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Abstract The antifungal properties of 25-azalanosterol was
investigated. Compared to normal antifungal reagents,
fluoconazole, clotrimazole and voriconazole, it exhibited
significant anti-Candida activity (the minimum inhibitory
concentration [MIC] ranges were 0.125–8, 0.5–8 and 0.5–
32 µg/mL against C. albicans, C. krusei and C. glabrata,
respectively), but showed little toxicity to mice liver cells at
clinical dosage after 24 h of exposure, with the lowest
lactate dehydrogenase and the highest ED50 compared to
four other azoles antifungal agents. 25-Azalanosterol
inhibited the incorporation of [methyl-3H3] AdoMet into
the C-24 of ergosterol in whole cells of C. albicans. Thus,
25-azalanosterol, as an inhibitor of the growth of C.
albicans in vitro, may have considerable potential as a
new class of anti-Candida agent that lacks toxic side effects
in the mammalian host.

Introduction

The occurrence frequency of human fungal infections have
been increasing over the past decade in response to a
combination of factors, including advances in invasive
surgical techniques which allow for opportunistic pathogen
access, immuno-suppression employed in transplantation or
resulting from chemotherapy, disease such as acquired

immune deficiency syndrome (AIDS), and the frequent use
of cytotoxic and/or antibacterial drugs [1]. Candidiasis was
caused by Candida species; typically, C. albicans was the
predominant causal organism of most candidiasis [2]. Other
species, including C. krusei, C. glabrata, C. dubliniensis
and C. inconspicua, have been recognised [3].

Until recently, fluoconazole and amphotericin B were the
standard therapy for many fungal infections, but a high
frequency of renal or hepatic toxicity had limited their use
[4]. Although many research groups have carried out
intensive research in attempts to develop new antifungal
drugs, and some of which have now entered clinical trials,
some new candin antifungal agents were also investigated
[5]. Moreover, side effects were noted for currently
available antimycotics at the therapeutic dosage and reports
of fungal pathogens resistant to antifungal agents were
increasing in frequency [6]. The success in developing a
new drug would depend upon the identification of new
antifungal targets that had no mammalian host counterpart,
but a broad spectrum of pathogenic fungi [7].

The current treatment of this fungal infection involved
chemotherapy with azole antifungal drugs which could
inhibit the cytochrome P-450-dependent 14a-demethylation
of lanosterol or 24-methylene-24,25-dihydrolanosterol,
resulting in a decreased availability of an essential
membrane component, such as ergosterol, and a
corresponding accumulation of 14a-methylated sterols in
cell membranes, which eventually lead to cell growth arrest
[8]. We have previously demonstrated a series of sterol
substrate analogues which significantly inhibited the
growth of Candida species [9]. Here, compared to normal
antifungal agents, fluoconazole, clotrimazole, ketoconazole
and voriconazole, we describe the effects of a lanosterol
derivative, 25-azalanosterol (Fig. 1) on: (i) the growth of
Candida species; (ii) activities of Candida sterol C-24
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methyltransferase (SMT; E.C. 2.1.1.142); and (iii) mamma-
lian rat liver toxicity. Our results indicated that fungal
growth inhibition by low levels of 25-azalanosterol was
clearly caused by the inhibition of sterol biosynthesis. Also,
25-azalanosterol had the lowest liver toxicity compared to
other antifungal agents. So, 25-azalanosterol may have
considerable potential as a novel anti-Candida agent that
lacks mammalian host toxicity.

Materials and methods

Materials and reagents

The fungal strains used in this study were C. albicans, C.
krusei and C. glabrata, which were clinically isolated from
candidiasis patients by the Department of Clinical Labora-
tory, Shanxi Modern Woman’s Hospital, China. The cells
were maintained on slants of Sabouraud’s dextrose agar at
4°C. For culture, the cells were inoculated and grown at
35°C for 18 h in YEPD medium (yeast extract, 10 g/L;
peptone, 20 g/L; bidest water, 960 mL, after autoclaving,
20mL of sterile glucose solution was added (50% wt/vol),
pH 7.0; Meidi Biochemical Product Co., Wuxi, China)
[10]. Late exponential phase cells (18 h) were harvested
and washed by centrifugation, and used for the preparation
of microsomes.

The antifungal agents, fluoconazole, clotrimazole, ketoco-
nazole and voriconazole, were purchased from Kangning
Medicine Co. (Shandong, China). 25-Azalanosterol was
synthesised and supported by the Shanxi Chemical Industrial
Institute. AdoMet iodide salt was purchased from Sigma and
[methyl-3H3] AdoMet (10–15 Ci/mmol) was purchased from
PerkinElmer Life Sciences. All other reagents and chemicals
were purchased from Sigma Co. Ltd.

