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Abstract
We present an algorithm for Tchakaloff-like compression of quasi-Monte Carlo vol-
ume and surface integration on an arbitrary union of balls, via non-negative least
squares.We also provide the correspondingMatlab codes together with several numer-
ical tests.
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1 Introduction

Numerical modelling by finite collections of disks, balls and spheres is relevant within
different application fields. Problems involving intersection, union and difference of
such geometrical objects arise for example in molecular modelling, computational
geometry, computational optics, wireless network analysis; cf., e.g., [1–4, 16, 23, 26,
29, 32] with the references therein. A basic problem is the computation of areas and
volumes of such sets, followed by the more difficult task of computing volume and
surface integrals there by suitable quadrature formulas.

The numerical quadrature problem on intersection and union of planar disks has
been recently treated in [35, 37], providing low-cardinality algebraic formulas with
positive weights and interior nodes. On the other hand, numerical volume and surface
integration on the union of balls has been studied in the molecular modelling field,
where one of the main difficulties concerns efficient and accurate tracking of the
complicated resulting surface geometry; cf. e.g. [2, 20, 32] with the references therein.
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Fig. 1 Compressed QMC points
(red) extracted from
low-discrepancy points (grey) on
the surface of two ball unions at
polynomial exactness degree
n = 9. a 200 points extracted
from about 8200 (3 balls),
compression ratio 43; b 220
points extracted from about
69,000 (100 balls), compression
ratio over 300 (colour figure
online)

(a)

(b)

In this paper, we contribute to this field by providing compressed quasi-Monte
Carlo (QMC) formulas for volume and surface integration on the union of balls, along
the lines of [17]. Such formulas preserve the approximation power of QMC up to the
best uniform polynomial approximation error of a given degree to the integrand, but
using amuch lower number of sampling points; see Fig. 1 for two examples with QMC
sampling compression. The key tools are a dated but overlooked result by Davis and
Wilhelmsen on the so-called “Tchakaloff sets” for positive linear functionals and the
Lawson–Hanson algorithm for NNLS (Non-Negative Least Squares), which allows to
extract a set of “equivalent” re-weighted nodes from a huge low-discrepancy sequence.
We term the method “TDW” (Tchakaloff–Davis–Wilhelmsen), due to its theoretical
background.

We stress that differently from [5, 17], the present approach is able to compress
not only QMC volume integration, but also QMC integration on compact subsets of
algebraic surfaces (in particular, the surface of a union of balls which is a subset
of a union of spheres). Notice that one of the main difficulties in surface instances
consists in adapting the compression algorithm to work on spaces of polynomials
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restricted to an algebraic variety, and finding an appropriate polynomial basis. Indeed,
to our knowledge the present work is the first attempt in this direction within the QMC
framework. It is also worth stressing that the method could be easily adapted tomodels
involving arbitrary unions of ellipsoids instead of balls, or unions of polyhedra, or even
a combination of such objects, in all cases with the advantage of avoiding difficult
trackings of the complicated resulting surface geometry.

The paper is organized as follows. In Sect. 2, we discuss theoretical and compu-
tational issues of QMC compression for volume and surface integration in R

3. In
Sect. 3 we describe our implementation, presenting several numerical tests, including
an example illustrating the potential applicability to biomolecular modelling (com-
putation of Generalized Born Radii). The open-source codes are freely available at
[18].

2 Tchakaloff-like QMC compression

Compression of QMC formulas is nothing but a special instance of discrete measure
compression, a topic which has received an increasing attention in the literature of
the last decade, in both the probabilistic and the deterministic setting. Indeed, several
papers and some software have been devoted to the extraction of a smaller set of re-
weighted mass points from the support of a high-cardinality discrete measure, with
the constraint of preserving its moments up to a given polynomial degree; cf., e.g.,
[21, 22, 27, 30, 34, 40] with the references therein.

From the quadrature point of view, this topic has a strong connectionwith the famous
Tchakaloff’s theorem [39] on the existence of low-cardinality formulas with positive
weights. On the other hand, Tchakaloff’s theorem itself is contained in a somewhat
deeper but overlooked result by Wilhelmsen [41] on the discrete representation of
positive linear functionals on finite-dimensional function spaces (which generalizes a
previous result by Davis [8]). Indeed, only quite recently this theorem has been redis-
covered as a basic tool for positive cubature via adaptive NNLS moment-matching,
cf. [17, 25, 36, 38].

Theorem 1 (Davis [8]–Wilhelmsen [41]) Let� be the linear span of continuous, real-
valued, linearly independent functions {φ j } j=1,...,N defined on a compact set� ⊂ R

d .

