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Abstract. Adaptive mesh design based ona posteriorierror control is stud-
ied for finite element discretisations for variational problems of Signorini
type. The techniques to derive residual based error estimators developed,
e.g., in ([2,10,20]) are extended to variational inequalities employing a suit-
able adaptation of the duality argument [17]. By use of this variational ar-
gument weighteda posterioriestimates for controlling arbitrary functionals
of the error are derived here for model situations for contact problems. All
arguments are based on Hilbert space methods and can be carried over to the
more general situation of linear elasticity. Numerical examples demonstrate
that this approach leads to effective strategies for designing economical
meshes and to bounds for the error which are useful in practice.

1 Introduction

A fundamental model situation for contact problems in elasticity is Sig-
norini’s problem describing the deformation of an elastic body which is
unilaterally supported by a frictionless rigid foundation. We intend to derive
efficienta posteriorierror control techniques for this equation with special
emphasis on local error phenomena, e.g., the error for stresses in the contact
zone. In order to demonstrate the concept for our method fora posteriori
error estimation, we first consider the simplified case



66 H. Blum, F.-T. Suttmeier

−1u = f in � ⊂ R
2,

u = 0 on0D, (1.1)

u ≥ 0, ∂nu ≥ 0, u ∂nu = 0 on0C,

where0C = ∂� \ 0D and∂nu = ∇u · n.
Problem (1.1) is to be solved by the finite element Galerkin method on

adaptively optimised meshes. By variational arguments, we derive weighted
a posteriorierror estimates for controlling arbitrary linear functionals of the
error. This approach leads to effective strategies for designing economical
meshes and to bounds for the error which are useful in practice.The extension
to Signorini’s problem is illustrated in the last section.

The basis for applying the finite element method to (1.1) is the formu-
lation as a variational inequality, i.e., a solutionu ∈ K is sought which
satisfies

(∇u, ∇(ϕ − u)) ≥ (f, ϕ − u) ∀ϕ ∈ K, (1.2)

where we setV = {v ∈ H 1 | v = 0 on0D} andK = {v ∈ V | v ≥ 0
on 0C}. Here, and in what follows,Hm = Hm(�) denotes the standard
Sobolev space ofL2-functions with derivatives inL2(�) up to orderm.

Equation (1.2) is uniquely solvable (cf. Lions and Stampacchia [14])
and, under appropriate smoothness conditions on the boundary and data,
the solution is known to satisfy the regularity resultu ∈ H 2(�) (see Brézis
[3]).

In the following, we apply the finite element method on decompositions
Th = {T } of � consisting of quadrilateralsT satisfying the usual condition
of shape regularity. Simplifying notation, we assume the domain� to be
polyhedral in order to ease the approximation of the boundary. More general
situations may be treated by the usual modifications. For ease of mesh re-
finement and coarsening, hanging nodes are allowed in our implementation.
The width of the meshTh is characterised in terms of a piecewise constant
mesh size functionh = h(x) > 0, wherehT := h|T = diam(T ). We use
standard bilinear finite elements to construct the spacesVh ⊂ V and assume
thatKh = K ∩ Vh.

Eventually, the finite element approximationuh of u in (1.2) is deter-
mined by

(∇uh, ∇(ϕ − uh)) ≥ (f, ϕ − uh) ∀ϕ ∈ Kh. (1.3)

This finite dimensional problem can be shown to be uniquely solvable fol-
lowing the same line of arguments as in the continuous case. Optimal order
a priori error estimates in the energy norm have been given, for example,
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in Falk [7] and Brezzi et al. [4]. Dobrowolski and Staib [6] showO(h)-
convergence in the energy norm without additional assumptions on the struc-
ture of the free boundary. Error estimates with respect to theL∞-norm have
been obtained, e.g., by Nitsche [16] based on a discrete maximum principle.

Below, we shall demonstrate how functionalsJ (u−uh) of the error can
be controlled in ana posteriorimanner, i.e., we estimate the error in terms
of quantities at the element level containing only the discrete solution and
the data of the problem.

2 A posteriori error estimate

For elliptic variational equalities, i.e., in the caseK = V , many different,
but related, approaches fora posteriorierror control have been developed
in the last two decades; see, e.g., Verfürth [21] for a survey. Most estimators
are designed to control the error in the energy norm. A general concept for
estimatinge = u − uh for more general error measures given in terms of
a linear functionalJ (·) has been proposed in Becker and Rannacher [2]
and further developed, e.g., in Kanschat [10] and Suttmeier [20]. One main
ingredient in deriving such residual baseda posterioriestimates is a duality
argument known as the “Aubin–Nitsche trick” froma priori analysis. In
principle, such techniques can be carried over to variational inequalities
when, for example, penalty techniques are employed to avoid the explicit
treatment of the constraints. This again leads to variational equalities of the
form mentioned above.

