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Abstract. Adaptive mesh design basedaposteriorierror control is stud-

ied for finite element discretisations for variational problems of Signorini
type. The techniques to derive residual based error estimators developed,
e.g.,in([2,10,20]) are extended to variational inequalities employing a suit-
able adaptation of the duality argument [17]. By use of this variational ar-
gument weighted posterioriestimates for controlling arbitrary functionals

of the error are derived here for model situations for contact problems. All
arguments are based on Hilbert space methods and can be carried over to the
more general situation of linear elasticity. Numerical examples demonstrate
that this approach leads to effective strategies for designing economical
meshes and to bounds for the error which are useful in practice.

1 Introduction

A fundamental model situation for contact problems in elasticity is Sig-
norini’s problem describing the deformation of an elastic body which is
unilaterally supported by a frictionless rigid foundation. We intend to derive
efficienta posteriorierror control techniques for this equation with special
emphasis on local error phenomena, e.g., the error for stresses in the contact
zone. In order to demonstrate the concept for our method faowsteriori

error estimation, we first consider the simplified case
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—Au=f inQcR?
u=0 onlp, (1.2)
u>0, 0,u>0 uo,u=0 onlc,

wherel'c = 9Q\ I'p andd,u = Vu - n.

Problem (1.1) is to be solved by the finite element Galerkin method on
adaptively optimised meshes. By variational arguments, we derive weighted
a posteriorierror estimates for controlling arbitrary linear functionals of the
error. This approach leads to effective strategies for designing economical
meshes and to bounds for the error which are useful in practice. The extension
to Signorini's problem is illustrated in the last section.

The basis for applying the finite element method to (1.1) is the formu-
lation as a variational inequality, i.e., a solutione K is sought which
satisfies

(Vu, V(g —u) > (f,o—u) VoeKk, (1.2)

whereweseV = {ve H' |v=0onI'plandK ={v eV |v >0
onT'¢}. Here, and in what followsH™ = H™(Q2) denotes the standard
Sobolev space af?-functions with derivatives irL.?(2) up to ordenm.

Equation (1.2) is uniquely solvable (cf. Lions and Stampacchia [14])
and, under appropriate smoothness conditions on the boundary and data,
the solution is known to satisfy the regularity result H2(2) (see Brézis
[3]).

In the following, we apply the finite element method on decompositions
T, = {T} of Q consisting of quadrilaterals satisfying the usual condition
of shape regularity. Simplifying notation, we assume the dortaio be
polyhedral in order to ease the approximation of the boundary. More general
situations may be treated by the usual modifications. For ease of mesh re-
finement and coarsening, hanging nodes are allowed in our implementation.
The width of the mesH;, is characterised in terms of a piecewise constant
mesh size function = h(x) > 0, wherehy := hjy = diam(T). We use
standard bilinear finite elements to construct the spges V and assume
thatKk, = K NV,.

Eventually, the finite element approximatiep of u in (1.2) is deter-
mined by

(Vup, V(g —up)) = (f, ¢ —up) Vo € K. (1.3)
This finite dimensional problem can be shown to be uniquely solvable fol-

lowing the same line of arguments as in the continuous case. Optimal order
a priori error estimates in the energy norm have been given, for example,
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in Falk [7] and Brezzi et al. [4]. Dobrowolski and Staib [6] shd@\h)-

convergence in the energy norm without additional assumptions on the struc-

ture of the free boundary. Error estimates with respect t@ thenorm have

been obtained, e.g., by Nitsche [16] based on a discrete maximum principle.
Below, we shall demonstrate how functiondig: — u;) of the error can

be controlled in am posteriorimanner, i.e., we estimate the error in terms

of quantities at the element level containing only the discrete solution and

the data of the problem.