Assume that � satisfies the Krein condition (i.e. there is at least one f ∈ � which
does not vanish on �) and that L is a positive linear functional on �, i.e. L( f ) > 0
for every f ∈ �, f ≥ 0 not vanishing everywhere in �.

If {Pi }∞i=1 is an everywhere dense subset of �, then for sufficiently large s, the set
Xs = {Pi }i=1,...,s is a Tchakaloff set, i.e. there exist weights wk > 0, k = 1, . . . , ν,

and nodes {Tk}k=1,...,ν ⊂ Xs ⊂ �, with ν = card({Tk}) ≤ N , such that

L( f ) =
ν∑

k=1

wk f (Tk), ∀ f ∈ �. (1)

As an immediate consequence, we may state the following
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Corollary 1 Let λ be a positive measure on �, such that supp(λ) is determining for
P
d
n(�), the space of total-degree polynomials of degree not exceeding n, restricted to

� (i.e., a polynomial in Pd
n(�) vanishing there vanishes everywhere on �). Then the

thesis of Theorem 1 holds for L( f ) = ∫
�

f dλ.

Indeed, the integral of a nonnegative and not everywhere vanishing polynomial
f ∈ P

d
n(�) must be positive (otherwise f would vanish on supp(λ)). Observe that

the classical version of Tchakaloff’s theorem corresponds to

L( f ) = I ( f ) =
∫

�

f (P) dP,

with � = P
d
n(�) and

N = Nd
n = dim(Pd

n(�)). (2)

From now on we shall concentrate on the 3-dimensional case (d = 3), though most
considerations could be extended to general dimension. Notice that the formulation
of the Davis–Wilhelmsen theorem is sufficiently general to include volume integrals,
i.e. � is the closure of a bounded open set and N = dim(P3

n(R
3)) = (n+3

3

) =
(n + 1)(n + 2)(n + 3)/6, as well as surface integrals on compact subsets of an
algebraic variety (in this case dP = dσ for the surface measure). In the latter case the
dimension of the polynomial space could collapse, for example with � = S2 ⊂ R

3

we have N = (n + 1)2 <
(n+3

3

) = (n + 1)(n + 2)(n + 3)/6.
On the other hand, the Davis–Wilhelmsen theorem can also be applied to a discrete

functional like a QMC formula applied to f ∈ C(�)

L( f ) = Q( f ) = μ(�)

M

M∑

i=1

f (Pi ) ≈ I ( f ), (3)

where

XM = {Pi }i=1,...,M , M > N ,

is a low-discrepancy sequence on �, and μ(�) can be either a volume or a surface
area. Typically one generates a low-discrepancy sequence of cardinality say M0 on a
bounding box or bounding surface B ⊇ �, from which the low-discrepancy sequence
on � is extracted by a suitable in-domain algorithm. We observe that if μ(�) is
unknown or difficult to compute (as in the case of the union of balls), it can be
approximated as μ(�) ≈ μ(B)M/M0.

Positivity of the functional for f ∈ � = P
3
n(�) is ensured whenever the set XM is

P
3
n(�)-determining, i.e. a polynomial vanishing there vanishes everywhere on �, or

equivalently dim(P3
n(XM )) = N = dim(P3

n(�)), or even

rank(VM ) = N , (4)
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where

VM = V (n)(XM ) = [φ j (Pi )] ∈ R
M×N (5)

is the corresponding rectangular Vandermonde-like matrix. Notice that, XM being a
sequence, for every s ≤ M we have that

Vs = V (n)(Xs) = [(VM )i j ], 1 ≤ i ≤ s, 1 ≤ j ≤ N . (6)

The full rank requirement for VM is not restrictive, in practice. In the case of volume
integrals, i.e. when � is a three-dimensional domain (a union of balls in the present
context), the probability that the N × N submatrix determinant det(VN ) vanishes
dealing with uniformly distributed points is zero, as recently proved in [9]. The same
holds true for integration on smooth surfaces admitting an analytic parametrization, cf.
[19]. Though the present surface context corresponds to a more complicated instance,
since the surface of a union of balls has singularities, we have still numerical evidence
that the full rank requirement is always satisfied, working with uniformly distributed
pointswith respect to the surfacemeasure (see Sect. 2.2 about the sampling procedure).

