis.

Obviously, much of this technology would have broad
application in the public health domain, providing that fund-
ing is maintained at a level equivalent to that in the private
sector.

The availability of WGS, obtained using NGS technolo-
gies, as a means of supplanting all existing forms of molec-
ular epidemiology typing methods and, at the same time,
providing real-time, longitudinal analysis of outbreaks in
progress on any scale has been referred to as “Public Health
2.0” by Pallen and Loman [27]. Prominent examples of such
“Public Health 2.0” endeavors include the elucidation of the
origin of the Vibrio cholerae isolate that devastated Haiti
after the 2010 earthquake [28], where it was revealed that
the epidemic isolate was closely related to isolates from
Asia rather than circulating South American isolates and
likely introduced by human activity. The sequence of the
E. coli O104:H4 isolate, the etiologic agent of the 2011
foodborne outbreak in Germany, which saw the release of
the organism’s genome before a contaminated food source
was appreciated, provides another example [29]. This

analysis rapidly revealed, via a reductionist multilocus se-
quence typing approach that examined only seven common
housekeeping genes, that the outbreak strain was a hybrid of
enteroaggregative and enterohemorrhagic E. coli that had
acquired AAF/I fimbriae and the CTX-M-15 β-lactamase
relative to a non-outbreak strain from 2001. A more in-depth
analysis resulted from “crowd sourcing” the analysis of the
genome to the public, dubbed the “E. coli O104:H4 Genome
Analysis Crowd-Sourcing Consortium”, which has now
publicly annotated and commented on the genomes of ten
outbreak strains [30, 31].

But, as Pallen and Loman wisely point out, universal use
of WGS in the public health arena will require a level of
standardization and consistency that has not yet been
attained, as well as better control of a host of other variables,
such as the recognition of sequence differences among
heterogeneous sub-populations within outbreak-associated
organisms that could generate confounding epidemiological
findings (e.g., isoniazid or rifampin heteroresistance among
isolates of Mycobacterium tuberculosis) [27]. And while it
is clear that WGS will not be a panacea for all of the nuances
facing public health microbiologists, it may well be that
NGS may find an initial home in public health microbiology
laboratories, which have more centralized resources and a
keener interest in epidemiology, where it will serve as an-
other weapon in the arsenal that may advance the produc-
tivity of public health diagnostic laboratories beyond their
current means.

Of course, risk evaluation is not limited to bacterial
infection. Barzon et al. [32] have developed a method for
the direct identification of human papillomavirus (HPV)
genotypes in cervical samples using NGS for both single-
and multiple-genotype infections. NGS provided a sensitiv-
ity of up to 100 genome equivalents/μL of cytology sample
for high-risk strains HPV16 and 18, and had a sensitivity of
100 % for the detection of HPV DNA in cervical samples
compared to conventional PCR using consensus primers.
Further, multiple infections could be identified when present
at 1 % of the total genome equivalents. Compared to Sanger
sequencing, 454 NGS was 100 % sensitive and specific for
the detection of HPV in clinical samples and identified more
samples with mixed HPV infection. By contrast, the agree-
ment between NGS and the INNO-LiPA HPV Genotyping
Extra kit (Innogenetics) was genotype-dependent [32].

Microbiome analysis

One of the most powerful applications of NGS has been its
role in understanding the complex biodiversity of the human
microbiome: the plethora of microorganisms colonizing ev-
ery “nook and cranny” of the human body. While we are
only beginning to appreciate what constitutes the normal or
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abnormal microbial constituents of the gut [33–38], lower
and upper respiratory tract [39, 40], vagina [41–44], skin
[45–48], urinary tract [49–51], gingiva [52, 53], and wounds
[54, 55], it is not difficult to envision that human micro-
biome analysis as a means of evaluating and stratifying
different disease processes could become part of mainstream
clinical management. Indeed, gut microbiome analysis al-
ready shows promise in classifying disease processes such
as inflammatory bowel disease into more specific entities,
such as Crohn’s disease or idiopathic bowel syndrome
[56–59], and as more detailed information is filtered from
so-called “altered microbiome” studies, it should be possible
to winnow disease-associated changes down to one or two
highly predictive species. Indeed, the “alpha-bug” theory
postulates that there is an association between the develop-
ment of colon cancer in mice, and potentially in humans, to
gut over-colonization with and exposure to enterotoxigenic
Bacteroides fragilis [60]. A further promise of human
microbiome studies are their ability to register the microbial
diversity of the human microbiome during and in response
to clinical therapy, so that the resultant information can be
used to both predict prognosis and alter unfavorable clinical
outcomes. In a seminal study, Ubeda et al. assessed the
potential of cataloging the human gut microbiome by NGS
in the clinical management of allogeneic hematopoietic stem
cell transplant (allo-HSCT) patients. The authors observed
that post-antimicrobial overpopulation of the intestinal
microbiome with vancomycin-resistant enterococci (VRE)
rendered this patient population at higher risk of developing
bacterial sepsis compared to allo-HSCT patients whose in-
testinal microbiome was not enriched with VRE. Thus, at
least in this highly fragile patient population, the definition
of the composition of the intestinal microbiome affords
some clinical utility, especially as these patients might serve
as candidates for the administration of probiotic microbes in
an attempt to prevent bacterial sepsis [61].