BALB mice (Experimental Animal Laboratory, Shanxi
Medical University), 70 days old, were divided into five
different groups (six mice/group) and were housed singly.
The liver from six mice in each group at 70 days were
dissected separately and cultivated in RPMI1640 medium.
The cells were mechanically dispersed by repeated triturating
and filtered through a 200-µm metal mesh. Two-millilitre
aliquots of the cell suspension were plated at a final density of
106 cells/mL for cytotoxicity analysis. Hepatic cytotoxicity
was evaluated by lactate dehydrogenase (LDH) activity and
MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazo-
lium bromide) in mice liver homogenates.

Inhibition of growth

Minimum inhibitory concentrations (MICs) to C. albicans
(n=53), C. krusei (n=13) and C. glabrata (n=21) were
estimated after inoculation in RPMI1640 medium contain-
ing various doses of antifungal agents, 25-azalanosterol,
fluoconazole, clotrimazole, ketoconazole and voriconazole.
The preincubation of each Candida species were carried out
at 35°C, and late exponential phase cells were washed with
PBS (pH 7.0) and resuspended in RPMI medium. The
antifungal agents were dissolved in dimethyl sulphoxide
(DMSO) and then added to inoculation, with a final cell
concentration of approximately 1.5×106 cells/mL The
concentrations of the antifungal agents were varied from
0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64 to 128 µg/mL. The
diluted Candida cells with the addition of varied doses of
antifungal agents were incubated at 35°C for 24 h. Growth
was determined by cell counts and quantisation of the
numbers of colony-forming units (CFU) [11].

Microsomal preparation

The preparation of microsomes of C. albicans was carried
out by a method described previously [12]. The cells were
broken with a French Pressure cell at 20,000 psi and the
cell debris was removed by centrifugation at 100,000g for
1 h at 4°C. Microsomal pellets were resuspended to a final
protein concentration of 10 mg/mL, and the mixture was
stored at −80°C until use. Protein concentration was
determined at A600nm with bovine serum albumin as a
standard. Assays for C24-SMT activity were conducted as
described in our earlier studies [13]. The activity of SMT
catalysis was characterised with respect to the observed
ability of the enzyme to produce hexane-extractable 3H in
the presence of [methyl-3H3] AdoMet. Briefly, the reaction
mixture of freshly prepared enzyme in a final volume of
600 µL contained varying concentrations of sterol substrate
from 5 to 100 µM, a fixed amount of 100 µM [methyl-3H3]
AdoMet (0.6 µCi) and Tween 80 (1%, v/v), and 100 µL of
C. albicans SMT and was incubated for 60 min. The
enzymatic reaction was terminated by the addition of
600 µL of 10% methanolic KOH, followed by boiling for
20 min and extracting with three 2.5-mL portions of hexane
[14].

Sterol biosynthesis assay

Cells of Candida species were incubated with radio-
labelled substrates, [methyl-3H3] AdoMet. Then, washed
cells were incubated in buffer A (50 mM Tris-HCl, 2 mM
MgCl2, 2 mM β-mercaptoethanol and 20% glycerol (v/v),
pH 6.8) and harvested after 18 h at 30°C by centrifugation
at 10,000g for 20 min. The washed cells were resuspended

Fig. 1 Structure of
25-azalanosterol
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in buffer B (0.1 mM potassium phosphate buffer, including
1 mM EDTA, 0.5 mM dithiothreitol and 20% (vol/vol)
glycerol). Test compounds dissolved in DMSO were added
to the cell suspensions (980 μL, 108 cells/mL). The reaction
mixture also consisted of cofactor solution (100 μl; con-
taining 1 μmol of NADP+, 1 μmol of NADPH, 1 μmol of
NAD+, 3 μmol of glucose-6-phosphate, 5 μmol of ATP and
3 μmol of reduced glutathione) and divalent cation solution
(10 μL of 0.5 mM MgCl2 and 5 μL of 0.4 mM MnCl2).
The reaction was initiated by the addition of 100 μL of
[methyl-3H3] AdoMet and the cells were incubated at 30°C
for 1.5 h with shaking (110 rpm). The reaction was stopped
by the addition of 1 mL 10% (w/v) KOH, 90% ethanol, and
the samples were saponified at 80°C for 30 h [15]. The
saponified lipids were then extracted with hexane and
combined for separation by high-performance liquid chro-
matography (HPLC). All of the collections of each peak
from HPLC were analysed by combined capillary gas
chromatography-mass spectrometry (GC-MS), performed
on a Hewlett-Packard 6890 GC-quadropole mass selective
detector interfaced with a Hewlett-Packard Chemstation. A
fused silica capillary column (0.25 µM/mm, i.d. 30 µm)
coated with a 0.25-µm film of ZB-5 purchased from
Phenomenex, Torrrance, CA, was employed with He as
the carrier gas (10 psi) set at 1.2°C (1 min hold) to 280°C at
20°C/min. EI were recorded at 70 eV with the electron
multiplier voltage set at 2,200 V. Full mass spectra were
obtained and the products identified by a comparison of the
retention time and spectrum to those of the authentic
standard referenced to cholesterol [12].