2 A posteriori error estimate

For elliptic variational equalities, i.e., in the caBe= V, many different,

but related, approaches farposteriorierror control have been developed

in the last two decades; see, e.qg., Verfurth [21] for a survey. Most estimators
are designed to control the error in the energy norm. A general concept for
estimatinge = u — uy;, for more general error measures given in terms of
a linear functional/(-) has been proposed in Becker and Rannacher [2]
and further developed, e.g., in Kanschat [10] and Suttmeier [20]. One main
ingredient in deriving such residual baseposterioriestimates is a duality
argument known as the “Aubin—Nitsche trick” froenpriori analysis. In
principle, such techniques can be carried over to variational inequalities
when, for example, penalty techniques are employed to avoid the explicit
treatment of the constraints. This again leads to variational equalities of the
form mentioned above.

In the present paper, we attack the original unpenalised problem. Since
we are mainly interested in local phenomena like the normal stress on the
contact surface, we intend to adopt local control techniques to estimate a
functionalJ (e).

In Natterer [17], there is described a generalisation of Nitsche’s trick
for variational inequalities, which we employ to deriveaposteriorierror
estimate for the scheme (1.3). To this end, we consider the dual solution
z€Gof

(V(p—2),V2) = J(p —2) Yo eG, (2.1)
whereG = {v € V | v > 0onB, and frc du(v +uy) <0} andB;, =
{x €eTc |up(x) =0}.

In order to show that + u — u;, € G, we observethat +u —u;, >0
on By, since onB;, C I'c we havex > 0, u;, = 0. Furthermore,

f Opu((z+u—up) +uy) = / ouz < —/ opuu, < 0.
I'c I'c I'c
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Now, we can choose = z +u — u;, as atest function in (2.1) and obtain
J(e) = (V(u —uy), Vz).
Next, we use the solutiaii € V of the nonrestricted problem
(VU, Vo) =(f.¢) YpeV,
to rewrite (1.2) and (1.3) in the form

(VU —u),V(p—u)) <0 Vp e K, (2.2)
(VU —up), V(g —up)) <0 Vo € K. (2.3)

Itis easily seenthat, €¢ W, = {v € V | v > 00onB,} NV, i.e.,uy,
coincides with the solutioii, € W, of the discrete variational inequality

(VU —up), V(g —up)) <0 Vo € W (2.4)
With z, € W, and choosingg = u,, + z; in (2.4) we see that the first
term on the right-hand side of the identity
(Vu —up), Vzp) = (VU — up), Vzp) + (V@ —U), V(zp + up — u))
+ (Vu —U),V(u—u)) Vzp € Wy, (2.5)

is negative. So also is the last term by taking= u,, in (2.2). To sum up,
we have shown the inequality

(V@ —up), Vzp) < (Vu —U), V(zp +up —u)) Vz, € Wy (2.6)
We now proceed with estimatinfye) by
J(e) = (V(u —up), V(z — zp)) + (V(u — up), Vzy)
< (V@ —up), V(i —zp) + (Vu = U), V(zp + up — u))
= (V(u —up), V(z—zp)) + (Vu —U), V(z +up — u))
+ (Vu —U), V(zp — 2)).

Due toud,u = 0 onI"¢, we have, forz € G,

(V(M—U), V(Z+Mh —I/l)) :/ allu(z+uh) 50
I'c
Eventually, we obtain tha posteriorierror estimate
J(e) = (VU —up), V(z — zp)). (2.7)
With standard techniques this can be exploited as follows. Element-wise
integration by parts yields

J(e) < Z {(f + Aup, 2 — 27 — 3UBuun), 2 — 2ot} (2.8)
TeTy,
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where, for interior interelement boundari¢s,u;] denotes the jump of the
normal derivatived, u;,. Furthermore we s€b,,u;,] = 0 and[0,u;] = 0,u,
on edges belonging ©, andI'¢ respectively.

From (2.8), we deduce treeposteriorierror bound

[T < Y orpr = Nueight (2.9)
TeTy,

with the localresidualsp; andweightsw; defined by
2
pr = hrllf + Auylr + 07 n - [Vuy]llar,
wr = max{h7tlz = 2ullr, bz = 2allar .