In the present paper, we attack the original unpenalised problem. Since
we are mainly interested in local phenomena like the normal stress on the
contact surface, we intend to adopt local control techniques to estimate a
functionalJ (e).

In Natterer [17], there is described a generalisation of Nitsche’s trick
for variational inequalities, which we employ to derive ana posteriorierror
estimate for the scheme (1.3). To this end, we consider the dual solution
z ∈ G of

(∇(ϕ − z), ∇z) ≥ J (ϕ − z) ∀ϕ ∈ G, (2.1)

whereG = {v ∈ V | v ≥ 0 onBh and
∫
0C

∂nu(v + uh) ≤ 0} andBh =
{x ∈ 0C | uh(x) = 0}.

In order to show thatz + u − uh ∈ G, we observe thatz + u − uh ≥ 0
onBh, since onBh ⊂ 0C we haveu ≥ 0, uh = 0. Furthermore,

∫
0C

∂nu((z + u − uh) + uh) =
∫

0C

∂nuz ≤ −
∫

0C

∂nuuh ≤ 0.
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Now, we can chooseϕ = z+u−uh as a test function in (2.1) and obtain

J (e) ≤ (∇(u − uh), ∇z).

Next, we use the solutionU ∈ V of the nonrestricted problem

(∇U, ∇ϕ) = (f, ϕ) ∀ϕ ∈ V,

to rewrite (1.2) and (1.3) in the form

(∇(U − u), ∇(ϕ − u)) ≤ 0 ∀ϕ ∈ K, (2.2)

(∇(U − uh), ∇(ϕ − uh)) ≤ 0 ∀ϕ ∈ Kh. (2.3)

It is easily seen thatuh ∈ Wh = {v ∈ V | v ≥ 0 onBh} ∩ Vh, i.e., uh

coincides with the solutioñuh ∈ Wh of the discrete variational inequality

(∇(U − ũh), ∇(ϕ − ũh)) ≤ 0 ∀ϕ ∈ Wh. (2.4)

With zh ∈ Wh and choosingϕ = uh + zh in (2.4) we see that the first
term on the right-hand side of the identity

(∇(u − uh), ∇zh) = (∇(U − uh), ∇zh) + (∇(u − U), ∇(zh + uh − u))

+ (∇(u − U), ∇(u − uh)) ∀zh ∈ Wh, (2.5)

is negative. So also is the last term by takingϕ = uh in (2.2). To sum up,
we have shown the inequality

(∇(u − uh), ∇zh) ≤ (∇(u − U), ∇(zh + uh − u)) ∀zh ∈ Wh. (2.6)

We now proceed with estimatingJ (e) by

J (e) ≤ (∇(u − uh), ∇(z − zh)) + (∇(u − uh), ∇zh)

≤ (∇(u − uh), ∇(z − zh)) + (∇(u − U), ∇(zh + uh − u))

= (∇(u − uh), ∇(z − zh)) + (∇(u − U), ∇(z + uh − u))

+ (∇(u − U), ∇(zh − z)).

Due tou∂nu = 0 on0C , we have, forz ∈ G,

(∇(u − U), ∇(z + uh − u)) =
∫

0C

∂nu(z + uh) ≤ 0.

Eventually, we obtain thea posteriorierror estimate

J (e) ≤ (∇(U − uh), ∇(z − zh)). (2.7)

With standard techniques this can be exploited as follows. Element-wise
integration by parts yields

J (e) ≤
∑
T ∈Th

{
(f + 1uh, z − zh)T − 1

2([∂nuh], z − zh)∂T

}
, (2.8)
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where, for interior interelement boundaries,[∂nuh] denotes the jump of the
normal derivative∂nuh. Furthermore we set[∂nuh] = 0 and[∂nuh] = ∂nuh

on edges belonging to0D and0C respectively.
From (2.8), we deduce thea posteriorierror bound

|J (e)| ≤
∑
T ∈Th

ωT ρT =: ηweight, (2.9)

with the localresidualsρT andweightsωT defined by

ρT := hT ‖f + 1uh‖T + 1
2h

1/2
T ‖n · [∇uh]‖∂T ,

ωT := max
{
h−1

T ‖z − zh‖T , h
−1/2
T ‖z − zh‖∂T

}
.