Challenges

Every new technology and its implementation into a specific
environment is accompanied by a plethora of challenges,
and this will certainly be true for the inclusion of NGS
technologies in the clinical microbiology laboratory. A no-
table challenge is the development of highly reproducible
NGS sequencing technology/software platforms that can
provide clinically actionable reports to physicians at a pace
equal to, if not vastly greater than, the culture-based meth-
ods used at present. This, coupled with the construction and
maintenance of readily accessible databases of reference
microbial genomes up-to-date with contemporary and his-
torical resistance determinants (e.g., discrete genes, indels,
SNPs, and promoter/regulator mutations), is critical to the

success of NGS technologies in the clinical microbiological
laboratory. Also essential to the reproducible identification
of the genetic elements and mutations listed above are the
resultant sequence “read lengths”. While monolithic “read
lengths” are reported by manufacturers, this is typically a
rule-of-thumb truncation of longer individual reads that are
low quality on the their distal ends but may, nevertheless, be
“piled” in non-truncated form to increase the likelihood that
a contiguous sequence is mapped correctly. In cases where
only short reads are obtained, the sequencing of clinical
isolates using reference genomes as templates would be
complicated by difficulties calling SNPs, indels, and copy
number variation [62].

An additional, yet not to be overlooked, challenge is the
ability of laboratory directors [63] and personnel to collect,
manage, analyze, and interpret the colossal amounts of bio-
informatic data that will be generated by NGS runs. The
treatment of such data may require skills that are well
beyond those of the current workforce. Thus, as a profes-
sion, we as clinical microbiologists must ensure that the
emerging workforce are endowed with the skills to face
the challenges of NGS in the clinical microbiology labora-
tory, and that the proficiency of this workforce is
maintained.

On the regulatory level, the clinical validation of molec-
ular assays [64] is a relatively common activity, however,
the mechanism(s) by which to validate clinical NGS-based
assays is as yet undefined, particularly as concepts such as
limit of detection and normal ranges are difficult to define
for microbiota. Thus, as with training of the workforce, we
as a profession must ensure that we play an active role in
defining the mechanism(s) by which NGS-based assays may
become validated and verified for clinical use. Any working
assay must be validated on many levels: sample and library
preparation, sequence generation and subsequent automated
annotation and interpretation (which are highly dependent
on the platform and analysis pipeline used [Table 1]), and
distillation of the data into a reportable result that carries
enough weight to influence clinical outcomes. Initially, the
trading of split samples between institutions with different
approaches to similar tests may serve as sufficient proficien-
cy testing but, in the long term, national and international
regulatory bodies will need to set clear standards.

Finally, classical indicators of a disordered microbiota
such as “clue cells”, gingivitis, and diarrhea may be more
familiar to physicians and deemed more worthy paying for
over reports generated by WGS analyses. This problem may
be mitigated by the existence of problems where a great deal
of sequence information can be distilled into a well-
established risk analysis from the microbial side (e.g.,
HPV [32, 65] or hepatitis C virus [66] typing) or the per-
spective of the host (e.g., carrier testing for an array of
diseases such as cystic fibrosis at birth [67]).
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Summary

As the cost and complexity of sequencing platforms
declines and access to curated databases containing validat-
ed sets of resistance and virulence markers become readily
available, the routine use of NGS/WGS technology in the
diagnostic clinical microbiology laboratory will, in our
opinion, become increasingly commonplace. We also
strongly believe that sequence-based diagnostics will not
likely replace conventional microbiological methods, in-
cluding growth-based assays, any time soon. There will be
a continued need to validate novel resistance mechanisms
versus standardized in vitro AST, characterize previously
unrecognized agents by microscopic and colonial morphol-
ogy and metabolic profiles, establish animal models of
infection, and establish parallel, low-cost methods of iden-
tification. All of these alternatives will work in a supple-
mentary fashion to provide a blend of complexity suited to
the needs of individual laboratories. Regardless of the mix
of technologies used in the future, it is likely that sequence-
based diagnostics will be a major part of the blend. Clearly,
it is an exciting time for clinical microbiology.
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