In general, the weightso; cannot be determined analytically, but have
to be computed by solving the dual problem numerically on the available
mesh. To this end, interpreting as a suitable interpolant of one uses the
interpolation estimate

wr < Cirhr||V%2|r, (2.10)

for z € H?(T). For less regular an estimate similar to (2.10) could be used
involving a lower power of a local mesh size, which typically corresponds to
higher values ok . To evaluate the right-hand side in (2.10) one may simply
take second order difference quotients of the approximate dual sofytion

wr ~ CT)T = éi,Th%|V§Zh(xT)|, (211)

wherexz is the midpoint of elemenrif. This results in approximaiz pos-
teriori error bounds using

Nweight Y _ Grpr. (2.12)
TeTy,

It has been demonstrated in Becker and Rannacher [2] that this approxi-
mation has only minor effects on the quality of the resulting meshes. The
interpolation constant€; may be set equal to one for mesh designing.

In the following, we compare thigeightedestimator against the tradi-
tional approach of Zienkiewicz and Zhu [22]. This error indicator for finite
element models in structural mechanics is based on the idea of higher—order
stress recovery by local averaging. The element-wise ¢eror oy 7 is
thought to be well represented by the auxiliary quantiyv,o;, — oyl 7,
where M0, is a local (super-convergent) approximatiorvofThe corre-
sponding (heuristic) global error estimator reads

1/2
lo —onll = nzz = (Z Moy _Uh”%) ; (2.13)
TeTy,

with 0 = Vu andoy, = Vuy,.
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RemarkThe choice of (2.1) is not uniquely determined. Other approaches
in a priori analysis in similar situations can be found, e.g., in Mosco [15].
Here separate dual problems for the negative and positive part of the error
are considered, but it seems to be difficult to exploit these techniques for
posteriorianalysis, since the data of the problem do not enter the estimate
directly.

3 Numerical results

The implementation is based on the tools of the object-oriented FE package
DEAL [1]. The solution process is simply done by an iteration of Gauss-
Seidel-type (cf. Glowinski et al. [9]). The solutions on very fine (adaptive)
meshes with about 200,000 cells are takemefsrencesolutions u e for
determining the relative errors

E™ = |J(up) — J (uren)|/1J (ttrep)|
on coarser meshes, while

n(up)
|J (urer) — J (up)|

are the overestimation factors of the error estimators.

Let an error tolerance TOL or a maximal number of calls. be given.
Starting from some initial coarse mesh the refinement criteria are chosen
in terms of thelocal error indicatorsnr := wrpr. Then, for the mesh
refinement, we use the followirfixed fractionstrategy: in each refinement
cycle, the elements are ordered according to the size ahd then a fixed
portion (say 30%) of the elements with largestis refined which results
in about a doubling of the numb#@r of cells. This process is repeated until
the stopping criteriom(u;,) < TOL is satisfied, ofNyax IS exceeded. For
the numerical tests given below, we confined ourselves to 8 adaptive cycles.
The corresponding values fdiynax can be taken from the tables below.

For determiningJ (urf), we employ an adaptive algorithm based on
(2.12), where in every third adaptive step we also do a global refinement.

The approximation of the dual problem (2.1)

Ratio :=

(V(p—2),Vz) > J(¢ —2) V¢ € G,

is realised as follows. Assumirju > 0 on B, andd,u = 0onI'¢ \ B,
suggests approximating by G = {v € V|v = 0 onB,}. Therefore, we
only have to solve Bnear Dirichlet problemwith zero boundary conditions
onI'p + By.
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Examples

As a test example, we consider (1.1) @n= (0,1)%, T'p = {(x1,x2) €
9Q|x; = 0} and right-hand sidef = 1000 sin2rx;). The contact set
B = {x € T'clu(x) = 0} in this case is determined by = {(x1, xp) €
I'clxy > b} with b ~ 0.609374 taken from,s. The structure of the solution
is sketched in Fig. 1 (left).

Applying an adaptive algorithm on the basis of the indicatgy yields
locally refined grids with a structure shown in Fig. 1, which can be compared
with the grids based omyeign: for the following examples (Figs. 2, 3 and 4).