In general, the weightsωT cannot be determined analytically, but have
to be computed by solving the dual problem numerically on the available
mesh. To this end, interpretingzh as a suitable interpolant ofz, one uses the
interpolation estimate

ωT ≤ Ci,T hT ‖∇2z‖T , (2.10)

for z ∈ H 2(T ). For less regularz an estimate similar to (2.10) could be used
involving a lower power of a local mesh size, which typically corresponds to
higher values ofωT . To evaluate the right-hand side in (2.10) one may simply
take second order difference quotients of the approximate dual solutionz̃h,

ωT ≈ ω̃T := C̃i,T h2
T |∇2

hz̃h(xT )|, (2.11)

wherexT is the midpoint of elementT . This results in approximatea pos-
teriori error bounds using

ηweight ≈
∑
T ∈Th

ω̃T ρT . (2.12)

It has been demonstrated in Becker and Rannacher [2] that this approxi-
mation has only minor effects on the quality of the resulting meshes. The
interpolation constantCi may be set equal to one for mesh designing.

In the following, we compare thisweightedestimator against the tradi-
tional approach of Zienkiewicz and Zhu [22]. This error indicator for finite
element models in structural mechanics is based on the idea of higher–order
stress recovery by local averaging. The element-wise error‖σ − σh‖T is
thought to be well represented by the auxiliary quantity‖Mhσh − σh‖T ,
whereMhσh is a local (super-convergent) approximation ofσ . The corre-
sponding (heuristic) global error estimator reads

‖σ − σh‖ ≈ ηZZ :=
( ∑

T ∈Th

‖Mhσh − σh‖2
T

)1/2
, (2.13)

with σ = ∇u andσh = ∇uh.



70 H. Blum, F.-T. Suttmeier

RemarkThe choice of (2.1) is not uniquely determined. Other approaches
in a priori analysis in similar situations can be found, e.g., in Mosco [15].
Here separate dual problems for the negative and positive part of the error
are considered, but it seems to be difficult to exploit these techniques fora
posteriorianalysis, since the data of the problem do not enter the estimate
directly.

3 Numerical results

The implementation is based on the tools of the object-oriented FE package
DEAL [1]. The solution process is simply done by an iteration of Gauss-
Seidel-type (cf. Glowinski et al. [9]). The solutions on very fine (adaptive)
meshes with about 200,000 cells are taken asreferencesolutionsuref for
determining the relative errors

Erel := |J (uh) − J (uref)|/|J (uref)|
on coarser meshes, while

Ratio := η(uh)

|J (uref) − J (uh)|
are the overestimation factors of the error estimators.

Let an error tolerance TOL or a maximal number of cellsNmax be given.
Starting from some initial coarse mesh the refinement criteria are chosen
in terms of thelocal error indicatorsηT := ωT ρT . Then, for the mesh
refinement, we use the followingfixed fractionstrategy: in each refinement
cycle, the elements are ordered according to the size ofηT and then a fixed
portion (say 30%) of the elements with largestηT is refined which results
in about a doubling of the numberN of cells. This process is repeated until
the stopping criterionη(uh) ≤ TOL is satisfied, orNmax is exceeded. For
the numerical tests given below, we confined ourselves to 8 adaptive cycles.
The corresponding values forNmax can be taken from the tables below.

For determiningJ (uref), we employ an adaptive algorithm based on
(2.12), where in every third adaptive step we also do a global refinement.

The approximation of the dual problem (2.1)

(∇(ϕ − z), ∇z) ≥ J (ϕ − z) ∀ϕ ∈ G,

is realised as follows. Assuming∂nu > 0 onBh and∂nu = 0 on0C \ Bh

suggests approximatingG by G̃ = {v ∈ V |v = 0 onBh}. Therefore, we
only have to solve alinear Dirichlet problemwith zero boundary conditions
on0D + Bh.
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Examples

As a test example, we consider (1.1) on� = (0, 1)2, 0D = {(x1, x2) ∈
∂�|x1 = 0} and right-hand sidef = 1000 sin(2πx1). The contact set
B = {x ∈ 0C |u(x) = 0} in this case is determined byB = {(x1, x2) ∈
0C |x1 ≥ b} with b ≈ 0.609374 taken fromuref. The structure of the solution
is sketched in Fig. 1 (left).