2.1 The TDW algorithm

By Theorem 1, when M 
 N we can then try to find a Tchakaloff set Xs, with N ≤
s < M, such that a sparse nonnegative solution vector u exists to the underdetermined
moment-matching system

V t
s u = p = V t

Me, e = μ(�)

M
(1, . . . , 1)t . (7)

In practice, we solve (7) via Lawson–Hanson active-set method [24] applied to the
NNLS problem

min
u≥0

‖V t
s u − p‖2, (8)

accepting the solution when the residual size is small, say

‖V t
s u − p‖2 < ε (9)

where ε is a given tolerance. The nonzero components of u then determine the nodes
and weights of a compressed QMC formula extracted from Xs , that is {wk} = {ui :
ui > 0} and {Tk} = {Pi : ui > 0}, giving

Qn( f ) =
ν∑

k=1

wk f (Tk), ν ≤ N � M, (10)

where Qn( f ) = Q( f ) for every f ∈ P
3
n(�).
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Notice that existence of a representation like (10) for s = M is ensured by
Caratheodory’s theorem on finite-dimensional conic combinations, applied to the
columns of V t

M (cf. [30] for a full discussion on this point in the general frame-
work of discrete measure compression). In such a way, however, we would have to
work with a much larger matrix, that is we would have to solve directly

min
u≥0

‖V t
Mu − p‖2, (11)

a method developed in the last decade, that we term Caratheodory-Tchakaloff sub-
sampling, following [30].

On the contrary, solving (8) on an increasing sequence of smaller problems s :=
s1, s2, s3, . . . with s1 < s2 < s3 < · · · ≤ M,

min
u≥0

‖V t
s j u − p‖2, j = 1, 2, 3, . . . , s1 ≥ N , (12)

corresponding to increasingly dense subsets Xs1 ⊂ Xs2 ⊂ · · · ⊆ XM (say, “bottom-
up”), until the residual becomes sufficiently small, could substantially lower the
computational cost. Indeed, as shown in [17] for volume integrals, with a suitable
choice of the sequence {s j } the residual becomes extremely small in few iterations,
with a final extraction cardinality much lower than M . In the sequel, we shall term
TDW (Tchakaloff–Davis–Wilhelmsen) the bottom-up approach (12), due to its theo-
retical background.

Concerning the approximation power of QMC compression, following [17] it is
easy to derive the following error estimate

|Qn( f ) − I ( f )| ≤ Eqmc( f ) + 2μ(�) En( f ; X)

≤ Eqmc( f ) + 2μ(�) En( f ;�), (13)

valid for every f ∈ C(�), where Eqmc( f ) = |Q( f ) − I ( f )| and En( f ; K ) =
infφ∈P3n(K ) ‖ f − φ‖K , with ‖g‖K denoting the sup-norm of a bounded function on
the discrete or continuous compact set K .

The meaning of (13) is that the compressed QMC functional Qn( f ) retains the
approximation power of the original QMC formula, up to a quantity proportional to
the best polynomial approximation error to f in the uniform norm on X (and hence
by inclusion in the uniform norm on �). We recall that the latter can be estimated
depending on the regularity of f by multivariate Jackson-like theorems, cf. e.g. [31]
for volume integrals where � is the closure of a bounded open set, and [33] for the
case of the sphere.

On the other hand, we do not deepen here the vast and well-studied topic of QMC
convergence and error estimates, recalling only that (roughly) theQMCerror Eqmc( f )
is close toO(1/M) for smooth functions, to be compared with theO(1/

√
M) error of

MC. For basic concepts and results of QMC theory like discrepancy, star-discrepancy,
Hardy–Krause variation, Erdös–Turán–Koksma andKoksma–Hlawka inequalities, on
domains and manifolds, we refer the reader to the relevant literature, like e.g. [6, 15]
with the references therein.
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2.2 Non-overlapping unions

The QMC compression algorithm can be easily extended to the case where� (either a
volume or a surface) is the finite union of non-overlapping subsets, say � = ∪L

	=1�	,

such that sequences of low-discrepancy points are known on bounding sets B	 ⊃ �	,

and the indicator function of each�	 is computable. Non-overlapping means here that
the possible nonempty intersection is at the boundary and its measure is zero.

In this case the overall QMC points are X = ∪L
	=1Y	, with Y	 = {P	,i }M	

i=1 and

M = card(X) = ∑L
	=1 M	, where Y	 are the low-discrepancy points of B	 lying in

�	. We stress that the low-discrepancy points have to be chosen alternately in order
to produce an evenly distributed sequence XM on the whole �, picking the first point
in each �	, then the second point in each �	 and so on, i.e. constructing the sequence
{P1,1, P2,1, . . . , PL,1, P1,2, P2,2, . . . , PL,2, . . .}.

Moreover, by additivity of the integral the QMC functional becomes

Q( f ) =
L∑

	=1

Q	( f ) ≈
L∑

	=1

I	( f ) = I ( f ),

Q	( f ) = μ(�	)

M	

M	∑

i=1

f (P	,i ) ≈ I	( f ) =
∫

�	

f (P) dP, 1 ≤ 	 ≤ L. (14)

3 Implementation and numerical tests

In order to show the effectiveness of the TDW compression procedure described in the
previous section, we briefly sketch a possible implementation and we present some
numerical tests for both, volume and surface integration on an arbitrary union of balls.