Fig. 1. Isolines of the solution (left) and structure of grids produced on the basig pf
(right)

1) Point value For the first test, we choose

J(p) = ¢(x0), x0=(0.250.29),

to control the point-error img. The computational results are shown in Table

1. EvaluatingRatio shows the constant relation betweeme error and the
corresponding estimation, and consequently it is demonstrated that the pro-
posed approach #posteriorierror control gives useful error bounds. Fig. 2
(left) shows thatjyeight produces a (monotonically) converging scheme with
respect to the point value in contrast to the ZZ-approach. Fig. 2 (right) shows
the structure of grids produced on the basig@fgnt.

2) Mean value As error functional for the second test, we choose

J(p) = / 00,
B
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Table 1. Numerical results for the first test example: functional valgey, ), relative error
E™ and over-estimation factor Ratio

Cells

J(up)

Erel

Ratio

484
928
1720
3148
5572
9604
16468
27724

2.928820e+01
2.928258e+01
2.929928e+01
2.930866e+01
2.931476e+01
2.931715e+01
2.931918e+01
2.932013e+01

1.254902e-03
1.446547e-03
8.770673e-04
5.572038e-04
3.491901e-04
2.676897e-04
1.984655e-04
1.660699e-04

4.25
2.07
2.64
2.97
3.14
3.40
3.96
2.99

0.01

0.001 F

0.0001 ¢

Error

1le-05 ¢

weighted ——
7z —~+

S

1le-06 -
100 1000

10000

Number of Elements

Fig. 2. Relative error for the first example on adaptive grids according tavdightedesti-
mate and the ZZ-indicator (left) showing thgfeightproduces a (monotonically) converging
scheme with respect to the point value. Structure of grids produced on the bagisp

(right)

to control the mean value of the normal derivative along the conta®.set
In this case, the treatment df, which is determined by derivatives of
requires some additional care since in this case the functiosaigsilar,
i.e., the dual solution is not properly defined @nThe remedy (cf. Becker

and Rannacher [2] and see Rannacher and Suttmeier [18] for an application

in linear elasticity) is to work with a regularised function&l(.). In the

present case, we set

() = |Bg|—1/

o dx,
By
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Table 2. Numerical results for the second test example: functional vdlusg,), relative
error E®! and over-estimation factor Ratio

Cells J(up) E'® Ratio
1840 | -1.730673e+02 1.273645e-02 1.51
3256 | -1.739847e+024 7.503137e-03 1.96
5980 | -1.745723e+02 4.151169e-03 2.50
10528 | -1.748522e+02 2.554478e-03 2.81
19204 | -1.750084e+02 1.663434e-03 2.47
34540 -1.750833e+02 1.236167e-03 3.90
65212 | -1.751289e+02 9.760411e-04 3.85
122284 -1.751526e+02 8.408443e-04 2.67

T [T
weighted —— } }
727 LH

0.1

Error

0.001

0.0001 -

1e-05
100

1000 10000
Number of Elements

Fig. 3. Relative error for the second example on adaptive grids according tedighted
estimate and the ZZ-indicator (left) demonstratiggightto be most economical. Structure
of grids produced on the basis pfeight (right)

whereB, := {x € @, dist(x, B) < ¢}. For each adaptive computation, the
regularisation is done with the choiee= 0.5yyeight(1), Whereu,, is taken
from the previous step.

The numerical results are presented in Table 2. Again, it is demonstrated
that the proposed approachdgosteriorierror control gives useful error
bounds. In Fig. 3 (left) the relative errors on adaptive grids according to the
weightedestimate and the ZZ-indicator are depicted, demonstratiggh:
to be most economical. Figure 3 (right) shows the structure of grids produced
on the basis Ofjweight.
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3) Normal derivative For the third test, we choose

J(9) = dnp(x0), xo = (1.00,0.25),

to control the point error of the normal derivative Ag. This example is

chosen to indicate the applicability of the proposed techniques for our final

goal ofa posteriorierror estimation of contact stresses in elasticity problems.
Again the treatment of has to be done by regularisation as in the second

example. Again the results presented in Table 3 and Fig. 4 demongisgie

to be reliable and efficient.