Applying an adaptive algorithm on the basis of the indicatorηZZ yields
locally refined grids with a structure shown in Fig. 1, which can be compared
with the grids based onηweight for the following examples (Figs. 2, 3 and 4).

Fig. 1. Isolines of the solution (left) and structure of grids produced on the basis ofηZZ

(right)

1) Point value. For the first test, we choose

J (ϕ) = ϕ(x0), x0 = (0.25, 0.25),

to control the point-error inx0. The computational results are shown in Table
1. EvaluatingRatioshows the constant relation betweentrue error and the
corresponding estimation, and consequently it is demonstrated that the pro-
posed approach toa posteriorierror control gives useful error bounds. Fig. 2
(left) shows thatηweight produces a (monotonically) converging scheme with
respect to the point value in contrast to the ZZ-approach. Fig. 2 (right) shows
the structure of grids produced on the basis ofηweight.

2) Mean value. As error functional for the second test, we choose

J (ϕ) =
∫

B

∂nϕ,
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Table 1. Numerical results for the first test example: functional valueJ (uh), relative error
Erel and over-estimation factor Ratio

Cells J (uh) Erel Ratio

484 2.928820e+01 1.254902e-03 4.25

928 2.928258e+01 1.446547e-03 2.07

1720 2.929928e+01 8.770673e-04 2.64

3148 2.930866e+01 5.572038e-04 2.97

5572 2.931476e+01 3.491901e-04 3.14

9604 2.931715e+01 2.676897e-04 3.40

16468 2.931918e+01 1.984655e-04 3.96

27724 2.932013e+01 1.660699e-04 2.99
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0.0001
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100 1000 10000
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Number of Elements
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ZZ

Fig. 2. Relative error for the first example on adaptive grids according to theweightedesti-
mate and the ZZ-indicator (left) showing thatηweightproduces a (monotonically) converging
scheme with respect to the point value. Structure of grids produced on the basis ofηweight
(right)

to control the mean value of the normal derivative along the contact setB.
In this case, the treatment ofJ , which is determined by derivatives ofu,
requires some additional care since in this case the functional issingular,
i.e., the dual solution is not properly defined onG. The remedy (cf. Becker
and Rannacher [2] and see Rannacher and Suttmeier [18] for an application
in linear elasticity) is to work with a regularised functionalJ ε(.). In the
present case, we set

J ε(ϕ) = |Bε|−1
∫

Bε

∂nϕ dx,
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Table 2. Numerical results for the second test example: functional valueJ (uh), relative
errorErel and over-estimation factor Ratio

Cells J (uh) Erel Ratio

1840 -1.730673e+02 1.273645e-02 1.51

3256 -1.739847e+02 7.503137e-03 1.96

5980 -1.745723e+02 4.151169e-03 2.50

10528 -1.748522e+02 2.554478e-03 2.81

19204 -1.750084e+02 1.663434e-03 2.47

34540 -1.750833e+02 1.236167e-03 3.90

65212 -1.751289e+02 9.760411e-04 3.85

122284 -1.751526e+02 8.408443e-04 2.67
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Fig. 3. Relative error for the second example on adaptive grids according to theweighted
estimate and the ZZ-indicator (left) demonstratingηweight to be most economical. Structure
of grids produced on the basis ofηweight (right)

whereBε := {x ∈ �, dist(x, B) < ε}. For each adaptive computation, the
regularisation is done with the choiceε = 0.5ηweight(uh), whereuh is taken
from the previous step.

The numerical results are presented in Table 2. Again, it is demonstrated
that the proposed approach toa posteriorierror control gives useful error
bounds. In Fig. 3 (left) the relative errors on adaptive grids according to the
weightedestimate and the ZZ-indicator are depicted, demonstratingηweight

to be most economical. Figure 3 (right) shows the structure of grids produced
on the basis ofηweight.
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3) Normal derivative. For the third test, we choose

J (ϕ) = ∂nϕ(x0), x0 = (1.00, 0.25),

to control the point error of the normal derivative inx0. This example is
chosen to indicate the applicability of the proposed techniques for our final
goal ofa posteriorierror estimation of contact stresses in elasticity problems.

Again the treatment ofJ has to be done by regularisation as in the second
example.Again the results presented inTable 3 and Fig. 4 demonstrateηweight

to be reliable and efficient.