Indeed, we compare “Caratheodory-Tchakaloff” compression of multivariate dis-
crete measures as implemented in the general-purpose package dCATCH [14], with
the TDW approach. All the tests have been performed with a CPU AMD Ryzen 5
3600 with 48 GB of RAM, running Matlab R2022a. The Matlab codes and demos,
collected in a package named Qbubble, are freely available at [18]. Below, we first
give some highlights on the main features of the implemented algorithm. These are
essentially:

• for volume integrals we simply take Halton points of the smaller Cartesian bound-
ing box for the union of balls, say [a1, b1] × [a2, b2] × [a3, b3], and select those
belonging to the union of balls; for surface integrals we follow the procedure
sketched in Sect. 2.2, taking on each sphere low-discrepancy mapped Halton
points by an area preserving transformation (see (19) in Sect. 3.2 below), and
then selecting those belonging to the surface of the union of balls;

• in view of extreme ill-conditioning of the standard monomial basis, we start from
the product Chebyshev total-degree basis of the smaller bounding box for � (for
either volumes or surfaces), namely

p j (x, y, z) = Tα1( j) (σ1(x)) Tα2( j) (σ2(y)) Tα3( j) (σ3(z)) , j = 1, . . . , J ,
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where J = (n+1)(n+2)(n+3)/6, σi (t) = 2t−bi−ai
bi−ai

, i = 1, 2, 3, and j �→ α( j)
corresponds to the graded lexicographical ordering of the triples α = (α1, α2, α3),

0 ≤ α1 + α2 + α3 ≤ n;
• for surface integrals we determine a suitable polynomial basis by computing the
rank and then possibly performing a column selection by QR factorization with
column pivoting of the trivariate Chebyshev–Vandermonde matrix;

• in order to cope with ill-conditioning of the Vandermonde-like matrices Vs j (that
increases with the degree), we perform a single QR factorization with column
pivoting Vs j = Qsj Rs j to construct an orthogonal polynomial basis w.r.t. the

discrete scalar product 〈 f , g〉Xs j
= ∑s j

i=1 f (Pi )g(Pi ) and substitute Vs j by Qsj

in (12); consequently the QMC moments p in (7) have to be modified to (R−1
s j )t p

(via Gaussian elimination);
• the (modified) TDW-NNLSproblems (12) are solved by the recent implementation
of the Lawson–Hanson active-set method named LHDM, based on the concept of
“Deviation Maximization” instead of “column pivoting” for the underlying QR
factorizations, since it gives experimentally a speed-up of at least 2 and up to 4
times with respect to the standard Matlab function lsqnonneg (cf. [10, 12–14]).

In the next subsections we present several numerical tests, to show the effectiveness
of the TDW approach for volume and surface QMC compression on the union of balls.

3.1 Volume integration on the union of balls

In this subsection we consider volume integration on the union of balls, namely

� =
N⋃

j=1

B(C j , r j ) (15)

where B(C j , r j ) ⊂ R
3 is the closed 3-dimensional ball with center C j and radius r j .

Here we generate a sequence of Halton points in the smallest Cartesian bounding box
for � and, then, we select those belonging to the union, say X = {Pi }, simply by
checking that ‖Pi − C j‖2 ≤ r j for some j .

More precisely, we consider the following (see Fig. 1)

• first example: union of the 3 balls with centers C1 = (0, 0, 0), C2 =
(0, 1.3,−0.2),C3 = (2.5, 0, 1) and radii r1 = 1.4, r2 = 0.9, r3 = 1, respectively;

• second example: union of 100 balls with randomly chosen and then fixed centers
in [0, 2]3 and radii in [0.2, 0.6].
The results concerning application of the TDW approach are collected in Table 1,

where we compress QMC volume integration by more than one million of Halton
points, preserving polynomial moments up to degree 3, 6, 9, 12, 15 (the moments
correspond to the product Chebyshev basis of the minimal Cartesian bounding box
for the ball union).

We start from 2,400,000 Halton points in the bounding box and we set s1 = 2N
and s j+1 = 2s j , j ≥ 1. The residual tolerance is ε = 10−10. The comparisons
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Table 1 Compression of QMC volume integration on the union of 3 balls (top) and 100 balls (bottom), in
a bounding box with 2,400,000 Halton points; M is the starting QMC cardinality, i.e. the number of Halton
points in the union of balls