Table 3. Numerical results for the third test example: functional valuey,), relative error
E™ and over-estimation factor Ratio

Cells J(up) E'® Ratio

304
628
1312
2548
4912
9208
17200
31468

1.140179e+02
1.146645e+02
1.148638e+02
1.149107e+02
1.149301e+02
1.149339e+02
1.149363e+02
1.149372e+02

8.022446e-03
2.396903e-03
6.629546e-04
2.549156e-04
8.613189¢e-05
5.307117e-05
3.219071e-05
2.436054e-05

1.77
1.59
2.17
2.17
3.27
2.29
2.08
1.71

01}

Error

0.01 |

weighted —-—
77 -+

0.001
100

1000 10000

Number of Elements

Fig. 4. Relative error for the third example on adaptive grids according tovighted
estimate and the ZZ-indicator (left) demonstratifgigntto be most economical. Structure
of grids produced on the basis ®feigh (right)
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4 Outlook: Application to Signorini’s problem

We now demonstrate how the above techniques might be extended for
posteriorierror control to Signorini’s problem which, in classical notation,
reads (cf. Kikuchi and Oden [11] )

—dive = f, Ao =¢) IinQ,
u=0o0nTp, o-n=tronly, 4.1)

or =0, (u,—go,=0
onlc.
u,—g=<0, 0,<0

This idealised model describes the deformation of an elastic body occupying
the domain® c R3, which is unilaterally supported by a frictionless rigid
foundation. The displacementand the corresponding stress tensaare
caused by a body forcéand a surface tractiaralongI" . Along the portion
I'p of the boundary the body is fixed afig- C 92 denotes the part which
is a candidate contact surface. We use the notatjca u - n, 0, = o;jn;n;
andor = o - n — o,n, wheren is the outward normal afQ2, andg denotes
the gap betweeR and the foundation.

Further, the deformation is assumed to be small so that the strain tensor
canbewrittenas(u) = %(Vu +Vu™). The compliance tenseris assumed
to be symmetric and positive definite.

The weak solutiom € K of (4.1) is defined by the variational formula-
tion

a(u, o —u) > F(p —u) VYo € K, (4.2)
with the definitions
V={veH'xH'lv=0o0nTp}, K={veV]|v,—g<0}
a(v, @) =/§2A_1e(v)e(g0) Yv,p eV,
F(<p)=ffso+/ tp YoeV.
Q Ty
As above, the discrete solutiap € K, = K NV, C V is determined by

a(up, ¢ —up) = F(p —up) Vo € K. (4.3)

Again, for estimating measures defined.by) of e = u — uy;,, we employ
z € G given by

alp—z,z2) > J(@—2) Vo eG, (4.4)
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whereG = {v € V|v > 0onB, anda{ — u,v + u, — u) > 0} and
B, ={x € Tc|uy(x)-n = g(x)}. Inthe abové/ denotes the solution of

ald, p) = F(p) Vo e V.

Eventually, the techniques used for the model case yietdmsteriorierror
estimate of the form (2.9) (e)| < >, @rpr with

pr i= hrllf + div(A™ e @) 7 + 2072110 - A" e i) llar,

. -1 -1/2
wr == max{hT Iz =zl by ||z—zh||aT}.

The approximation of the dual problem (4.4) may be realised as follows.
AssumingB;, to be an appropriate approximation®suggests replacing
by G = {v € V|v = 0 onB,} and solving dinear elasticity problenwith
Dirichlet boundary conditions ofip + By,.

A similar situation is given for nonlinear variational equalities, where the
dependence of the dual operatoroandu,, is in practice simply expressed
in terms of the computed,, alone. The experiences in the case of the sta-
tionary Navier—Stokes equations (see Becker and Rannacher [2]) and for
nonlinear elasto-plastic material behaviour (see Rannacher and Suttmeier
[19)]) indicate that for these examples the perturbation of the dual problem
is not critical in stable situations. In the present case, investigations of the
influence of the approximation of (4.4) on the accuracy of the resudting
posterioriestimate in detail have to be done and are the subject of a forth-
coming paper.
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