LDH assay for hepatic damage

Liver cells collected from 70-day-old mice were resus-
pended with a final density of 1.5×106 cells/mL in
RPMI1640 medium and incubated for 60 min with a
certain dose (maximum of each MICs determined above) of
antifungal agents at 37°C, 5% CO2. As a quantitative
measure of cellular toxicity, the cytotoxic release of LDH in
the culture medium was estimated using the CytoTox96 non-

radioactive cytoxicity assay kit purchased from Promega Co.
Ltd. The activities of LDH released into the culture medium
were determined spectrophotometrically by A490nm at 3, 6,
12 and 24 h separately [16].

MTT assay for hepatic proliferation

MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazo-
lium bromide) (Promega Co. Ltd.) was a yellow water-soluble
tetrazolium dye that was reduced by liver cells to a water-
insoluble purple formazan. The amount of formazan could be
determined spectrophotometrically. The A490nm of liver cells
preincubated with varied concentrations of antifungal agents
(0, 2.5, 5, 7.5, 12.5, 25, 37.5 and 50 µg/mL) were recorded
and plotted in order to determine the ED50, which is the
concentration of antifungal agents giving one-half inhibition
to cell proliferation [17].

Results

Effect of 25-azalanosterol on the growth of Candida
species

The antifungal activities of 25-azalanosterol, fluoconazole,
clotrimazole, ketoconazole and voriconazole against Candida
species were investigated and the results are summarised in
Table 1. 25-Azalanosterol showed a wide range of anti-
Candida activities, with MIC values ranging from 0.125 to
32 μg/mL. In particular, 25-azalanosterol showed significant
potency against C. albicans, C. krusei and C. glabrata,
which were close to clotrimazole, ketoconazole and vorico-
nazole, but much greater than fluoconazole.

Effect of 25-azalanosterol on sterol biosynthesis

To determine the mechanism and target of growth inhibition
by 25-azalanosterol, the relative rates of total cellular sterol
synthesis in whole-cell homogenates of Candida species
were measured in the presence of 80 μM 25-azalanosterol

Table 1 Minimum inhibitory concentrations (MICs) of 25-azalanosterol and other antifungal agents against Candida species

Candida species MIC range (MIC50, MIC90) (μg/mL)

25-Azalanosterol Fluoconazole Clotrimazole Ketoconazole Voriconazole

C. albicans 0.125–8 0.125–8 0.125–16 0.125–4 0.125–4
(n=53) (0.5, 4) (0.5, 4) (0.25, 4) (0.125, 1) (0.125, 2)
C. krusei 0.5–8 0.5–32 0.5–8 0.125–8 0.5–16
(n=13) (0.5, 4) (0.5, 16) (0.5, 8) (0.125, 4) (0.5, 8)
C. glabrata 0.5–32 2–32 0.5–32 0.5–32 0.5–8
(n=21) (1, 16) (4, 32) (1, 16) (2, 16) (0.5, 8)
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with [methyl-3H3] AdoMet. This approach was based on
our earlier observation that 25-azalanosterol is a potent
inhibitor of C24-SMT activity (Scheme 1) [14]. In this
experiment, [methyl-3H3] AdoMet was added to Candida
species that had been cultured previously in a medium
without amino acids, in phosphate buffer containing
glucose (2%, w/v). As shown in Fig. 2, the incorporation
of [methyl-3H3] AdoMet into the C-24 of ergosterol was
especially inhibited around 50% by the presence of 80μM
25-azalanosterol. The decrease in the incorporation of
[methyl-3H3] AdoMet into ergosterol appeared to be a
consequence of the inhibition of reactions involving C24-
SMT, which was the key enzyme that catalysed the
transmethylation of sterols from the precursor. Our previous
study also indicated a dose-dependent inhibition of the rate
of [methyl-3H3] AdoMet incorporation into ergosterol by
25-azalanosterol (IC50 20μM) [12].