Degree n 3 6 9 12 15

Card. QMC M = 1,128,709

Card. Qdcatch
n 20 84 220 452 806

Card. Qtdw
n 20 84 220 455 816

Compr. ratio 5.6e+04 1.3e+04 5.1e+03 2.5e+03 1.4e+03

cpu Halton seq 0.9s

cpu Qdcatch
n 3.4s 19s 49s 140s 310s

cpu Qtdw
n 0.22s 0.9s 2.4s 5.7s 26s

Speed-up 15.4 21.1 20.5 24.4 11.9

Mom. resid. Qdcatch
n 8.9e−12 8.9e−12 8.9e−12 � 5.1e−06 � 1.1e−05

Mom. resid. Qtdw
n

Iter. 1 4.6e−16 1.5e−02 1.6e−01 3.8e−01 7.1e−01

Iter. 2 1.1e−15 1.9e−15 3.6e−15 8.1e−15

Card. QMC M = 1,195,806

Card. Qdcatch
n 20 83 220 450 795

Card. Qtdw
n 20 84 220 455 816

Compr. ratio 5.6e+04 1.3e+04 5.1e+03 2.8e+03 1.5e+03

cpu Halton seq 1.3s

cpu Qdcatch
n 3.4s 23s 65s 150s 370s

cpu Qtdw
n 0.25s 0.87s 26s 95s 67s

Speed-up 13.8 26.6 25.0 15.7 5.6

Mom. resid. Qdcatch
n 1.1e−11 � 1.2e−05 1.1e−11 � 5.6e−05 � 7.3e−05

Mom. resid. Qtdw
n

Iter. 1 2.2e−16 9.4e−02 5.0e−01 1.5e+00 1.8e+00

Iter. 2 1.3e−15 2.2e−15 4.7e−15 8.3e−02

Iter. 3 7.3e−15

of the present TDW compression algorithm, for short Qtdw
n , are made with a global

compression algorithm that works on the full Halton sequence XM , namely the general
purpose discrete measure compressor dCATCH developed in [14], which essentially
solves directly (11) by Caratheodory–Tchakaloff subsampling as proposed in [30, 34].
In particular, we display the cardinalities and compression ratios, the cpu-times for
the construction of the low-discrepancy sequence (cpu Halton seq.) and those for the
computation of the compressed rules, where the new algorithm shows speed-ups from
about 6 tomore than 24 in the present degree range, ensuringmoment residuals always
below the required tolerance in at most 3 iterations. It is worth stressing a phenomenon
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Table 2 Geometric mean of the volume integration errors over 100 trials of the random polynomial (16)
for the dCATCH and TDW algorithms on the union of 3 balls and 100 balls

Degree n 3 6 9 12 15

3 balls: dcatch 1e−11 1e−11 1e−11 1e−07 1e−07

3 balls: tdw 2e−11 5e−11 1e−10 2e−10 6e−10

100 balls: dcatch 1e−11 6e−06 1e−11 9e−06 1e−07

100 balls: tdw 1e−11 2e−11 3e−11 5e−11 7e−11

already observed in [17], that is, possible failure of Qdcatch
n which in some cases gives

much larger residuals than Qtdw
n .

In order to check polynomial exactness of the QMC compressed rules, in Table 2
we show the relative QMC compression errors and their geometric mean over 100
trials of the polynomial

g(P) = (ax + by + cz + d)n, P = (x, y, z) (16)

where a, b, c, d are uniform random variables in [0, 1].
Moreover, in Table 3 we show the integration relative errors on three test functions

with different regularity, namely

f1(P) = |P − P0|5, f2(P) = cos(x + y + z), f3(P) = exp(−|P − P0|2)
(17)

where P0 = (0, 0, 0) ∈ �, the first being of class C4 with discontinuous fifth deriva-
tiveswhereas the second and the third are analytic. The reference values of the integrals
have been computed by a QMC formula starting from 108 Halton points in the bound-
ing box.

We see that the compressed formulas on more than one million points show errors
of comparable order of magnitude, that as expected from estimate (13) decrease while
increasing the polynomial compression degree until they reach a size close to the
underlying QMC error.

3.2 Surface integration on the union of balls

We turn now to surface integration, on a domain � that is the boundary of an arbitrary
union of balls, namely

� = ∂

N⋃

j=1

B(C j , r j ) =
N⋃

j=1

∂B(C j , r j )\
N⋃

j=1

◦
B(C j , r j ), (18)

i.e. the set of all points lying on some sphere ∂B(C j , r j ), j = 1, . . . ,N , but not
internally to any of the balls B(Ck, rk), k �= j .