Table 3. Numerical results for the third test example: functional valueJ (uh), relative error
Erel and over-estimation factor Ratio

Cells J (uh) Erel Ratio

304 1.140179e+02 8.022446e-03 1.77

628 1.146645e+02 2.396903e-03 1.59

1312 1.148638e+02 6.629546e-04 2.17

2548 1.149107e+02 2.549156e-04 2.17

4912 1.149301e+02 8.613189e-05 3.27

9208 1.149339e+02 5.307117e-05 2.29

17200 1.149363e+02 3.219071e-05 2.08

31468 1.149372e+02 2.436054e-05 1.71
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Fig. 4. Relative error for the third example on adaptive grids according to theweighted
estimate and the ZZ-indicator (left) demonstratingηweight to be most economical. Structure
of grids produced on the basis ofηweight (right)
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4 Outlook: Application to Signorini’s problem

We now demonstrate how the above techniques might be extended fora
posteriorierror control to Signorini’s problem which, in classical notation,
reads (cf. Kikuchi and Oden [11] )

− div σ = f, Aσ = ε(u) in �,

u = 0 on0D, σ · n = t on0N, (4.1)

σT = 0, (un − g)σn = 0

un − g ≤ 0, σn ≤ 0


 on0C.

This idealised model describes the deformation of an elastic body occupying
the domain� ⊂ R

3, which is unilaterally supported by a frictionless rigid
foundation. The displacementu and the corresponding stress tensorσ are
caused by a body forcef and a surface tractiont along0N .Along the portion
0D of the boundary the body is fixed and0C ⊂ ∂� denotes the part which
is a candidate contact surface. We use the notationun = u · n, σn = σijninj

andσT = σ · n − σnn, wheren is the outward normal of∂�, andg denotes
the gap between0C and the foundation.

Further, the deformation is assumed to be small so that the strain tensor
can be written asε(u) = 1

2(∇u+∇uT ). The compliance tensorA is assumed
to be symmetric and positive definite.

The weak solutionu ∈ K of (4.1) is defined by the variational formula-
tion

a(u, ϕ − u) ≥ F(ϕ − u) ∀ϕ ∈ K, (4.2)

with the definitions

V = {v ∈ H 1 × H 1 | v = 0 on0D}, K = {v ∈ V | vn − g ≤ 0},
a(v, ϕ) =

∫
�

A−1ε(v)ε(ϕ) ∀v, ϕ ∈ V,

F (ϕ) =
∫

�

f ϕ +
∫

0N

tϕ ∀ϕ ∈ V.

As above, the discrete solutionuh ∈ Kh = K ∩ Vh ⊂ V is determined by

a(uh, ϕ − uh) ≥ F(ϕ − uh) ∀ϕ ∈ Kh. (4.3)

Again, for estimating measures defined byJ (.) of e = u − uh, we employ
z ∈ G given by

a(ϕ − z, z) ≥ J (ϕ − z) ∀ϕ ∈ G, (4.4)
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whereG = {v ∈ V | v ≥ 0 onBh anda(U − u, v + uh − u) ≥ 0} and
Bh = {x ∈ 0C | uh(x) · n = g(x)}. In the aboveU denotes the solution of

a(U, ϕ) = F(ϕ) ∀ϕ ∈ V.

Eventually, the techniques used for the model case yield ana posteriorierror
estimate of the form (2.9)|J (e)| ≤ ∑

T ∈Th
ωT ρT with

ρT := hT ‖f + div(A−1ε(uh))‖T + 1
2h

1/2
T ‖[n · A−1ε(uh)]‖∂T ,

ωT := max
{
h−1

T ‖z − zh‖T , h
−1/2
T ‖z − zh‖∂T

}
.

The approximation of the dual problem (4.4) may be realised as follows.
AssumingBh to be an appropriate approximation ofB suggests replacingG
by G̃ = {v ∈ V |v = 0 onBh} and solving alinear elasticity problemwith
Dirichlet boundary conditions on0D + Bh.

A similar situation is given for nonlinear variational equalities, where the
dependence of the dual operator onu anduh is in practice simply expressed
in terms of the computeduh alone. The experiences in the case of the sta-
tionary Navier–Stokes equations (see Becker and Rannacher [2]) and for
nonlinear elasto-plastic material behaviour (see Rannacher and Suttmeier
[19]) indicate that for these examples the perturbation of the dual problem
is not critical in stable situations. In the present case, investigations of the
influence of the approximation of (4.4) on the accuracy of the resultinga
posterioriestimate in detail have to be done and are the subject of a forth-
coming paper.
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