Hepatic toxicity of 25-azalanosterol on mice liver cells

LDH is released when cells are damaged or destroyed.
Because of this, the LDH test could be used as a general
marker of injury to cells or as a monitor of progressive
conditions [17]. So, the LDH of mice liver cells exposed to
antifungal agents for certain periods were analysed. From
Fig. 3, it is clear that 25-azalanosterol exhibited the lowest
inhibition compared to clotrimazole, ketoconazole and
voriconazole, and especially much lower than fluoconazole.
Meanwhile, since the MTT provided a more efficient
format for assessing cellular proliferation, the critical
component of the CellTiter 96 AQueous One Solution
assay was used in this study to analyse the effect of these
five antifungal agents on mice liver cell proliferation.
Figure 4 shows the ED50 and MICs of mice liver cells

Scheme 1 Lanosterol-ergosterol pathway and blockage by 25-azalanosterol

Fig. 2 Sterols biosynthesised in Candida species after incubation
with the addition of 80 μM 25-azalanosterol. The sterol concentrations
in the supernatant of cell homogenates were analysed by high-
performance liquid chromatography (HPLC) and gas chromatography-
mass spectrometry (GC-MS). The experimental results are shown as
the average of three repetitions
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exposed to five antifungal agents for 24 h. Clearly, the
ED50 of 25-azalanosterol was the highest, which meant that
its toxicity to liver cells was the lowest. Also, their ED50

and MICs were significantly different. Except for 25-
azalanosterol, the ED50 of the other three antifungal agents,
fluoconazole, clotrimazole and ketoconazole, were much
lower than their maximal MICs, while the two values of
voriconazole were close. This meant that 25-azalanosterol
was the only agent which exhibited, at the clinical dosage
level, little toxicity to liver cell, because its ED50 was
higher than the maximum MIC, which suggests that 25-
azalanosterol may have some form of indirect effect on
C24-SMT in vivo.

It is well known that mammals and fungi share many
reactions in their pathways of sterol biosynthesis [18], so we
investigated whether lanosterol analogue, 25-azalanosterol,
also inhibited mammalian cholesterol biosynthesis. As
shown in Fig. 2, 25-azalanosterol (80 μM) almost complete-
ly blocked ergosterol biosynthesis by causing the accumu-
lation of lanosterol and zymosterol, which, otherwise, would
have been demethylated by 14-demethylase in Candida
species, but exhibited virtually much less inhibition to mice
hepatic cholesterol biosynthesis, and little toxicity to
mammalian cells at the clinical dosage level.

Discussion

The azoles are fungistatic drugs by the inhibition of the
cytochrome P-450-mediated removal of the C-14 methyl
group from the ergosterol precursor, lanosterol, which

are then subjected to the accumulation of resistant
phenotypes due, in part, to the need of continuous
administration to patients who are immuno-compromised
[19]. Resistance has been reported in C. albicans as well
as in other species of Candida [20, 21]. In addition, other
fungal pathogens, including species of Histoplasma,
Cryptococcus and Aspergillus [2], have been the subjects
of recent reports on azole resistance. The increase in
infections, coupled with the reduced efficacy of the
currently available drugs, makes the discovery and
development of new antifungal agents an urgent matter.
The pathway for fungal sterol biosynthesis had provided
an excellent target for antifungal development, but there
remain additional sites in the pathway that have not been
thoroughly investigated.

The identification of a novel antifungal drug with unique
modes of action is desirable, since fungi resistant to
currently available antifungal agents would unlikely be
cross-resistant to these newer drugs. Based on our previous
results that described the anti-Candida activities of 25-
azalanosterol [12, 18], here, we set out a new class of drug
derived from lanosterol that may be targetted against major
enzymes involved in fungal growth. Our results indicated
that the chemical modification of the natural lanosterol,
such as the addition of a methyl, fluoro or bromol group,
could lead to significant improvements in inhibitory activity
against the growth of C. albicans [13, 22]. This modifica-
tion was likely to have made the compound more lipophilic
in nature, which, in turn, may have made it a more effective
inhibitor of enzymes involved in lipids. However, this
modification appeared to have changed its inhibitory
behaviour against C24-SMT in vitro. In contrast, the
inhibition abilities of fluoconazole or clotrimazole were not
related to the inhibition ability of sterol C-14 demethylation,
which were consistent with the results obtained in other studies
[23]. Borgers et al. [24] reported that, in addition to their
effects on sterol synthesis, the triazole antifungal agents
affected ATPase as well as other membrane enzymes,
membrane transport and fatty acid metabolism, which caused
physical membrane damage. Thus, although 4-methyl-lano-
sterol effectively blocked the C24-SMT reaction in vivo, it
failed to directly inhibit this enzyme activity in vitro. One
explanation for this result may be that 25-azalanosterol was
metabolised by the fungus to an inhibitor of C24-SMT
activity. Alternatively, 25-azalanosterol may have had an, as
yet unidentified, indirect effect on the C24-SMT reaction in
vivo, which may mean that derivatives of lanosterol will
represent a new class of antifungal compound with low host
toxicity. These compounds may provide a safer alternative to
fluoconazole or clotrimazole.

In conclusion, our results suggested that 25-azalanosterol
has promising selective anti-Candida activity and deserves
further in vitro and in vivo investigation.
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