We present two examples, corresponding to the same centers and radii considered
above for volume integration, i.e. the surface of the union of 3 balls and of 100
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Table 3 Errors of compressed QMC volume integration on the union of 3 balls (top) and 100 balls (bottom);
the reference values of the integrals are computed via QMC starting from 108 Halton points in the bounding
box

Degree n 3 6 9 12 15

Eqmc( f1) 3.5e−04

Edcatch( f1) 1.3e−01 3.4e−04 3.5e−04 3.5e−04 3.5e−04

Etdw( f1) 2.3e−03 3.2e−04 3.5e−04 3.5e−04 3.5e−04

Eqmc( f2) 7.3e−04

Edcatch( f2) 2.4e+00 7.0e−02 4.3e−03 7.3e−04 7.3e−04

Etdw( f2) 7.5e−01 3.7e−03 4.8e−04 7.4e−04 7.3e−04

Eqmc( f3) 8.7e−05

Edcatch( f3) 7.1e−01 1.4e−01 9.4e−03 2.2e−03 1.1e−04

Etdw( f3) 5.8e−01 2.8e−02 1.5e−02 9.5e−04 2.5e−05

Eqmc( f1) 1.1e−04

Edcatch( f1) 8.3e−02 8.8e−05 1.1e−04 1.1e−04 1.1e−04

Etdw( f1) 1.7e−03 9.8e−05 1.1e−04 1.1e−04 1.1e−04

Eqmc( f2) 1.7e−04

Edcatch( f2) 2.9e−01 8.7e−04 1.6e−04 1.7e−04 1.7e−04

Etdw( f2) 5.6e−02 1.5e−04 1.7e−04 1.7e−04 1.7e−04

Eqmc( f3) 2.2e−04

Edcatch( f3) 2.3e−01 2.3e−03 8.4e−04 2.3e−04 2.2e−04

Etdw( f3) 6.1e−03 3.6e−03 1.2e−04 2.3e−04 2.2e−04

balls in Sect. 3.1. Notice that � is a subset of an algebraic surface, the union of
the corresponding active spheres. Though the polynomial spaces dimension could be
determined theoretically by algebraic geometrymethods (cf., e.g., [7]), we do not enter
this delicate matter here, since the algorithm computes numerically such a dimension
by a rank revealing approach on a Vandermonde-like matrix.

In this case we have applied the extension discussed in Sect. 2.2, constructing an
evenly distributed sequence XM on the whole � by taking a large number of low
discrepancy points on each sphere ∂B(C j , r j ), and then selecting those belonging to
the portions of the sphere that contribute to the surface of the union, that are those not
internal to any other ball. Namely, we have taken on each sphere the mapped Halton
points from the rectangle [−1, 1] × [0, 2π ] by the area preserving transformation

(t, φ) �→ C j + r j (
√
1 − t2 cos(φ),

√
1 − t2 sin(φ), t), (19)

which preserves also the low-discrepancy property (cf. e.g. [11]). The points are finally
ordered by picking alternatively one point per active portion of the surface of the
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Table 4 Compression of QMC surface integration on the union of 3 balls (top, starting from 500,000 low-
discrepancy points on each sphere) and 100 balls (bottom, starting from 60,000 low-discrepancy points on
each sphere); M is the starting QMC cardinality, i.e. the number of Halton points on the surface of the union
of balls

Degree n 3 6 9 12 15

Card. QMC M = 1,024,179

Card. Qdcatch
n 20 83 200 371 572

Card. Qtdw
n 20 83 200 371 596

Compr. ratio 5.1e+04 1.2e+04 5.1e+03 2.8e+03 1.7e+03

cpu Halton seq 0.88s

cpu Qdcatch
n 2.8s 17s 50s 140s 320s

cpu Qtdw
n 0.31s 1.1s 2.7s 5.8s 65s

Speed-up 9.0 15.5 18.5 24.1 4.9

Mom. resid. Qdcatch
n 8.6e−12 8.9e−12 8.9e−12 8.9e−12 � 1.6e−06

Mom. resid. Qtdw
n

Iter. 1 7.2e−01 1.4e−15 2.8e−15 4.2e−15 2.6e−01

Iter. 2 3.7e−16 1.3e−01

Iter. 3 3.3e−12

Card. QMC M = 1,032,718

Card. Qdcatch
n 20 84 219 455 807

Card. Qtdw
n 20 84 220 455 816

Compr. ratio 5.2e+04 1.2e+04 4.7e+03 2.3e+03 1.3e+03

cpu Halton seq 1.5s

cpu Qdcatch
n 2.8s 16s 43s 110s 240s

cpu Qtdw
n 0.32s 1.1s 3.0s 6.8s 24s

Speed-up 8.8 14.5 14.3 16.2 10

Mom. resid. Qdcatch
n 9.0e−13 9.1e−13 � 3.2e−06 9.3e−13 � 1.8e−05

Mom. resid. Qtdw
n

Iter. 1 2.2e+00 1.2e+00 5.5e−01 6.2e−01 1.4e−01

Iter. 2 7.5e−16 1.3e−15 2.5e−15 5.2e−15 1.2e−14

union, with a local weight attached to each point. An illustration of compressed points
extracted starting from 4000 mapped Halton points on each sphere is given in Fig. 1.

In Table 4 we report for these surface integration examples the same quantities
appearing in Table 1 for the volume integration, where we use again the dCATCH
code in [13] to compress the QMC formula on the whole XM , since also that algo-
rithm was conceived to work with polynomial spaces possibly restricted to algebraic
surfaces. Here we start from 500,000 mapped Halton points on each sphere in the 3
balls example, and from 60,000 on each sphere in the 100 balls instance, obtaining a
sequence of about one million low-discrepancy points on the corresponding ball union
surfaces. As before we set s j+1 = 2s j , j ≥ 1 with s1 = 2N and ε = 10−10.
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Table 5 Geometric mean of the surface integration errors over 100 trials of the random polynomial (16)
for the dCATCH and TDW algorithms on the union of 3 balls and 100 balls

Degree n 3 6 9 12 15

3 balls: dcatch 4e−12 4e−12 4e−12 4e−12 1e−09

3 balls: tdw 7e−12 4e−12 1e−11 3e−12 1e−12

100 balls: dcatch 4e−13 3e−13 1e−07 3e−13 3e−07

100 balls: tdw 1e−13 1e−13 2e−13 2e−13 3e−13

Again we get impressive compression ratios, and speed-ups varying from about 5 to
more than 16. Moreover, the TDW algorithm gives always a residual below the given
tolerance, whereas dCATCH turns out to be more prone to failure (see the residuals
for degree n = 15 in the example with 3 balls and degrees n = 9, 15 in the example
with 100 balls).

The compression errors and their geometric mean concerning surface integration
of the random polynomial (16), restricted to the boundary of the union, are stated in
Table 5. In Table 6 we show the surface integration errors for the three test functions
in (17), where P0 is a suitably chosen point on the surface of the ball union. We see
again that the compressed formulas on more than one million points show errors of
comparable order of magnitude, that as expected from estimate (13) decrease while
increasing the polynomial compression degree, until they reach a size close to the
underlying QMC error.

3.2.1 Compressed QMC surface integration of vector fields

We consider here surface integration of a vector field �F = (F1, F2, F3) on � =
∂

⋃N
j=1 B(C j , r j ) = ⋃L

	=1 �	, that is

∫

�

〈 �F(P), �n(P)〉 dσ =
L∑

	=1

∫

�	

〈 �F(P), �n(P)〉 dσ , (20)

where �n(P) is the exterior normal vector to the surface at P and 〈·.·〉 denotes the scalar
product in R

3. In this case even if the vector field is smooth, the integrand naturally
presents singularities of the normal vector crossing the curves corresponding to inter-
sections of different spheres (cf. Sect. 2.2 for the general splitting into nonoverlapping
pieces �	). For this reason, it is here convenient to apply QMC compression locally,
i.e. on each �	 separately, where polynomial approximation can work. In such a way
of course we get lower compression ratios, namely if M is the overall number of sam-
pling points we have a compression ratio M/(L · dim(P3

n(�	))) = M/(L(n + 1)2)
instead of M/dim(P3

n(�)).

In order to give a specific application, we consider the computation of a relevant
quantity in (bio)molecular solvation models, the so-called Born Radius of an atom.
This quantity, that measures in some sense its degree of shielding from solvent by the
surrounding molecule’s atoms, is a key ingredient for the computation of the solvation
free energy. In particular, we consider the Generalized Born (GB) model, where the
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Table 6 Errors of compressed QMC surface integration on the union of 3 balls (top) and 100 balls (bottom);
the reference values of the integrals are computed via QMC starting from 106 points on each sphere

Degree n 3 6 9 12 15

Eqmc( f1) 3.9e−06

Edcatch( f1) 2.3e−04 8.3e−06 4.0e−06 3.9e−06 3.9e−06

Etdw( f1) 3.7e−04 3.6e−06 4.0e−06 3.9e−06 3.9e−06

Eqmc( f2) 8.6e−05

Edcatch( f2) 3.5e−01 3.2e−02 8.3e−04 8.4e−05 8.6e−05

Etdw( f2) 1.3e+00 2.2e−02 8.3e−06 8.5e−05 8.6e−05

Eqmc( f3) 5.8e−06

Edcatch( f3) 3.9e−01 5.8e−03 6.9e−04 5.8e−05 8.9e−06

Etdw( f3) 2.5e−02 3.8e−03 4.7e−06 9.1e−05 6.0e−06

Eqmc( f1) 4.0e−05

Edcatch( f1) 2.9e−03 2.8e−05 3.9e−05 4.0e−05 4.0e−05

Etdw( f1) 3.2e−02 3.7e−05 3.9e−05 4.0e−05 4.0e−05

Eqmc( f2) 2.0e−04

Edcatch( f2) 1.4e−01 6.4e−04 1.7e−04 2.0e−04 2.0e−04

Etdw( f2) 1.4e−01 6.2e−05 1.9e−04 2.0e−04 2.0e−04

Eqmc( f3) 1.6e−04

Edcatch( f3) 2.9e−02 1.7e−02 4.3e−04 1.5e−04 1.6e−04

Etdw( f3) 1.6e−02 1.7e−03 2.6e−04 1.5e−04 1.6e−04

k-th Born Radius of the j-th atom can be defined via the surface integrals

I j,k =
∫

�

〈 �Fj,k(P), �n(P)〉 dσ , �Fj,k(P) = P − C j

|P − C j |k , 4 ≤ k ≤ 7, (21)

for 1 ≤ j ≤ N , where � = ∂
⋃N

j=1 B(C j , r j ) is for example the Van der Waals
surface of the solute molecule (the surface of a union of balls modelling the single
atoms). For example, in the popular R6 GB model, the Born radius of the j-th atom is

defined by R6( j) = ( 1
4π I j,6

)−1/3
, 1 ≤ j ≤ N ; cf., e.g., [2, 20, 28]with the references

therein, for an overview on Generalized Born Radii in molecular modelling.
For the only purpose of illustration, we have computed the integrals I j,k in (21) for

the union of balls in Fig. 1b, considered as a virtual “molecule”withN = 100 “atoms”.
In particular, we can avoid the discontinuity curves by excluding in the sampling on
each given sphere not only the interior, but also the boundary of the other balls. This
has no effect on surface integration since there is a finite number of discontinuity
curves, that have null surface measure.

The numerical results are collected in Table 7, where we report the RMSRE (Root
Mean Square Relative Error) in the QMC computation of the array of surface integrals
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Table 7 Cardinalities and root mean square relative errors (22) of QMC surface integration for the Born-like
integrals (21) on a virtual molecule with 100 atoms (piecewise versus global compression); the reference
values of the integrals are computed via QMC starting from 106 points on each sphere

Degree n 3 6 9 12 15

Card. QMC 1,032,718

Card. dcatch pcw 1719 6519 21,699 41,216 68,707

Compr. ratio 601 158 48 25 15

E4 QMC 4.3e−04

E4 dcatch glob 2.3e+00 7.3e−01 4.4e−01 4.1e−01 1.6e−01

E4 dcatch pcw 2.9e−02 5.0e−03 9.7e−04 7.0e−04 4.5e−04

E5 QMC 7.6e−04

E5 dcatch glob 5.8e+00 1.7e+00 7.4e−01 6.2e−01 3.2e−01

E5 dcatch pcw 5.5e−02 1.0e−02 2.0e−03 1.4e−03 8.1e−04

E6 QMC 1.2e−03

E6 dcatch glob 1.1e+01 2.9e+00 9.9e−01 6.8e−01 4.7e−01

E6 dcatch pcw 8.2e−02 1.6e−02 3.0e−03 2.2e−03 1.3e−03

E7 QMC 1.6e−03

E7 dcatch glob 1.9e+01 3.4e+00 1.2e+00 7.1e−01 5.6e−01

E7 dcatch pcw 1.0e−01 2.1e−02 3.8e−03 3.0e−03 1.8e−03

(I1,k, . . . , IN ,k), that is

Ek =

√√√√√ 1

N

N∑

j=1

(Q j,k − I j,k)2

I 2j,k
, 4 ≤ k ≤ 7, (22)

where either

Q j,k = Q(〈 �Fj,k, �n〉) =
L∑

	=1

Q	(〈 �Fj,k, �n〉), 1 ≤ j ≤ N ,

is the uncompressed piecewise QMC formula, or

Q j,k = Qn(〈 �Fj,k, �n〉) =
L∑

	=1

Q	,n(〈 �Fj,k, �n〉), 1 ≤ j ≤ N ,

is the piecewise compressed one (named “pcw”). As above we start from 60,000
mapped Halton points per sphere and take as reference values of the integrals those
computed with 106 mapped Halton points per sphere. We apply directly piecewise
Caratheodory–Tchakaloff subsampling by the package dCATCH, since experimen-
tally TDW does not give a clear advantage, essentially because the local number of
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points is not huge. On the other hand, here global compression does not work satisfac-
torily due to the discontinuities of the normal vector, as we can clearly see in Table 7,
where the errors of “dcatch glob” decrease slowly with the degree, staying at least two
orders of magnitude above those of piecewise compression. The resulting compres-
sion ratios are much smaller than those obtainable by global compression in smooth
instances, but still meaningful. As expected the errors of piecewise compressed QMC
integration decrease with the degree, until they reach a size close to the underlying
QMC error.
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